Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 11 No. 4 (2024)

Agricultural carbon credits: A pathway to environmental sustainability

DOI
https://doi.org/10.14719/pst.3504
Submitted
8 March 2024
Published
01-11-2024 — Updated on 10-11-2024
Versions

Abstract

Climate change and ensuring food security for a rapidly growing global population are two of the biggest challenges in agriculture. To meet the commitments made in the Paris Climate Agreement, it is important to use effective methods for managing soil that can help sequester and stabilise carbon. Conservation agriculture has a huge potential to sequester carbon in plants and soil, making it a viable option for carbon trading despite its significant contribution to global greenhouse gas emissions. Carbon sequestration can be achieved through sustainable practices such as adopting conservation agriculture, crop rotation, cover crop cultivation, crop residue incorporation or mulching, effective management of nutrient supply to crops, and transforming towards organic agriculture and agroforestry. These practices promote food security and environmental improvement and help mitigate global warming. Carbon pricing mechanisms are policies that impose a cost on carbon pollution, encouraging people and organisations to choose low-carbon options and reduce their emissions. Agricultural producers can benefit from carbon trading by earning extra revenue by selling their excess carbon credits to those who emit higher amounts of greenhouse gases. Carbon credit systems in agriculture are still in the early stages, so farmers may have more opportunities to participate in future carbon trading.

References

  1. Friedlingstein P, O'Sullivan M, Jones MW, Andrew RM, Bakker DCE, Hauck J, et al. Global carbon budget 2023. Earth Syst Sci Data. 2023;15(12):5301-69. https://doi.org/10.5194/essd-15-5301-2023
  2. Cariappa AA, Konath NC, Sapkota TB, Krishna VV. Evaluating the potential and eligibility of conservation agriculture practices for carbon credits. Sci Rep. 2024;14(1):9193. https://doi.org/10.1038/s41598-024-59262-6
  3. Singh S, Kiran BR, Mohan SV. Carbon farming: a circular framework to augment CO2 sinks and to combat climate change. Env Sci Adv. 2024;3(4):522-42. https://doi.org/10.1039/D3VA00296A
  4. Rodrigues CID, Brito LM, Nunes LJR. Soil carbon sequestration in the context of climate change mitigation: A review. Soil Systems. 2023;7(3):64. https://doi.org/10.3390/soilsystems7030064
  5. Phelan L, Chapman PJ, Ziv G. The emerging global agricultural soil carbon market: the case for reconciling farmers’ expectations with the demands of the market. Environmental Development. 2024;49:100941. https://doi.org/10.1016/j.envdev.2023.100941
  6. Lokuge N, Anders S. Carbon-credit systems in agriculture: a review of literature. The School of Public Policy Publications. 2022;15. https://doi.org/10.55016/ojs/sppp.v15i1.74591
  7. Peralta G, Di Paolo L, Luotto I, Omuto C, Mainka M, Viatkin K, et al. Global soil organic carbon sequestration potential map (GSOCseq v1. 1)–Technical manual [Internet]. Food and Agriculture Org. 2022 [updated 2022 Jan 18; cited 2024 Feb 14]. Available from: https://doi.org/10.4060/cb2642en
  8. Mathews JA. How carbon credits could drive the emergence of renewable energies. Energy Policy. 2008;36(10):3633-39. https://doi.org/10.1016/j.enpol.2008.05.033
  9. FAOSTAT. Food and agriculture data [Internet]. FAO; 2024 [updated 2024 Feb 14; cited 2024 Feb 14]. Available from: https://www.fao.org/faostat/en/#data/.
