Enhancing Chrysanthemum (Dendranthema × grandiflorum) tissue culture for improved ornamental flower production: Genotypic insights and growth regulator optimization

Authors

DOI:

https://doi.org/10.14719/pst.3488

Keywords:

Recalcitrant, cut flower, indirect organogenesis, in vitro

Abstract

This study addresses the need for refining in vitro regeneration protocols for chrysanthemums (D. grandiflorum), the second most prominent ornamental cut flower globally, through the strategic implementation of tissue culture techniques. The objective of the study was to evaluate the response of 4 Dendranthema genotypes (CO-1, Pink Marble, Snapper and Super White) to various plant growth regulators (PGRs) during callus culture, shoot formation, rooting and acclimatization. For this, ray floret explants were utilized and PGRs including 2,4-D, BAP, IBA, GA3, IAA and NAA were tested at different concentrations. Results revealed the superior performance of genotypes CO-1 and Super White across all stages of in vitro regeneration. Optimal conditions were identified, including a synergistic combination of 2.0 mg L-1 2,4-D and 0.100 mg L-1 BAP for callus induction, 2.0 mg L-1 BAP with 0.100 or 0.250 mg L-1 NAA for shoot formation and 1.0 mg L-1 IBA with 0.100 mg L-1 NAA for rooting. Acclimatization was successful using vermicompost + red soil + coir pith (1:1:1) as a substrate. Furthermore, tissue culture-raised chrysanthemum plants exhibited a significant increase in flower numbers upon treatment with 100 mg L-1 GA3, indicating the potential for enhanced flower quality and yield compared to conventionally grown plants. These findings provide crucial insights for optimizing large-scale chrysanthemum production and underscore the importance of tissue culture techniques in ornamental cut flower industry advancements.

Downloads

Download data is not yet available.

References

Eisa EA, Tilly-Mándy A, Honfi P, Shala AY, Gururani MA. Chrysanthemum: A comprehensive review on recent developments on in vitro regeneration. Biology. 2022;11:1774. https://doi.org/10.3390/ biology11121774.

Madhu Bala. Evaluation of chrysanthemum (Chrysanthemum morifolium Ramat.) genotypes for morphological traits. J Hortl Sci. 2015;10(2):237-41. https://doi.org/10.24154/jhs.v10i2.139.

AIPH (The International Association of Horticultural Producers). International Statistics Flowers and Plants; Union Fleurs (Internet). (cited 28 January 2024);63:15-22.

APEDA (The Agricultural and Processed Food Products Export Development Authority). Indian Production of Chrysanthemum, National Horticulture Board [Internet]. 2023[cited 28 January 2024];68.

Chowdhury J, Hoque M, Sarker R. Development of an efficient in vitro regeneration protocol for chrysanthemum (Chrysanthemum morifolium Ramat). Plant Tissue Cult Biotechno. 2021;31(2):161-71. https://doi.org/10.3329/ptcb.v31i2.57344.

Keresa S, Mihovilovic A, Baric M, Zidovec V, Skelin M. The micropropagation of chrysanthemums via shoot proliferation and highly efficient plant regeneration by somatic embryogenesis. Afr J Biotechnol. 2012;11:602-03. https://doi.org/10.5897/AJB10.1976.

Chae SC. Influence of auxin concentration on in vitro rooting of Chrysanthemum morifolium Ramat. Biosci Biotechnol Res Asia. 2016;13:833-37. https://doi.org/10.13005/bbra/2104.

Kazeroonian R, Mousavi A, Kalate Jari S, Tohidfar M. Factors influencing in vitro organogenesis of Chrysanthemum morifolium cv. ‘Resomee Splendid’. Iranian J Biotechno. 2018;16:132-39. https://doi.org/10.21859/ijb.1454.

Hodson de Jaramillo E, Forero A, Cancino G, Moreno AM, Monsalve LE, Acero W. In vitro regeneration of three chrysanthemum (Dendranthema grandiflora) varieties "via" organogenesis and somatic embryogenesis. Universitas Scientiarum. 2008;13:118-27.

Mandang JP. Seedling propagation of Kulo chrysanthemum by tissue culture. Am J Agric Biol Sci. 2017;12:123-29. https://doi.org/10.3844/ajabssp.2017.123.129.

Mandal AKA, Datta SK. Direct somatic embryogenesis and plant regeneration from ray florets of chrysanthemum. Biol Plant. 2005;49:29-33. https://doi.org/10.1007/s10535-005-0033-6.

Datta SK, Teixeira da Silva JA. Role of induced mutagenesis for development of new flower colour and type in ornamentals. In: Teixeira da Silva JA, editor. Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues, 1st edn. Global Science Books Ltd; Isleworth. 2006;p. 640-45.

Verma AK, Prasad KV, Singh SK, Kumar S. In vitro isolation of red coloured mutant from chimeric ray florets of chrysanthemum induced by gamma-ray. Indian J Hortic. 2012;69(4):562-67.

Verma A, Prasad K. Organogenesis and anatomical study of gamma rays induced mutant of chrysanthemum (Chrysanthemum morifolium Ramat.) from ray florets. Res J Biotechnol. 2019;14(3):44-53.

Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15:473-97. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.

Amin NU, Sanga G, Ara N, Shah SH, Ullah F. Effect of various concentrations of calcium chloride on callus growth and potassium nutrition of calli cultures of potato (solanum tuberosum). Pakistan J Bot. 2013;45(1):209-14.

Thangmanee C, Kanchanapoom K. Regeneration of chrysanthemum plants (Chrysanthemum × grandiflorum (Ramat.) Kitam.) by callus derived from ray floret explants. Propag Ornam Plants. 2011;11(4):204-09.

Barakat MN, Abdel Fattah RS, Badr M, El-Torky MG. In vitro culture and plant regeneration derived from ray florets of Chrysanthemum morifolium. Afr J Biotechnol. 2010;9:1151-58. https://doi.org/10.5897/ajb09.1774.

Teixeira da Silva JA. Organogenesis from chrysanthemum (Dendranthema × grandiflora (Ramat.) Kitamura) petals (disc and ray florets) induced by plant growth regulators. Asia Pac J Mol Biol Biotechnol. 2014;22:145-51.

Datta SK. Need based tissue culture in floriculture: A success story. J Plant Sci Res. 2019;35:245-54. https://doi.org/10.32381/JPSR.2019.35.02.13.

Nhut DT, Nam NB, Tung HT. Wireless light-emitting diode system for micropropagating chrysanthemum and strawberry. In: Plant Tissue Culture: New Techniques and Application in Horticultural Species of Tropical Region: Springer. 2022; p. 383-97. https://doi.org/10.1007/978-981-16-6498-4_18.

Teixeira da Silva JA. Tissue culture and cryo-preservation of chrysanthemum: A review. Biotechnol Adv. 2003;21:715-66. https://doi.org/10.1016/S0734-9750(03)00117-4

Lim KB, Kwon SJ, Lee SI, Hwang YJ, Naing AH. Influence of genotype, explant source and gelling agent on in vitro shoot regeneration of chrysanthemum. Hortic Environ Biotechnol. 2012;53:329-335. https://doi.org/10.1007/s13580-012-0063-x.

Kengkarj P, Smitamana P, Fujime Y. Assessment of somaclonal variation in chrysanthemum (Dendranthema grandiflora Kitam.) using RAPD and morphological analysis. Plant Tissue Cult Biotechnol. 2008;18:139-49. https://doi.org/10.3329/ptcb.v18i2.3396.

Vilasini P, Latipah Z. Somaclonal variation in Chrysanthemum morifolium generated through petal cultures. J Trop Agric Food Sci. 2000;28(2):115-20.

Kumar S, Kumar S, Negi SP, Kanwar JK. In vitro selection and regeneration of chrysanthemum (Dendranthema grandiflorum Tzelev) plants resistant to culture filtrate of Septoria obesa Syd. In Vitro Cell Dev Biol – Plant. 2008;44:474-79. https://doi.org/10.1007/s11627-008-9131-4.

Tanaka K, Kanno Y, Kudo S, Suzuki M. Somatic embryogenesis and plant regeneration in chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura). Plant Cell Rep. 2000;19:946-53. https://doi.org/10.1007/s002990000225.

Bose TK, Yadav LP, Pal P, Pathasarathy VA, Das P, editors. Chrysanthemum commercial flowers. Nayaprokash; Calcutta; India. 2003, Vol-1(2nd Rev. ed): p. 463-602.

Mori Y, Kono S, Goto T. Effects of gibberellic acid application after flower budding on the flowering and cut flower quality of summer-to-autumn flowering small-flowered spray type Chrysanthemum harvested in August. Hort Res Japan. 2013;12(1):103-08. https://doi.org/10.2503/hrj.12.103.

Shintiavira H, Sulistyaningsih E, Purwantoro A, Wulandar RA. The effects of gibberellic acid (GA3) on the harvesting time of spray type chrysanthemum cut flowers in medium land. Biodiversitas. 2020;21(4):1723-29. https://doi.org/10.13057/biodiv/d210455.

Earle ED, Langhans RW. Propagation of chrysanthemum in vitro: II. Production, growth and flowering of plantlets from tissue cultures. J Amer Soc Hort Sci. 1974;99(4):352-58. https://doi.org/10.21273/JASHS.99.4.352.

Dahiya DS, Rana GS. Regulation of flowering in chrysanthemum as influenced by GA3 and shade house of different intensities. South Ind Hort. 2001;49:313-14.

Mohariya AD, Patil BN, Wankhede SG, Band PE, Kartikeyan R. Effect of GA3 and TIBA on growth, flowering and yield of different varieties of chrysanthemum. Adv Plant Sci. 2003;16(1):143-46.

Published

23-08-2024 — Updated on 25-08-2024

Versions

How to Cite

1.
G T, N N, V P, T V. Enhancing Chrysanthemum (Dendranthema × grandiflorum) tissue culture for improved ornamental flower production: Genotypic insights and growth regulator optimization. Plant Sci. Today [Internet]. 2024 Aug. 25 [cited 2024 Nov. 23];11(3). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/3488

Issue

Section

Research Articles