This is an outdated version published on 03-08-2024. Read the most recent version.
Forthcoming

A review on the ethnopharmacological importance and biochemical composition of medicinal plants within the Zingiberaceae family

Authors

DOI:

https://doi.org/10.14719/pst.3514

Keywords:

antioxidants, ethnopharmacology, phytochemistry, public health, therapeutic application

Abstract

The Zingiberaceae family, known for its diverse range of plant species, plays a crucial role in traditional medicine, culinary arts, and aesthetics across both developing and developed countries. However, the limited documentation of its medicinal uses presents a significant challenge. This review summarises the traditional therapeutic uses and physicochemical makeup of ten Zingiberaceae species. The study emphasizes the presence of bioactive chemicals, such as flavonoids and phenolics, in these plants. These compounds offer significant antioxidant, anti-inflammatory, and antibacterial advantages. Extensive literature searches were conducted using major academic databases to ensure the inclusion of the most relevant and up-to-date studies in the field. The review primarily concentrates on the extensively utilized rhizomes, while also examining the less-explored components of the plants, including leaves, stems, flowers, seeds, and fruits, which may possess significant value. Emphasis is placed on the antioxidant properties of the leaves and rhizomes, with a notable gap in research regarding the flowers and seeds. By examining their radical scavenging abilities, the review underscores the significance of these species in traditional medicine and their promising applications in modern healthcare and animal feeds. This exploration not only documents the traditional medicinal uses of these plants but also identifies gaps in current research, advocating for further investigation into the under-researched parts of the Zingiberaceae family. The findings suggest that expanding research on the antioxidant properties and traditional uses of flowers and seeds could reveal new potentials for these species in promoting human and animal health.

Downloads

Download data is not yet available.

References

Zakariya AM, Adamu A, Nuhu A, Sabo I, Baita HU. Ethnopharmacological survey of some selected medicinal plants used for the treatment of typhoid in Kafin hausa, North West, Nigeria. J Appl Biol Sci. 2021;15(2):169–84.

Pan SY, Litscher G, Gao SH, Zhou SF, Yu ZL, Chen HQ. Historical perspective of traditional indigenous medical practices: the current renaissance and conservation of herbal resources. Evid Based Complement Alternat Med. 2014;4214:525340. https://doi.org/10.1155/2014/525340

Wangchuk P. Therapeutic applications of natural products in herbal medicines, biodiscovery programs, and biomedicine. J Biol Act Prod Nat. 2018;8(1):1–20. http://dx.doi.org/10.1080/22311866.2018.1426495

Islam F, Akter A, Urmee H, Dhama K. Neuropharmacological effects of Chassalia curviflora (Rubiaceae) leaves in Swiss albino mice model. Arch Razi Inst. 2022;77(2):881. https://doi.org/10.22092%2FARI.2021.356880.1937

Dubey A, Kumar A, Bankole MM, Khan ML. Plants with potent antiviral properties. In: Egbuna C, editor. Drug Discovery Update: Coronavirus Drug Discovery. Amsterdam: Elsevier; 2022. p. 155-71. https://doi.org/10.1016/B978-0-323-95578-2.00015-7

Mitra S, Lami MS, Uddin TM, Das R, Islam F, Anjum J. Prospective multifunctional roles and pharmacological potential of dietary flavonoid narirutin. Biomed Pharmacother. 2022;150:112932. https://doi.org/10.1016/j.biopha.2022.112932

Hasimun P, Adnyana IK. Zingiberaceae family effects on alpha-glucosidase activity: Implication for diabetes. In: Watson RR, Preedy VR, editors. Bioactive food as dietary interventions for diabetes. 2nd ed. Cambridge (MA): Academic Press; 2019. p. 387-93. https://doi.org/10.1016/B978-0-12-813822-9.00026-6

Simpson MG. Diversity and classification of flowering plants: amborellales, nymphaeales, austrobaileyales, magnoliids, monocots, and ceratophyllales. In: Elsevier eBooks [e-book]. 2019. p. 187-284. https://doi.org/10.1016/b978-0-12-812628-8.50007-9

Debnath S, Vijayan D. Diversity, phytogeographical distribution, endemism, and conservation status of Zingiberaceae in India. Plant Sci Today. 2024;11(2):72-78. https://doi.org/10.14719/pst.2708

