Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 11 No. 3 (2024)

Understanding the advances in Sorghum grain quality improvement: An overview

DOI
https://doi.org/10.14719/pst.3527
Submitted
12 March 2024
Published
16-06-2024 — Updated on 01-07-2024
Versions

Abstract

Sorghum, a crucial cereal crop with versatile applications, is increasingly recognized for its grain quality attributes. The nutritional and biochemical diversity within sorghum, encompassing elements such as iron (Fe), zinc (Zn), proteins, starch, dietary fibers, and ß-carotene, plays a pivotal role in enhancing the quality across diverse sorghum accessions. Breeding programs offer a promising avenue for further improvement in these traits. Additionally, sorghum features a spectrum of phenolic compounds, including tannins and flavonoids, influencing both pigmentation and potential health benefits. The antioxidative properties of these compounds underscore their critical role in promoting health and mitigating oxidative stress. The significance of sorghum is shaped by genetic factors, environmental conditions, ripening stages, and varietal distinctions, highlighting the complex interplay between grain structure, genetics, and nutritional content.  As the global demand for diverse, nutritionally rich food sources continues to rise, this review provides insights aimed at deepening our understanding of sorghum's potential as a staple crop with substantial nutritional and health-promoting attributes.

References

  1. Kumar AA. Botany, taxonomy and breeding. The Sorghum Genome. 2016;27-45.
  2. https://doi.org/10.1007/978-3-319-47789-3_2
  3. De Wet J. Special paper: Systematics and evolution of Sorghum sect. Sorghum (Gramineae). American Journal of Botany. 1978;65(4):477-84. https://doi.org/10.1002/j.15372197.1978.tb06096.x
  4. Food and Agriculture Organization Corporate Statistical Database [Internet]. FAO; 2021. Available from: http://www.fao.org/faostat/en/#data/QC.
  5. International production assessment division [Internet]. USDA; 2023. Available from: https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=0459200.
  6. Mullet J, Morishige D, McCormick R, Truong S, Hilley J, McKinley B et al. Energy Sorghum—A genetic model for the design of C4 grass bioenergy crops. Journal of Experimental Botany. 2014;65(13):3479-89. https://doi.org/10.1093/jxb/eru229
  7. ME, Tonapi V, Bhat P, Varanavasiappan S, Seetharama N. Indian Sorghum landraces and their protection. 2015.
  8. Nagaraj N, Basavaraj G, Rao PP, Bantilan C, Haldar S. Sorghum and pearl millet economy of India: Future outlook and options. Economic and Political Weekly. 2013;74-81.
  9. Przybylska-Balcerek A, Frankowski J, Stuper-Szablewska K. Bioactive compounds in sorghum. European Food Research and Technology. 2019;245:1075-80. https://doi.org/10.1007/s00217-018-3207-0
  10. Taylor JR, Schober TJ, Bean SR. Novel food and non-food uses for sorghum and millets. Journal of Cereal Science. 2006;44(3):252-71. https://doi.org/10.1016/j.jcs.2006.06.009
  11. Shen S, Huang R, Li C, Wu W, Chen H, Shi J et al. Phenolic compositions and antioxidant
  12. activities differ significantly among sorghum grains with different applications. Molecules. 2018;23(5):1203. https://doi.org/10.3390/molecules23051203
  13. González-Montilla FM, Chávez-Santoscoy RA, Gutiérrez-Uribe JA, Serna-Saldivar SO. Isolation and identification of phase II enzyme inductors obtained from black Shawaya sorghum [Sorghum bicolor (L.) Moench] Bran. Journal of Cereal Science. 2012;55(2):126-31. https://doi.org/10.1016/j.jcs.2011.10.009
  14. Venkateswaran K, Elangovan M, Sivaraj N. Origin, domestication and diffusion of Sorghum bicolor. Breeding Sorghum for diverse end uses. Elsevier. 2019; p. 15-31. https://doi.org/10.1016/B978-0-08-101879-8.00002-4
  15. Harlan JR, de Wet JM. A simplified classification of cultivated sorghum 1. Crop Science. 1972;12(2):172-76. https://doi.org/10.2135/cropsci1972.0011183X001200020005x
  16. Prabhakar, Madhusudhana R, Aruna C. Sorghum breeding. Fundamentals of Field Crop Breeding. Springer. 2022; p. 367-447. https://doi.org/10.1007/978-981-16-9257-4_7