  10. Anthony TL, Silver WL. Hot spots and hot moments of greenhouse gas emissions in agricultural peatlands. Biogeochemistry. 2024;167(4):461-77. https://doi.org/10.1007/s10533-023-01095-y
  11. Rao DLN, Balachandar D. Nitrogen inputs from biological nitrogen fixation in Indian agriculture. In: Abrol YP, Adhya TK, Aneja VP, Raghuram N, Pathak H, Kulshrestha U, et al., editors. The Indian Nitrogen Assessment: Elsevier; 2017. p. 117-32. https://doi.org/10.1016/B978-0-12-811836-8.00008-2
  12. Li Y, Shang J, Zhang C, Zhang W, Niu L, Wang L, et al. The role of freshwater eutrophication in greenhouse gas emissions: A review. Sci Total Environ. 2021;768:144582. https://doi.org/10.1016/j.scitotenv.2020.144582
  13. Murrell TS, Mikkelsen RL, Sulewski G, Norton R, Thompson ML. Improving potassium recommendations for agricultural crops. Springer Nature. 2021. https://doi.org/10.1007/978-3-030-59197-7
  14. Shakoor A, Shahbaz M, Farooq TH, Sahar NE, Shahzad SM, Altaf MM, et al. A global meta-analysis of greenhouse gases emission and crop yield under no-tillage as compared to conventional tillage. Sci Total Environ. 2021;750:142299. https://doi.org/10.1016/j.scitotenv.2020.142299
  15. Gupta K, Kumar R, Baruah KK, Hazarika S, Karmakar S, Bordoloi N. Greenhouse gas emission from rice fields: a review from Indian context. Environ Sci Pollut Res. 2021;28(24):30551-72. https://doi.org/10.1007/s11356-021-13935-1
  16. Meng Q, Yue S, Hou P, Cui Z, Chen X. Improving yield and nitrogen use efficiency simultaneously for maize and wheat in China: A review. Pedosphere. 2016;26(2):137-47. https://doi.org/10.1016/S1002-0160(15)60030-3
  17. Reijnders L, Huijbregts MAJ. Palm oil and the emission of carbon-based greenhouse gases. J Clean Prod. 2008;16(4):477-82. https://doi.org/10.1016/j.jclepro.2006.07.054
  18. Adhisankaran K, Sakthivel S. Carbon sequestration. In: Priya S, Ninama Atulkumar R, Chiragkumar MB, Narinder P, Vishnu M, editors. Emerging Trends in Agricultural Practices: ND Global Publication House; 2024. p. 48-63.
  19. Mason ARG, Salomon MJ, Lowe AJ, Cavagnaro TR. Microbial solutions to soil carbon sequestration. J Clean Prod. 2023;417:137993. https://doi.org/10.1016/j.jclepro.2023.137993
  20. Francaviglia R, Almagro M, Vicente-Vicente JL. Conservation agriculture and soil organic carbon: principles, processes, practices and policy options. Soil Systems. 2023;7(1):17. https://doi.org/10.3390/soilsystems7010017
  21. Piccoli I, Chiarini F, Carletti P, Furlan L, Lazzaro B, Nardi S, et al. Disentangling the effects of conservation agriculture practices on the vertical distribution of soil organic carbon. Evidence of poor carbon sequestration in North- Eastern Italy. Agric Ecosyst Environ. 2016;230:68-78. https://doi.org/10.1016/j.agee.2016.05.035
  22. Gonzalez-Sanchez EJ, Veroz-Gonzalez O, Conway G, Moreno-Garcia M, Kassam A, Mkomwa S, et al. Meta-analysis on carbon sequestration through conservation agriculture in Africa. Soil Tillage Res. 2019;190:22-30. https://doi.org/10.1016/j.still.2019.02.020
  23. Tadiello T, Acutis M, Perego A, Schillaci C, Valkama E. Soil organic carbon under conservation agriculture in Mediterranean and humid subtropical climates: Global meta-analysis. European J Soil Science. 2023;74(1):e13338. https://doi.org/10.1111/ejss.13338
  24. Mehra P, Baker J, Sojka RE, Bolan N, Desbiolles J, Kirkham MB, et al. A review of tillage practices and their potential to impact the soil carbon dynamics. Adv Agron. 150: Elsevier. 2018;p. 185-230. https://doi.org/10.1016/bs.agron.2018.03.002