Sharifi- Sharifi-Rad M, Varoni E, Salehi B, Sharifi-Rad J, Matthews K, Ayatollahi S, et al. Plants of the genus Zingiber as a source of bioactive phytochemicals: from tradition to pharmacy. Molecules. 2017 Dec 4;22(12):2145. https://doi.org/10.3390/molecules22122145

Rachkeeree A, Kantadoung K, Suksathan R, Puangpradab R, Page PA, Sommano SR. Nutritional Compositions and Phytochemical Properties of the Edible Flowers from Selected Zingiberaceae Found in Thailand. Front Nutr. 2018;5:3. https://doi.org/10.3389/fnut.2018.00003

Chen S, Lin R, Lu H, Wang Q, Yang J, Liu J, Yan C. Effects of phenolic acids on free radical scavenging and heavy metal bioavailability in Kandelia obovata under Cadmium and Zinc stress. Chemosphere. 2020;249:126341. https://doi.org/10.1016/j.chemosphere.2020.126341

Jakimiuk K, Tomczyk M. A review of the traditional uses, phytochemistry, pharmacology, and clinical evidence for the use of the genus Alchemilla (Rosaceae). J Ethnopharmacol. 2024;320:117439. https://doi.org/10.1016/j.jep.2023.117439

Leonti M. The relevance of quantitative ethnobotanical indices for ethnopharmacology and ethnobotany. J Ethnopharmacol. 2022;288:115008. https://doi.org/10.1016/j.jep.2022.115008

Rahman MA, Islam MS. Alpinia calcarata Roscoe: a potential phytopharmacological source of natural medicine. Pharmacogn Rev. 2015;9(17):55. https://doi.org/10.4103%2F0973-7847.156350

Ferdous M, Ud Daula AFMS, Naznin S, Yeasmin F, Basher MA. Analgesic, anxiolytic, and sedative-like activities of leaves of Alpinia calcarata Roscoe in mice. J Med Plants Res. 2020;14(4):155-163. https://doi.org/10.5897/JMPR2020.6913

Shochona SA, Mannan MA. Assessment of central nervous system (CNS) depressant activity of methanolic extract of Alpinia calcarata in mice. J Pharmacogn Phytochem. 2023;12(1):135–40.

Mahawer S, Kumar R, Prakash O, Singh S, Rawat D, Dubey S, Oliveira M. A review of phytochemical and pharmacological properties of Alpinia malaccensis (Burm. F.) Roscoe. (Zingiberaceae). Curr Top Med Chem. 2023;23(20):1964-1972. https://doi.org/10.2174/1568026623666230522104104

Jusoh S, Sirat HM, Ahmad F, Basar N, Bakar MB, Jamil S, Haron S. Essential oils of leaves and pseudo stems Alpinia malaccensis and antimicrobial activities. J Phys Conf Ser. 2020;1529:042050. https://doi.org/10.1088/1742-6596/1529/4/042050

Muchtaridi M, Abdullah DA, Suhandi C, Sumiwi SA, Khairul Ikram NK. Anti-inflammatory activity of Alpinia malaccensis (Burm. f.) Roscoe and Kaempferia galanga L. rhizome essential oil gel formulations by carrageenan induction method. Sains Malaysiana. 2022;51(5):1411-1424. https://doi.org/10.17576/jsm-2022-5105-12

Xiao T, Huang J, Wang X, Wu L, Zhou X, Jiang F, He Z, Guo Q, Tao L, Shen X. Alpinia zerumbet and its potential use as an herbal medication for atherosclerosis: mechanistic insights from cell and rodent studies. Lifestyle Genomics. 2020;13(5):138-145. https://doi.org/10.1159/000508818

Nishidono Y, Okada R, Iwama Y, Okuyama T, Nishizawa M, Tanaka K. Anti-inflammatory kavalactones from Alpinia zerumbet. Fitoterapia. 2020;140:104444. https://doi.org/10.1016/j.fitote.2019.104444

Ali S, Noreen A, Qamar A, Zafar I, Ain Q, Nafidi HA, Jardan YAB, Bourhia M, Rashid S, Sharma R. Amomum subulatum: a treasure trove of anti-cancer compounds targeting TP53 protein using in vitro and silico techniques. Front Chem. 2023;11:17. https://doi.org/10.3389%2Ffchem.2023.1174363