  17. Deu M, Hamon P. The genetic organisation of sorghum; 1994.
  18. Serna-Saldivar S. Structure and chemistry of sorghum and millets. Sorghum and Millets:
  19. Chemistry and Technology. 1995;69-124. https://doi.org/10.1016/B978-034061457-0/50006-1
  20. Earp C, McDonough C, Rooney L. Microscopy of pericarp development in the caryopsis of Sorghum bicolor (L.) Moench. Journal of Cereal Science. 2004;39(1):21-27.
  21. https://doi.org/10.1016/S0733-5210(03)00060-2
  22. Slavin J. Whole grains and human health. Nutrition Research Reviews. 2004;17(1):99-110.
  23. https://doi.org/10.1079/NRR200374
  24. Waniska RD, Rooney LW. Sorghum grain quality for increased utilization. Sorghum and
  25. Millets Diseases. 2002;327-35.
  26. Awika JM, Rooney LW. Sorghum phytochemicals and their potential impact on human
  27. health. Phytochemistry. 2004;65(9):1199-221. https://doi.org/10.1016/j.phytochem.2004.04.001
  28. Dykes L, Peterson GC, Rooney WL, Rooney LW. Flavonoid composition of lemon-yellow
  29. sorghum genotypes. Food Chemistry. 2011;128(1):173-79. https://doi.org/10.1016/j.foodchem.2011.03.020
  30. Dykes L, Rooney WL, Rooney LW. Evaluation of phenolics and antioxidant activity of
  31. black sorghum hybrids. Journal of Cereal Science. 2013;58(2):278-83.
  32. https://doi.org/10.1016/j.jcs.2013.06.006
  33. Earp C, Rooney L. Scanning electron microscopy of the pericarp and testa of several
  34. sorghum varieties. Food Structure. 1982;1(2):3.
  35. Nagaraja T, Parveen SG, Aruna C, Hariprasanna K, Singh S, Singh AK et al. Millets and
  36. pseudocereals: A treasure for climate resilient agriculture ensuring food and nutrition security. Indian Journal of Genetics and Plant Breeding. 2024;84(01):1-37.
  37. https://doi.org/10.31742/ISGPB.84.1.1
  38. Audilakshmi S, Aruna C. Genetic analysis of physical grain quality characters in sorghum. The Journal of Agricultural Science. 2005;143(4):267-73.
  39. https://doi.org/10.1017/S0021859605005368
  40. Cabrera-Ramírez A, Luzardo-Ocampo I, Ramírez-Jiménez A, Morales-Sánchez E, Campos-Vega R, Gaytán-Martínez M. Effect of the nixtamalization process on the protein bioaccessibility of white and red sorghum flours during in vitro gastrointestinal digestion. Food Research International. 2020;134:109234. https://doi.org/10.1016/j.foodres.2020.109234
  41. USDA. National nutrient database for standard reference legacy release: Full report (all
  42. nutrients) 20067, sorghum grain. [Internet]; 2019. Available from:
  43. https://ndb.nal.usda.gov/ndb/foods/show/20067?n1=%7BQv%3D1%7D&
  44. Zhu F. Structure, physicochemical properties, modifications and uses of sorghum starch.
  45. Comprehensive Reviews in Food Science and Food Safety. 2014;13(4):597-610.
  46. https://doi.org/10.1111/1541-4337.12070
  47. Sasaki T, Yasui T, Matsuki J. Effect of amylose content on gelatinization, retrogradation
  48. and pasting properties of starches from waxy and nonwaxy wheat and their F1 seeds. Cereal
  49. Chemistry. 2000;77(1):58-63. https://doi.org/10.1094/CCHEM.2000.77.1.58
  50. Behall KM, Scholfield DJ. Food amylose content affects postprandial glucose and insulin
  51. responses. Cereal Chemistry. 2005;82(6):654-59. https://doi.org/10.1094/CC-82-0654
  52. Cagampang G, Kirleis A. Properties of starches isolated from sorghum floury and corneous endosperm. Starch?Stärke. 1985;37(8):253-57. https://doi.org/10.1002/star.19850370802
  53. Beta T, Corke H, Rooney LW, Taylor JRN. Starch properties as affected by sorghum grain chemistry. Journal of the Science of Food and Agriculture. 2001;81(2):245-51.
  54. https://doi.org/10.1002/1097-0010(20010115)81:2<245::AID-JSFA805>3.0.CO;2-S
  55. Hill H, Lee LS, Henry RJ. Variation in sorghum starch synthesis genes associated with
  56. differences in starch phenotype. Food Chemistry. 2012;131(1):175-83.
  57. https://doi.org/10.1016/j.foodchem.2011.08.057
  58. Wester T, Gramlich S, Britton R, Stock R. Effect of grain sorghum hybrid on in vitro rate of starch disappearance and finishing performance of ruminants. Journal of Animal Science.
  59. ;70(9):2866-76. https://doi.org/10.2527/1992.7092866x
  60. Sullins R, Rooney L. Microscopic evaluation of the digestibility of sorghum lines that differ in endosperm characteristics. 1974.
  61. Sang Y, Bean S, Seib PA, Pedersen J, Shi Y-C. Structure and functional properties of
  62. sorghum starches differing in amylose content. Journal of Agricultural and Food Chemistry. 2008;56(15):6680-85. https://doi.org/10.1021/jf800577x
  63. Taylor JR, Emmambux MN. Developments in our understanding of sorghum polysaccharides and their health benefits. Cereal Chemistry. 2010;87(4):263-71.
  64. https://doi.org/10.1094/CCHEM-87-4-0263
  65. Verbruggen MA, Beldman G, Voragen AG. Enzymic degradation of sorghum glucuronoarabinoxylans leading to tentative structures. Carbohydrate Research. 1998;306(1-2):275-82. https://doi.org/10.1016/S0008-6215(97)10065-9
  66. Niba LL, Hoffman J. Resistant starch and ?-glucan levels in grain sorghum (Sorghum bicolor M.) are influenced by soaking and autoclaving. Food Chemistry. 2003;81(1):113-18. https://doi.org/10.1016/S0308-8146(02)00386-2
  67. Ramesh HP, Tharanathan RN. Structural characteristics of a mixed linkage ?-D-glucan from sorghum (Sorghum bicolor). Carbohydrate Research. 1998;308(1-2):239-43. https://doi.org/10.1016/S0008-6215(98)00064-0
  68. Boyer CD, Liu K-C. Starch and water-soluble polysaccharides from sugary endosperm of
  69. sorghum. Phytochemistry. 1983;22(11):2513-15. https://doi.org/10.1016/0031-9422(83)80151-4
  70. Taylor J, Schüssler L. The protein compositions of the different anatomical parts of sorghum grain. Journal of Cereal Science. 1986;4(4):361-69. https://doi.org/10.1016/S0733-5210(86)80040-6
  71. Rooney LW, Serna-Saldivar SO. Sorghum. Handbook of Cereal Science and Technology,
  72. Revised and Expanded: CRC Press. 2000; p. 149-75.
  73. Proietti I, Frazzoli C, Mantovani A editors. Exploiting nutritional value of staple foods in the world’s semi-arid areas: Risks, benefits, challenges and opportunities of sorghum. Healthcare;2015. https://doi.org/10.3390/healthcare3020172
  74. Bean S, Ioerger B, Smith B, Blackwell D. Sorghum protein structure and chemistry: Implications for nutrition and functionality. Advances in Cereal Science: Implications to Food Processing and Health Promotion. ACS Publications. 2011; p. 131-47.