  25. Yang S, Wang Y, Wang Z, Yan X, Feng M, Xiao L, et al. Interactive effects of conservation tillage on the aggregate stability and soil organic carbon. J Plant Nutr Soil Sci. 2022;185(4):505-12. https://doi.org/10.1002/jpln.202200044
  26. Briedis C, De Moraes Sá JC, Lal R, De Oliveira Ferreira A, Franchini JC, Milori DMBP. Preservation of labile organic compounds is the pathway for carbon storage in a 23-year continuous no-till system on a Ferralsol in southern Brazil. Geoderma Regional. 2023;33:e00643. https://doi.org/10.1016/j.geodrs.2023.e00643
  27. Liu X, Tan S, Song X, Wu X, Zhao G, Li S, et al. Response of soil organic carbon content to crop rotation and its controls: A global synthesis. Agric Ecosyst Environ. 2022;335:108017. https://doi.org/10.1016/j.agee.2022.108017
  28. Guo L, Shi J, Lin W, Liang J, Lu Z, Tang X, et al. Soil bacteria mediate soil organic carbon sequestration under different tillage and straw management in rice-wheat cropping systems. Agriculture. 2022;12(10):1552. https://doi.org/10.3390/agriculture12101552
  29. Zhang Q, Zhang Y, Wang X, Li H, Liu P, Wang X, et al. Change of tillage system affects the soil carbon pools characters, reduces carbon emissions and improves maize yield in the Loess Plateau. Eur J Agron. 2022;141:126614. https://doi.org/10.1016/j.eja.2022.126614
  30. Zhu K, Ran H, Wang F, Ye X, Niu L, Schulin R, et al. Conservation tillage facilitated soil carbon sequestration through diversified carbon conversions. Agric Ecosyst Environ. 2022;337:108080. https://doi.org/10.1016/j.agee.2022.108080
  31. Wang X, Xu X, Qiu S, Zhao S, He P. Deep tillage enhanced soil organic carbon sequestration in China: A meta-analysis. J Clean Prod. 2023;399:136686. https://doi.org/10.1016/j.jclepro.2023.136686
  32. Zhao J, Liu Z, Lai H, Yang D, Li X. Optimizing residue and tillage management practices to improve soil carbon sequestration in a wheat–peanut rotation system. J Environ Manage. 2022;306:114468. https://doi.org/10.1016/j.jenvman.2022.114468
  33. Sharma S, Thind HS, Yadvinder S, Sidhu HS, Jat ML, Parihar CM. Effects of crop residue retention on soil carbon pools after 6 years of rice–wheat cropping system. Environ Earth Sci. 2019;78(10):296. https://doi.org/10.1007/s12665-019-8305-1
  34. Aravindh S, Chinnadurai C, Malathi P, Sanjivkumar V, Pandian PS, Thiyageshwari S, et al. Nutrient management and cropping pattern influence the carbon sequestering ability of semi-arid tropical soils. Environmental Sustainability. 2023;6(1):87-98. https://doi.org/10.1007/s42398-023-00264-x
  35. Li S, Li Y, Li X, Tian X, Zhao A, Wang S, et al. Effect of straw management on carbon sequestration and grain production in a maize–wheat cropping system in Anthrosol of the Guanzhong Plain. Soil Tillage Res. 2016;157:43-51. https://doi.org/10.1016/j.still.2015.11.002
  36. Haas E, Carozzi M, Massad RS, Butterbach-Bahl K, Scheer C. Long term impact of residue management on soil organic carbon stocks and nitrous oxide emissions from European croplands. Sci Total Environ. 2022;836:154932. https://doi.org/10.1016/j.scitotenv.2022.154932
  37. Blanco-Canqui H, Lal R. Crop residue management and soil carbon dynamics. In: Lal R, Follett RF, editors. SSSA Special Publications. Madison, WI, USA: American Society of Agronomy and Soil Science Society of America; 2009. p. 291-309. https://doi.org/10.2136/sssaspecpub57.2ed.c17
  38. Aditi K, Abbhishek K, Chander G, Singh A, Falk T, Mequanint MB, et al. Assessing residue and tillage management options for carbon sequestration in future climate change scenarios. Curr Res Environ Sustain. 2023;5:100210. https://doi.org/10.1016/j.crsust.2023.100210