Makhija P, Handral HK, Mahadevan G, Kathuria H, Sethi G, Grobben B. Black cardamom (Amomum subulatum Roxb) fruit extracts exhibit apoptotic activity against lung cancer cells. J Ethnopharmacol. 2022;287(11495):3. https://doi.org/10.1016/j.jep.2021.114953

Alruhaili MH, Almuhayawi MS, Gattan HS, Alharbi MT, Nagshabandi MK, Jaouni SKA, Selim S, Abdelgawad H. Insight into the phytochemical profile and antimicrobial activities of Amomum subulatum and Amomum xanthioides: an in vitro and in silico study. Front Plant Sci. 2023;14. http://dx.doi.org/10.3389/fpls.2023.1136961

Dhakal R, Dihingia A, Ahmed RS, Gupta DD, Sahu RK, Dutta P. Prophylactic and therapeutic potential of active phytoconstituents from Amomum subulatum Roxb. Food Front. 2023;4(1):60–84.

Policegoudra RS, Aradhya SM, Singh L. Mango ginger (Curcuma amada Roxb) promising spice for phytochemicals and biological activities. J Biosci. 2011;36:739–48. https://doi.org/10.1007/s12038-011-9106-1

Yazici E, Sahin E, Sahin N, Tuzcu M, Sahin K, Orhan C. Mango ginger (Curcuma amada Roxb.) may alleviate the effect of high-fat diet/streptozotocin-induced diabetes by activation of the GSK-3?/Fyn/Nrf2 pathway. Food Sci Nutr. 2023;11(10):6041-6051. https://doi.org/10.1002/fsn3.3539

Das S, Mondal P, Zaman MdK. Curcuma caesia Roxb and it’s medicinal uses: a review. Int J Res Pharm Chem. 2013;3:370–5.

Devi HP, Mazumder PB, Devi LP. Antioxidant and antimutagenic activity of Curcuma caesia Roxb rhizome extracts. Toxicol Rep. 2015;2:423–8. https://doi.org/10.1016/j.toxrep.2014.12.018

Borah A, Paw M, Gogoi R, Loying R, Sarma N, Munda S, Pandey SK, Lal DM. Chemical composition, antioxidant, anti-inflammatory, anti-microbial, and in-vitro cytotoxic efficacy of essential oil of Curcuma caesia Roxb leaves an endangered medicinal plant of North East India. Ind Crops Prod. 2019;129:448–54. http://dx.doi.org/10.1016/j.indcrop.2018.12.035

Kumar S, Singh NN, Singh A, Singh N, Sinha RK. Use of Curcuma longa L. extract to stain various tissue samples for histological studies. Ayu. 2014;35(4):447-451. http://dx.doi.org/10.4103/0974-8520.159027

Arya S, Kumar R, Prakash O, Rawat A, Mahawer SK, Rawat DS, de Oliveira M. Hedychium coronarium J. Koenig: traditional uses, phytochemistry, biological activities, and future aspects. Curr Pharm Des. 2022;26(18):1676-1690. https://doi.org/10.2174/1385272827666221212161320

Verma RK, Kumari P, Maurya RK, Kumar V, Verma RB, Singh RK. Medicinal properties of turmeric (Curcuma longa L.): a review. Int J Chem Stud. 2018;6(4):1354–7.

Chan EWC, Wong SK. Phytochemistry and pharmacology of ornamental gingers, Hedychium coronarium, and Alpinia purpurata: a review. J Integr Med. 2015;13(6):368–79. http://dx.doi.org/10.1016/S2095-4964(15)60208-4

Umar MI, Asmawi MZB, Sadikun A, Altaf R, Iqbal MA. Phytochemistry and medicinal properties of Kaempferia galanga L. (Zingiberaceae) extracts. Afr J Pharm Pharmacol. 2011;5(14):1638–47. http://dx.doi.org/10.5897/AJPP11.388

Kumar A. Phytochemistry, pharmacological activities and uses of traditional medicinal plant Kaempferia galanga L. - an overview. J Ethnopharmacol. 2020;253(11266):7. https://doi.org/10.1016/j.jep.2020.112667

Bellik Y. Total antioxidant activity and antimicrobial potency of the essential oil and oleoresin of Zingiber officinale Roscoe. Asian Pac J Trop Dis. 2014;4:40–4. https://doi.org/10.1016%2FS2222-1808(14)60311-X

Zhu MM, Liu D, Lu KX, et al. Research progress on pharmacological action of ginger horseradish. J Hubei Inst Med. 2018;37:4.