  75. Taylor J, Bean SR, Ioerger BP, Taylor JR. Preferential binding of sorghum tannins with ?-kafirin and the influence of tannin binding on kafirin digestibility and biodegradation. Journal of Cereal Science. 2007;46(1):22-31. https://doi.org/10.1016/j.jcs.2006.11.001
  76. Watterson J, Shull J, Kirleis A. Quantitation of ?-, ?-, and ?-kafirins in vitreous and opaque endosperm of Sorghum bicolor. 1993.
  77. Gebremariam MM, Zarnkow M, Becker T. Teff (Eragrostis tef) as a raw material for
  78. malting, brewing and manufacturing of gluten-free foods and beverages: A review. Journal of Food Science and Technology. 2014;51:2881-95. https://doi.org/10.1007/s13197-012-0745-5
  79. Kumar MVN, Ramya V, Maheshwaramma S, Ganapathy KN, Govindaraj M, Kavitha K, et al. Exploiting Indian landraces to develop biofortified grain sorghum with high protein and minerals. Frontiers in Nutrition. 2023;10. https://doi.org/10.3389%2Ffnut.2023.1228422
  80. Fernandez MGS, Hamblin MT, Li L, Rooney WL, Tuinstra MR, Kresovich S. Quantitative trait loci analysis of endosperm color and carotenoid content in sorghum grain. Crop Science. 2008;48(5):1732-43. https://doi.org/10.2135/cropsci2007.12.0684
  81. de Morais Cardoso L, Pinheiro SS, da Silva LL, de Menezes CB, de Carvalho CWP, Tardin FD et al. Tocochromanols and carotenoids in sorghum (Sorghum bicolor L.): Diversity and stability to the heat treatment. Food Chemistry. 2015;172:900-08.
  82. https://doi.org/10.1016/j.foodchem.2014.09.117
  83. Kean EG, Ejeta G, Hamaker BR, Ferruzzi MG. Characterization of carotenoid pigments in mature and developing kernels of selected yellow-endosperm sorghum varieties. Journal of Agricultural and Food Chemistry. 2007;55(7):2619-26. https://doi.org/10.1021/jf062939v
  84. Kean EG, Bordenave N, Ejeta G, Hamaker BR, Ferruzzi MG. Carotenoid bioaccessibility from whole grain and decorticated yellow endosperm sorghum porridge. Journal of Cereal Science. 2011;54(3):450-59. https://doi.org/10.1016/j.jcs.2011.08.010
  85. Lipkie TE, De Moura FF, Zhao Z-Y, Albertsen MC, Che P, Glassman K et al. Bioaccessibility of carotenoids from transgenic provitamin A biofortified sorghum. Journal of Agricultural and Food Chemistry. 2013;61(24):5764-71. https://doi.org/10.1021/jf305361s
  86. Shen Y. Sorghum pericarp pigments are associated with the contents of carotenoids and provitamin A: Kansas State University; 2016.