  39. Karan SK, Woolf D, Azzi ES, Sundberg C, Wood SA. Potential for biochar carbon sequestration from crop residues: A global spatially explicit assessment. GCB Bioenergy. 2023;15(12):1424-36. https://doi.org/10.1111/gcbb.13102
  40. Zhang X, Hou H, Yin J, Fang Y, Yu X, Wang H, et al. Crop rotation with plastic mulching increased soil organic carbon and water sustainability: A field trial on the Loess Plateau. Soil Use Manag. 2023;39(2):717-28. https://doi.org/10.1111/sum.12873
  41. Giacometti C, Mazzon M, Cavani L, Triberti L, Baldoni G, Ciavatta C, et al. Rotation and fertilization effects on soil quality and yields in a long term field experiment. Agronomy. 2021;11(4):636. https://doi.org/10.3390/agronomy11040636
  42. Zheng F, Liu X, Ding W, Song X, Li S, Wu X. Positive effects of crop rotation on soil aggregation and associated organic carbon are mainly controlled by climate and initial soil carbon content: A meta-analysis. Agric Ecosyst Environ. 2023;355:108600. https://doi.org/10.1016/j.agee.2023.108600
  43. De Stefano A, Jacobson MG. Soil carbon sequestration in agroforestry systems: a meta-analysis. Agroforest Syst. 2017;92:285-99. https://doi.org/10.1007/s10457-017-0147-9
  44. Ajit, Dhyani SK, Handa AK, Newaj R, Chavan SB, Alam B, et al. Estimating carbon sequestration potential of existing agroforestry systems in India. Agroforest Syst. 2017;91(6):1101-18. https://doi.org/10.1007/s10457-016-9986-z
  45. Rahman MM, Alam MS, Islam MM, Kamal MZU, Rahman GKMM, Haque MM, et al. Potential of legume-based cropping systems for climate change adaptation and mitigation. Advances in Legumes for Sustainable Intensification: Elsevier. 2022;p. 381-402. https://doi.org/10.1016/B978-0-323-85797-0.00030-6
  46. Quintarelli V, Radicetti E, Allevato E, Stazi SR, Haider G, Abideen Z, et al. Cover crops for sustainable cropping systems: A review. Agriculture. 2022;12(12):2076. https://doi.org/10.3390/agriculture12122076
  47. McClelland SC, Paustian K, Schipanski ME. Management of cover crops in temperate climates influences soil organic carbon stocks: a meta-analysis. Ecol Appl. 2021;31(3):e02278. https://doi.org/10.1002/eap.2278
  48. Lal R. Cover cropping and the "4 per thousand" proposal. J Soil Water Conserv. 2015;70(6):141A-A. https://doi.org/10.2489/jswc.70.6.141A
  49. Sharma P, Singh A, Kahlon CS, Brar AS, Grover KK, Dia M, et al. The role of cover crops towards sustainable soil health and agriculture—A review paper. AJPS. 2018;09(09):1935-51. https://doi.org/10.4236/ajps.2018.99140
  50. Zhu S, Sainju UM, Zhang S, Tan G, Wen M, Dou Y, et al. Cover cropping promotes soil carbon sequestration by enhancing microaggregate-protected and mineral-associated carbon. Sci Total Environ. 2024;908:168330. https://doi.org/10.1016/j.scitotenv.2023.168330
  51. Poeplau C, Zopf D, Greiner B, Geerts R, Korvaar H, Thumm U, et al. Why does mineral fertilization increase soil carbon stocks in temperate grasslands? Agric Ecosyst Environ. 2018;265:144-55. https://doi.org/10.1016/j.agee.2018.06.003
  52. Gopinath KA, Rajanna GA, Venkatesh G, Jayalakshmi M, Kumari VV, Prabhakar M, et al. Influence of crops and different production systems on soil carbon fractions and carbon sequestration in rainfed areas of semiarid tropics in India. Sustainability. 2022;14(7):4207. https://doi.org/10.3390/su14074207
  53. Chinnadurai C, Gopalaswamy G, Balachandar D. Impact of long-term organic and inorganic nutrient managements on the biological properties and eubacterial community diversity of the Indian semi-arid Alfisol. Arch Agron Soil Sci. 2014;60(4):531-48. https://doi.org/10.1080/03650340.2013.803072
  54. Bai X, Tang J, Wang W, Ma J, Shi J, Ren W. Organic amendment effects on cropland soil organic carbon and its implications: A global synthesis. CATENA. 2023;231:107343. https://doi.org/10.1016/j.catena.2023.107343