Liu Y, Liu J, Zhang Y. Research progress on chemical constituents of Zingiber officinale Roscoe. Biomed Res Int. 2019;1-21. https://doi.org/10.1155%2F2019%2F5370823

Singh CB, Nongalleima K, Singh SB, Swapana N, Lokendrajit N, Singh LW. Review some medicinal plants of Zingiberaceae Family. Phytochemi Rev. 2012;11:113–25.

Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxi Rahman MA col. 2023;1–76. https://doi.org/10.1007/s00204-023-03562-9

Mustafa YF. Harmful free radicals in aging: a narrative review of their detrimental effects on health. Indian J Cli. Biochem. 2023;1–14. http://dx.doi.org/10.1007/s12291-023-01147-y

Škrovánková S, Mišurcová L, Mach? L. Antioxidant activity and protecting health effects of common medicinal plants. Adv Food Nutr Res. 2012;67:75–139. https://doi.org/10.1016/b978-0-12-394598-3.00003-4

Fraga CG. Plant phenolics and human health: biochemistry, nutrition, and pharmacology. 1st ed. Wiley; 2009. https://onlinelibrary.wiley.com/doi/book/10.1002/9780470531792

Razak AM, Tan JK, Mohd Said MM, Makpol S. Modulating effects of Zingiberaceae phenolic compounds on neurotrophic factors and their potential as neuroprotectants in brain disorders and age-associated neurodegenerative disorders: a review. Nutrients. 2023;15(11):2564. https://doi.org/10.3390/nu15112564

Mutha RE, Tatiya AU, Surana SJ. Flavonoids as natural phenolic compounds and their role in therapeutics: an overview. Futur J Pharm Sci. 2021;7(1):25. https://doi.org/10.1186%2Fs43094-020-00161-8

Melanathuru V, Rengarajan S, Thangavel N. Comparative study of antioxidant and anticancer activity of Alpinia calcarata and Alpinia galanga. Int J Pharm Pharm Sci. 2017;9:186–93. http://dx.doi.org/10.22159/ijpps.2017v9i12.21599

Singh S, Sahoo BC, Kar SK, Sahoo A, Nayak S, Kar B. Chemical constituents’ analysis of Alpinia galanga and Alpinia calcarata. Res J Pharm Technol. 2020;13(10):4735–4739. http://dx.doi.org/10.5958/0974-360X.2020.00834.3

Sahoo S, Ghosh G, Nayak S. Evaluation of in vitro antioxidant activity of leaf extract of Alpinia malaccensis. J Med Plants Res. 2012;6(23):4032–8. http://dx.doi.org/10.5897/JMPR12.374

Sethi S, Prakash O, Kumar R, Dubey SK, Arya M, Pant AK. Phytochemical analysis, antioxidant and antifungal activity of essential oil and extracts of Alpinia malaccensis (Burm.f.) Roscoe flowers. Braz J Pharm Sci. 2022;58(1):1-13. http://dx.doi.org/10.1590/s2175-97902022e201209

Tunnisa F, Faridah DN, Afriyanti A, Rosalina D, Syabana MA, Darmawan N, Yuliana ND. Antioxidant and antidiabetic compounds identification in several Indonesian underutilized Zingiberaceae spices using SPME-GC/MS-based volatilomics and in silico methods. Food Chem. 2022;14(10028):5. https://doi.org/10.1016/j.fochx.2022.100285

Sethi S, Prakash O, Pant AK. Phytochemical analysis, antioxidant assay, and antifungal activity of essential oil and various extracts of Alpinia malaccensis (Burm. f.) Roscoe leaves. Cogent Chem. 2016;2(1):1223781. http://dx.doi.org/10.1080/23312009.2016.1223781

Chompoo J, Upadhyay A, Fukuta M, Tawata S. Effect of Alpinia zerumbet components on antioxidant and skin diseases-related enzymes. BMC Complement Altern Med. 2012;12:2–9. https://doi.org/10.1186%2F1472-6882-12-106

Xuan TD, Quan NV, Thanh QN, Rayee R, Khanh TD, Tran HD, Thanh TN. Allelopathic plants: 26. Alpinia zerumbet (pers.) BL Burtt & RM Sm. (Zingiberaceae). Allelopath J. 2019;48:1–14. http://dx.doi.org/10.26651/allelo.j/2019-48-1-123