  87. Kayodé AP, Linnemann AR, Hounhouigan JD, Nout MJ, van Boekel MA. Genetic and environmental impact on iron, zinc and phytate in food sorghum grown in Benin. Journal of Agricultural and Food Chemistry. 2006;54(1):256-62. https://doi.org/10.1021/jf0521404
  88. Pontieri P, Troisi J, Calcagnile M, Bean SR, Tilley M, Aramouni F et al. Chemical composition, fatty acid and mineral content of food-grade white, red and black sorghum varieties grown in the mediterranean environment. Foods. 2022;11(3):436.https://doi.org/10.3390/foods11030436
  89. Kotla A, Phuke R, Hariprasanna K, Mehtre SP, Rathore A, Gorthy S et al. Identification of QTLs and candidate genes for high grain Fe and Zn concentration in sorghum [Sorghum bicolor (L.) Moench]. Journal of Cereal Science. 2019;90:102850. https://doi.org/10.1016/j.jcs.2019.102850
  90. Motlhaodi T, Bryngelsson T, Chite S, Fatih M, Ortiz R, Geleta M. Nutritional variation in sorghum [Sorghum bicolor (L.) Moench] accessions from Southern Africa revealed by protein and mineral composition. Journal of Cereal Science. 2018;83:123-29. https://doi.org/10.1016/j.jcs.2018.08.010
  91. Ashok Kumar A, Reddy BV, Ramaiah B, Sahrawat KL, Pfeiffer WH. Genetic variability and character association for grain iron and zinc contents in sorghum germplasm accessions and commercial cultivars. European Journal of Plant Science and Biotechnology. 2012;6(1):1-5.
  92. Bean S, Wilson J, Moreau R, Galant A, Awika J, Kaufman R et al. Structure and composition of the sorghum grain. Sorghum: A State of the Art and Future Perspetives. 2019;58:173-214. https://doi.org/10.2134/agronmonogr58.c9
  93. Lasztity R. Phytic acid in cereal technology. Advances in Cereal Science and Technology. 1990;10:309-71.
  94. Reddy N, Pierson MD, Sathe SK, Salunkhe D. Phytates in cereals and legumes: CRC Press;1989.
  95. Doherty C, Rooney L, Faubion J editors. Phytin content of sorghum and sorghum products. Proc Int Symp On Sorghum Grain Quality (LW Rooney and DS Murty eds) Int Crops Res Inst Semi-arid Tropics (ICRISAT), Patancheru, AP India; 1981.
  96. Badigannavar A, Girish G, Ganapathi T. Genetic variability for phytic acid and inorganic phosphorous in Indian Sorghum (Sorghum bicolor) landraces. Electronic Journal of Plant Breeding. 2014;5(3):451-58.
  97. Soetan K, Oyewole O. The need for adequate processing to reduce the anti-nutritional factors in plants used as human foods and animal feeds: A review. African Journal of Food Science. 2009;3(9):223-32.
  98. Jahromi SG. Extraction techniques of phenolic compounds from plants. Plant Physiological Aspects of Phenolic Compounds. 2019;1-18.
  99. Wu G, Bornman JF, Bennett SJ, Clarke MW, Fang Z, Johnson SK. Individual polyphenolic profiles and antioxidant activity in sorghum grains are influenced by very low and high solar UV radiation and genotype. Journal of Cereal Science. 2017;77:17-23. https://doi.org/10.1016/j.jcs.2017.07.014
  100. Salazar-López NJ, Gonzalez-Aguilar G, Rouzaud-Sandez O, Robles-Sanchez M. Technologies applied to sorghum (Sorghum bicolor L. Moench): Changes in phenolic compounds and antioxidant capacity. Food Science and Technology. 2018;38:369-82.