  55. Li X, Zhu W, Xu F, Du J, Tian X, Shi J, et al. Organic amendments affect soil organic carbon sequestration and fractions in fields with long-term contrasting nitrogen applications. Agric Ecosyst Environ. 2021;322:107643. https://doi.org/10.1016/j.agee.2021.107643
  56. Wang G, Luo Z. Organic amendments alter long-term turnover and stability of soil carbon: Perspectives from a data-model integration. Agronomy. 2021;11(11):2134. https://doi.org/10.3390/agronomy11112134
  57. Hou P, Xue L, Wang J, Petropoulos E, Xue L, Yang L. Green manure amendment in paddies improves soil carbon sequestration but cannot substitute the critical role of N fertilizer in rice production. Agronomy. 2022;12(7):1548. https://doi.org/10.3390/agronomy12071548
  58. Zhang C, Zhao Z, Li F, Zhang J. Effects of organic and inorganic fertilization on soil organic carbon and enzymatic activities. Agronomy. 2022;12(12):3125. https://doi.org/10.3390/agronomy12123125
  59. Li S, Wei W, Liu S. Long-term organic amendments combined with nitrogen fertilization regulates soil organic carbon sequestration in calcareous soil. Agronomy. 2023;13(2):291. https://doi.org/10.3390/agronomy13020291
  60. Liang S, Sun N, Wang S, Colinet G, Longdoz B, Meersmans J, et al. Manure amendment acts as a recommended fertilization for improving carbon sequestration efficiency in soils of typical drylands of China. Front Environ Sci. 2023;11:1173509. https://doi.org/10.3389/fenvs.2023.1173509
  61. Luo R, Kuzyakov Y, Liu D, Fan J, Luo J, Lindsey S, et al. Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: Disentangling microbial and physical controls. Soil Biol Biochem. 2020;144:107764. https://doi.org/10.1016/j.soilbio.2020.107764
  62. Chen Z, Geng S, Zhou X, Gui H, Zhang L, Huang Z, et al. Nitrogen addition decreases soil aggregation but enhances soil organic carbon stability in a temperate forest. Geoderma. 2022;426:116112. https://doi.org/10.1016/j.geoderma.2022.116112
  63. Meng D, Cheng H, Shao Y, Luo M, Xu D, Liu Z, et al. Progress on the effect of nitrogen on transformation of soil organic carbon. Processes. 2022;10(11):2425. https://doi.org/10.3390/pr10112425
  64. Lu X, Vitousek PM, Mao Q, Gilliam FS, Luo Y, Turner BL, et al. Nitrogen deposition accelerates soil carbon sequestration in tropical forests. Proc Natl Acad Sci USA. 2021;118(16):e2020790118. https://doi.org/10.1073/pnas.2020790118
  65. Liang Z, Cao B, Jiao Y, Liu C, Li X, Meng X, et al. Effect of the combined addition of mineral nitrogen and crop residue on soil respiration, organic carbon sequestration and exogenous nitrogen in stable organic matter. Appl Soil Ecol. 2022;171:104324. https://doi.org/10.1016/j.apsoil.2021.104324
  66. Jin S. Recommended nitrogen fertilization enhances soil carbon sequestration in China’s monsoonal temperate zone. PeerJ. 2018;6:e5983. https://doi.org/10.7717/peerj.5983
  67. Li M, Hu H, He X, Jia J, Drosos M, Wang G, et al. Organic carbon sequestration in soil humic substances as affected by application of different nitrogen fertilizers in a vegetable-rotation cropping system. J Agric Food Chem. 2019;67(11):3106-13. https://doi.org/10.1021/acs.jafc.8b07114
  68. Farooqi ZUR, Sabir M, Zeeshan N, Naveed K, Hussain MM. Enhancing carbon sequestration using organic amendments and agricultural practices. In: Agarwal RK, editor. Carbon Capture, Utilization and Sequestration: InTech; 2018. p. 17-35. https://doi.org/10.5772/intechopen.79336
  69. Wani S, Chand S, Najar G, Teli M. Organic farming: As a climate change adaptation and mitigation strategy. Curr Agri Res. 2013;1(1):45-50. https://doi.org/10.12944/CARJ.1.1.06