Chumroenphat T, Somboonwatthanakul I, Saensouk S, Siriamornpun S. The diversity of biologically active compounds in the rhizomes of recently discovered Zingiberaceae plants native to North Eastern Thailand. Phcog J. 2019;11(5):1014–22. http://dx.doi.org/10.5530/pj.2019.11.160

Elzaawely AA, Xuan TD, Tawata S. Essential oils, kava pyrones and phenolic compounds from leaves and rhizomes of Alpinia zerumbet (Pers.) BL Burtt. & RM Sm. and their antioxidant activity. Food Chem. 2007;103(2):486–94. http://dx.doi.org/10.1016/j.foodchem.2006.08.025

Khare D, Kumar B, Hussain A, Verma S, Mishra M. Evaluation of antioxidant activity of large cardamom (leaves of Amomum subulatum). Int J Drug Dev Res. 2012;4:175–9.

Belew AA. Total phenol contents. antioxidant activities of Methanol extracts of Amomum Subulatum, Lippia adoensis, Coriandram sartivum, and Ruta chalepensis sold from Jigjiga market, Ethiopia: total flavonoid contents. Res Square. 2023;18. https://doi.org/10.21203/rs.3.rs-3149132/v1

Kanthlal SK, Joseph J, Paul BP, Vijayakumar M, Shree ABR, Devi PU. Assessment of phytochemicals, total phenol, flavonoid content, and in vitro antioxidant property of large cardamom extracts. Ind dru. 2021;58(10):34–41. http://dx.doi.org/10.53879/id.58.10.12627

Feng Y, Dunshea FR, Suleria HAR. LC-ESI-QTOF/MS characterization of bioactive compounds from black spices and their potential antioxidant activities. J Food Sci Technol. 2020;57(12):4671–4687. https://doi.org/10.1007/s13197-020-04504-4

Sahu R, Saxena J. Screening of total phenolic and flavonoid content in conventional and non-conventional species of Curcuma. J Pharmacogn Phytochem. 2013;2(1):176–9.

Annapurna AS, Abhirami D, Umesh TG. Comparative study of phytochemicals and bioactivities of the leaf extracts of Curcuma amada and Curcuma karnatakensis. S Afr J Bot. 2021;142:441–450. https://doi.org/10.1016/j.sajb.2021.06.032

Krishnaraj M, Manibhushanrao KNM. A comparative study of phenol content and antioxidant activity between non-conventional Curcuma caesia Roxb and Curcuma amada Roxb. Int J Plant Prod. 2010;4:169–74. https://doi.org/10.22069/ijpp.2012.693

Arya OP, Adhikari P, Pandey A, Bhatt ID, Mohanty K. Health promoting bioactive phenolic compounds in different solvent extracts of Curcuma caesia Roxb rhizome from North East India. J Food Process Preserv. 2022;46:8. http://dx.doi.org/10.1111/jfpp.16805

Baghel SS, Baghel RS, Sharma K, Sikarwar I. Pharmacological activities of Curcuma caesia. Int J Green Pharm. 2013;7:1.

Yurasbe NQ, Din NA, Palaniveloo K, Manikam S, Nagappan T. Phytochemical diversity and biological activities of Curcuma species from the east coast of Peninsular Malaysia. Biodivers J Biol Divers. 2023;24:8. https://doi.org/10.13057/biodiv/d240805

Guneidy RA, Zaki ER, Gad AAM, Saleh NSED, Shokeer A. Evaluation of phenolic content diversity along with antioxidant/pro-oxidant, glutathione transferase inhibition, and cytotoxic potential of selected commonly used plants. Prev Nutr Food Sci. 2022;27(3):282. https://doi.org/10.3746/pnf.2022.27.3.282

Muflihah YM, Gollavelli G, Ling YC. Correlation study of antioxidant activity with phenolic and flavonoid compounds in 12 Indonesian indigenous herbs. Antioxid. 2021;10(10):1530. https://doi.org/10.3390/antiox10101530

Panigrahy SK, Kumar A, Bhatt R. Antioxidant potentials of successive solvent extracts from the unexplored Hedhychium coronarium rhizome. J Food Sci Technol. 2017;54(10):3297–306. https://doi.org/10.1007/s13197-017-2777-3

Pyae P, Min D, Khine M, Aye D, Lae K, Win N. Investigation of some bioactivities of Hedychium coronarium J. Koenig (Ngwe-pan) rhizome and leaves. 3rd Myan-Kor Conf Res J. 2019;3(5):1766-1772.

Redondo M, Barbosa G. Antioxidant activity and phenolic content of the ethanol extracts of Hedychium coronarium (Zingiberaceae) in Mindanao, Philippines. Bull Environ Pharmacol Life Sci. 2018;7(10):97–105.

Sumazian Y, Syahida A, Hakiman M, Maziah M. Antioxidant activities, flavonoids, ascorbic acid and phenolic contents of Malaysian vegetables. J Med Plants Res. 2010;4(10):881–90.

Khuntia S, Sahoo D, Kar B, Sahoo S. Metabolic profiling of Kaempferia galanga leaf and rhizome extract using GC-MS. J Appl Adv Res. 2022;7:35–41. http://dx.doi.org/10.21839/jaar.2022.v7.7704

Manuhara YSW, Sugiharto S, Kristanti AN, Aminah NS, Wibowo AT, Wardana AP, Putro YK Sugiarso D. Antioxidant activities, total phenol, flavonoid, and mineral content in the rhizome of various Indonesian herbal plants. Rasayan J Chem. 2022;15(4):2724–30. http://dx.doi.org/10.31788/RJC.2022.1548024

Nonglang FP, Khale A, Bhan S. Phytochemical characterization of the ethanolic extract of Kaempferia galanga rhizome for anti-oxidant activities by HPTLC and GCMS. Future J Pharm Sci. 2022;8:1–12. http://dx.doi.org/10.1186/s43094-021-00394-1

Kantayos V, Paisooksantivatana Y. Antioxidant activity and selected chemical components of 10 Zingiber spp. in Thailand. J Dev Sustain Agric. 2012;7(1):89–96.

Hafeez J, Naeem M, Ali T, Sultan B, Hussain F, Rashid HU, Nadeem M. Comparative study of antioxidant, antidiabetic, cytotoxic potentials, and phytochemicals of fenugreek (Trigonella foenum-graecum) and ginger (Zingiber officinale). J Chem. 2023;2023:1–9. https://doi.org/10.1155/2023/3469727

Rachkeeree A, Kantadoung K, Suksathan R, Puangpradab R, Page PA, Sommano SR. Nutritional compositions and phytochemical properties of the edible flowers from selected Zingiberaceae found in Thailand. Front Ntr. 2018;5:3. http://dx.doi.org/10.3389/fnut.2018.00003

Agati G, Azzarello E, Pollastri S, Tattini M. Flavonoids as antioxidants in plants: location and functional significance. Plant Sci. 2012;196:67–76. https://doi.org/10.1016/j.plantsci.2012.07.014

Agati G, Brunetti C, Di Ferdinando M, Ferrini F, Pollastri S, Tattini M. Functional roles of flavonoids in photoprotection: new evidence, lessons from the past. Plant Physiol Biochem. 2013;72:35–45. https://doi.org/10.1016/j.plaphy.2013.03.014

Ferdous M, Basher MA, Khan I, Ahmed F, Sobuz MSI, Daula ASU. Evaluation of phytochemicals, antioxidant and antibacterial potentials of Alpinia calcarata. J Med Plant Stud. 2018;6(2):152–8.

Victorio CP, Lage CLS, Kuster RM. Flavonoid extraction from Alpinia zerumbet (Pers.) Burtt et Smith leaves using different techniques and solvents. Eclet Quim. 2009;34(1):19–24. http://dx.doi.org/10.26850/1678-4618eqj.v34.1.2009.p19-24

Junior WAR, Piato AL, Conterato GMM, Wildner SM, Marcon M, Moreira S, Santo GD, Mocelin R, Emanuelli T, Santos CAM. Psychopharmacological and antioxidant effects of hydroethanolic extract of Alpinia zerumbet leaves in mice. Pharmacogn J. 2013;5(3):113–8.

Shukla SH, Mistry HA, Patel VG, Jogi BV. Pharmacognostical, preliminary phytochemical studies and analgesic activity of Amomum subulatum Roxb. Pharma Sci Monit. 2010;1(1):90–102.