  70. Muller A, Aubert C. The potential of organic agriculture to mitigate the influence of agriculture on global warming—A review. In: Bellon S, Penvern S, editors. Organic Farming, Prototype for Sustainable Agricultures. Dordrecht: Springer Netherlands; 2014. p. 239-59. https://doi.org/10.1007/978-94-007-7927-3_13
  71. Patle GT, Badyopadhyay KK, Kumar M. An overview of organic agriculture: A potential strategy for climate change mitigation. JANS. 2014;6(2):872-79. https://doi.org/10.31018/jans.v6i2.548
  72. Scialabba NE-H, Müller-Lindenlauf M. Organic agriculture and climate change. Renew Agric Food Syst. 2010;25(2):158-69. https://doi.org/10.1017/S1742170510000116
  73. Gopinath KA, Visha Kumari V, Venkatesh G, Jayalakshmi M, Prabhamani PS, Ravindra Chary G. Organic agriculture: Potentials in managing abiotic stresses in crop production. In: Bal SK, Mukherjee J, Choudhury BU, Dhawan AK, editors. Advances in Crop Environment Interaction. Singapore: Springer Singapore; 2018. p. 229-43. https://doi.org/10.1007/978-981-13-1861-0_9
  74. Panwar P, Mahalingappa DG, Kaushal R, Bhardwaj DR, Chakravarty S, Shukla G, et al. Biomass production and carbon sequestration potential of different agroforestry systems in India: A critical review. Forests. 2022;13(8):1274. https://doi.org/10.3390/f13081274
  75. Bogale GA, Bekele SE. Sustainability of agroforestry practices and their resilience to climate change adaptation and mitigation in sub-Saharan Africa: A review. Ekológia (Bratislava). 2023;42(2):179-92. https://doi.org/10.2478/eko-2023-0021
  76. Duguma LA, Minang PA, Watson C, Nath AJ, Muthee KW, Van Noordwijk M, et al. Agroforestry as a key intervention to achieve nationally determined contribution (NDC) targets. In: Dagar JC, Gupta SR, Sileshi GW, editors. Agroforestry for Sustainable Intensification of Agriculture in Asia and Africa. Singapore: Springer Nature Singapore; 2023. p. 641-64. https://doi.org/10.1007/978-981-19-4602-8_19
  77. Gupta SR, Dagar JC, Sileshi GW, Chaturvedi RK. Agroforestry for climate change resilience in degraded landscapes. In: Dagar JC, Gupta SR, Sileshi GW, editors. Agroforestry for Sustainable Intensification of Agriculture in Asia and Africa. Singapore: Springer Nature Singapore; 2023. p. 121-74. https://doi.org/10.1007/978-981-19-4602-8_5
  78. Kumar R, Kumar R, Karmakar S, Kumar A, Singh AK, Kumar A, et al. Impact of amide fertilizer on carbon sequestration under the agroforestry system in the Eastern Plateau region of India. Sustainability. 2023;15(12):9775. https://doi.org/10.3390/su15129775
  79. Carranca C, Pedra F, Madeira M. Enhancing carbon sequestration in Mediterranean agroforestry systems: A review. Agriculture. 2022;12(10):1598. https://doi.org/10.3390/agriculture12101598
  80. Swamy SL, Tewari VP. Mitigation and adaptation strategies to climate change through agroforestry practices in the tropics. In: Dagar JC, Tewari VP, editors. Agroforestry. Singapore: Springer Singapore; 2017. p. 725-38. https://doi.org/10.1007/978-981-10-7650-3_29
  81. Shah S. Agroforestry practices and its contribution to combat climate change in subtropical region of Pakistan. PAB. 2020;9(1). https://doi.org/10.19045/bspab.2020.90042
  82. Ghosh PK, Mahanta SK, Mandal D, Mandal B, Ramakrishnan S. Carbon management in tropical and sub-tropical terrestrial systems: Springer; 2020. https://doi.org/10.1007/978-981-13-9628-1
  83. Liang C, Balser TC. Warming and nitrogen deposition lessen microbial residue contribution to soil carbon pool. Nat Commun. 2012;3(1):1222. https://doi.org/10.1038/ncomms2224