Yadav M, Saravanan KK. Phytochemical analysis and antioxidant potential of rhizome extracts of Curcuma amada Roxb and Curcuma caesia Roxb. J Drug Deliv Ther. 2019;9(5):123–6. http://dx.doi.org/10.22270/jddt.v9i5.3609

Ray A, Nayak S. Phytochemical and biological activity of Hedychium coronarium extracts. Lap lambert acad publ; 2018. p. 10-53.

Ali H, Yesmin R, Satter MA, Habib R, Yeasmin T. Antioxidant and antineoplastic activities of methanolic extract of Kaempferia galanga Linn. Rhizome against Ehrlich ascites carcinoma cells. J King Saud Univ. 2018;30(3):386–92. https://doi.org/10.1016/j.jksus.2017.05.009

Islam R, Uddin MN, Ashrafuzzaman M, Hoque MI. Phenolics and carotenoids contents and radical scavenging capacity of some selected solanaceous medicinal plants. J Bangladesh Agric Univ. 2018;16:56. http://dx.doi.org/10.3329/jbau.v16i1.36481

Arambewela LS, Arawwawala LM, Athauda N. Antioxidant and antifungal activities of essential oil of Alpinia calcarata Roscoe rhizomes. J Ayurveda Integr Med. 2010;1(3):199. https://doi.org/10.4103/0975-9476.72621

Samarasinghe B, Kaliyadasa E, Marasinghe P. physicochemical properties and bioactivities of six Alpinia species in Sri Lanka. Int J Ayurved Med. 2020;11(4):700–5. http://dx.doi.org/10.47552/ijam.v11i4.1717

Sahoo S, Kar SK, Sahoo BC, Nayak S, Kar B. Free radical scavenging potential of Alpinia calcarata Roscoe leaves. Res J Pharm Technol. 2020;13(7):3356–60. http://dx.doi.org/10.5958/0974-360X.2020.00596.X

Swain S, Tripathi P, Kavita G, Laxmi MNV, Subramani T. In vitro antioxidant and free radical scavenging activity of Alpinia calcarata: a novel underutilized crop in Tropical Island. J Pharmacogn Phytochem. 2020;9(5):243–8.

Ghimire BK, Seong ES, Kim EH, Ghimeray AK, Yu CY, Ghimire BK, Chung IM. A comparative evaluation of the antioxidant activity of some medicinal plants popularly used in Nepal. J Med Plant Res. 2011,5(10):1884-1891.

Policegoudra RS, Aradhya SM. Biochemical changes and antioxidant activity of mango ginger (Curcuma amada Roxb) rhizomes during postharvest storage at different temperatures. Postharvest Biol Technol. 2007;46(2):189–94. https://doi.org/10.1016/j.postharvbio.2007.04.012

Tamta A, Prakash O, Punetha H, Pant AK. Chemical composition and in vitro antioxidant potential of essential oil and rhizome extracts of Curcuma amada Roxb. Cogent Chem. 2016;2(1):1168067. https://doi.org/10.1080/23312009.2016.1168067

Lee SJ, Lee SH, Kim SK, Kim MM. Curcumin specifically inhibits DPPH radical and matrix metalloproteinase-9 in human fibrosarcoma cells. J Cancer Prev. 2008;13(4):276–83.

Sabir SM, Zeb A, Mahmood M, Abbas SR, Ahmad Z, Iqbal N. Phytochemical analysis and biological activities of ethanolic extract of Curcuma longa rhizome. Braz J Biol. 2020;81:737–740. https://doi.org/10.1590/1519-6984.230628

Mustafa I, Chin NL. Antioxidant properties of dried ginger (Zingiber officinale Roscoe) var. Bentong. Foods. 2023;12(1):178. https://doi.org/10.3390/foods12010178

Reenu J, Azeez S, Bhageerathy C. In vitro antioxidant potential in sequential extracts of Curcuma caesia Roxb. rhizomes. Indian J Pharm Sci. 2015;77(1):41-8. https://doi.org/10.4103/0250-474x.151596

Published

03-08-2024

Versions

How to Cite

1.
Sumi MJ, Zaman SB, Imran S, Sarker P, Rhaman MS. A review on the ethnopharmacological importance and biochemical composition of medicinal plants within the Zingiberaceae family. Plant Sci. Today [Internet]. 2024 Aug. 3 [cited 2024 Dec. 22];. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/3514

Issue

Section

Special issue on Ethnobotany

Most read articles by the same author(s)