  84. Liu X, Wu X, Liang G, Zheng F, Zhang M, Li S. A global meta-analysis of the impacts of no-tillage on soil aggregation and aggregate-associated organic carbon. Land Degrad Dev. 2021;32(18):5292-305. https://doi.org/10.1002/ldr.4109
  85. Sommer R, Ryan J, Masri S, Singh M, Diekmann J. Effect of shallow tillage, moldboard plowing, straw management and compost addition on soil organic matter and nitrogen in a dryland barley/wheat-vetch rotation. Soil Tillage Res. 2011;115-116:39-46. https://doi.org/10.1016/j.still.2011.06.003
  86. Dikgwatlhe SB, Chen Z-D, Lal R, Zhang H-L, Chen F. Changes in soil organic carbon and nitrogen as affected by tillage and residue management under wheat–maize cropping system in the North China Plain. Soil Tillage Res. 2014;144:110-18. https://doi.org/10.1016/j.still.2014.07.014
  87. Liu C, Lu M, Cui J, Li B, Fang C. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis. Glob Change Biol. 2014;20(5):1366-81. https://doi.org/10.1111/gcb.12517
  88. Song K, Yang J, Xue Y, Lv W, Zheng X, Pan J. Influence of tillage practices and straw incorporation on soil aggregates, organic carbon and crop yields in a rice-wheat rotation system. Sci Rep. 2016;6(1):36602. https://doi.org/10.1038/srep36602
  89. Dhaliwal SS, Naresh RK, Gupta RK, Malhotra SK, Kumar A, Kumar A, et al. Impact of conservation tillage and intensifying crop rotations in enhancing soil carbon, microbial cycling and aggregation in semiarid agro-eco systems: A review. Prog Agri. 2019;19(2):165. https://doi.org/10.5958/0976-4615.2019.00051.6
  90. Yang X, Ren W, Sun B, Zhang S. Effects of contrasting soil management regimes on total and labile soil organic carbon fractions in a loess soil in China. Geoderma. 2012;177-178:49-56. https://doi.org/10.1016/j.geoderma.2012.01.033
  91. Fan J, Ding W, Xiang J, Qin S, Zhang J, Ziadi N. Carbon sequestration in an intensively cultivated sandy loam soil in the North China Plain as affected by compost and inorganic fertilizer application. Geoderma. 2014;230-231:22-28. https://doi.org/10.1016/j.geoderma.2014.03.027
  92. UNFCCC. Emissions Trading [Internet]. 2024 [updated 14 Feb 2024; cited 14 Feb 2024]. Available from: https://unfccc.int/process/the-kyoto-protocol/mechanisms/emissions-trading
  93. Yu D, Liu L, Gao S, Yuan S, Shen Q, Chen H. Impact of carbon trading on agricultural green total factor productivity in China. J Clean Prod. 2022;367:132789. https://doi.org/10.1016/j.jclepro.2022.132789
  94. Hua J, Zhu D, Jia Y. Research on the policy effect and mechanism of carbon emission trading on the total factor productivity of agricultural enterprises. IJERPH. 2022;19(13):7581. https://doi.org/10.3390/ijerph19137581
  95. Bryan E, Akpalu W, Yesuf M, Ringler C. Global carbon markets: Opportunities for sub-Saharan Africa in agriculture and forestry. Clim Dev. 2010;2(4):309-31. https://doi.org/10.3763/cdev.2010.0057
  96. World Bank. State and trends of carbon pricing dashboard [Internet]. World Bank; 2024 [updated 2024 Aug 11; cited 2024 Aug 11]. Available from: https://carbonpricingdashboard.worldbank.org/
  97. Stiglitz JE, Stern N, Duan M, Edenhofer O, Giraud G, Heal GM, et al. Report of the high-level commission on carbon prices. 2017. https://doi.org/10.7916/d8-w2nc-4103
  98. Isermeyer F, Heidecke C, Osterburg B, Isermeyer F, Heidecke C, Osterburg B. Integrating agriculture into carbon pricing. 2021. https://doi.org/10.22004/AG.ECON.310017
  99. Ellis J. Agriculture produces just 1 % of carbon credits, data suggests [Internet]. AgFunderNews: 2021 [updated 14 Feb 2024; cited 14 Feb 2024]. Available from: https://agfundernews.com/carbon-credits-just-one-percent-from-agriculture

Downloads

Download data is not yet available.