  101. https://doi.org/10.1590/fst.16017
  102. Chiremba C, Taylor JR, Rooney LW, Beta T. Phenolic acid content of sorghum and maize
  103. cultivars varying in hardness. Food Chemistry. 2012;134(1):81-88. https://doi.org/10.1016/j.foodchem.2012.02.067
  104. Yang L, Allred KF, Geera B, Allred CD, Awika JM. Sorghum phenolics demonstrate estrogenic action and induce apoptosis in nonmalignant colonocytes. Nutrition and Cancer. 2012;64(3):419-27. https://doi.org/10.1080/01635581.2012.657333
  105. Girard AL, Awika JM. Sorghum polyphenols and other bioactive components as functional and health promoting food ingredients. Journal of Cereal Science. 2018;84:112-24. https://doi.org/10.1016/j.jcs.2018.10.009
  106. Xiong Y, Zhang P, Warner RD, Fang Z. Sorghum grain: From genotype, nutrition and phenolic profile to its health benefits and food applications. Comprehensive Reviews in Food Science and Food Safety. 2019;18(6):2025-46. https://doi.org/10.1111/1541-4337.12506
  107. Althwab S, Carr TP, Weller CL, Dweikat IM, Schlegel V. Advances in grain sorghum and its co-products as a human health promoting dietary system. Food Research International. 2015;77:349-59. https://doi.org/10.1016/j.foodres.2015.08.011
  108. Vanamala JK, Massey AR, Pinnamaneni SR, Reddivari L, Reardon KF. Grain and sweet sorghum (Sorghum bicolor L. Moench) serves as a novel source of bioactive compounds for human health. Critical Reviews in Food Science and Nutrition. 2018;58(17):2867-81. https://doi.org/10.1080/10408398.2017.1344186
  109. Seo JW, Ham DY, Lee JG, Kim NY, Kim MJ, Yu CY et al. Antioxidant activity, phenolic content and antioxidant gene expression in genetic resources of sorghum collected from Australia, Former Soviet Union, USA, Sudan and Guadeloupe. Agronomy. 2023;13(7):1698. https://doi.org/10.3390/agronomy13071698
  110. Punia H, Tokas J, Bhadu S, Mohanty AK, Rawat P, Malik A et al. Proteome dynamics and transcriptome profiling in sorghum [Sorghum bicolor (L.) Moench] under salt stress. 3 Biotech. 2020;10:1-10. https://doi.org/10.1007/s13205-020-02392-1
  111. Ghimire B-K, Seo J-W, Yu C-Y, Kim S-H, Chung I-M. Comparative study on seed characteristics, antioxidant activity and total phenolic and flavonoid contents in accessions of
  112. Sorghum bicolor (L.) Moench. Molecules. 2021;26(13):3964. https://doi.org/10.3390/molecules26133964
  113. Punia H, Tokas J, Malik A, Satpal, Sangwan S. Characterization of phenolic compounds and antioxidant activity in sorghum [Sorghum bicolor (L.) Moench] grains. Cereal Research Communications. 2021;49:343-53. https://doi.org/10.1007/s42976-020-00118-w
  114. Kim J, Noh SK, Woo K-S, Seo M-C. Sorghum extract lowers lymphatic absorption of trans fat and cholesterol in rats. Journal of the Korean Society of Food Science and Nutrition. 2016;45(6):783-88. https://doi.org/10.3746/jkfn.2016.45.6.783
  115. Liu H, Huang L, Pei X. Effects of sorghum rice and black rice on genes associated with cholesterol metabolism in hypercholesterolemic mice liver and intestine. Food Science and nutrition. 2021;9(1):217-29. https://doi.org/10.1002/fsn3.1986
  116. Kim E, Kim S, Park Y. Sorghum extract exerts cholesterol-lowering effects through the regulation of hepatic cholesterol metabolism in hypercholesterolemic mice. International Journal of Food Sciences and Nutrition. 2015;66(3):308-13. https://doi.org/10.3109/09637486.2014.1000839
  117. Queiroz VAV, da Silva Aguiar A, de Menezes CB, de Carvalho CWP, Paiva CL, Fonseca PC et al. A low calorie and nutritive sorghum powdered drink mix: Influence of tannin on the sensorial and functional properties. Journal of Cereal Science. 2018;79:43-49. https://doi.org/10.1016/j.jcs.2017.10.001
  118. Iyabo O, Ibiyinka O, Abimbola Deola O. Comparative study of nutritional, functional and antinutritional properties of white Sorghum bicolor (Sorghum) and Pennisetum glaucum (Pearl Millet). International Journal of Engineering Technologies and Management Research. 2018;5(3):151-58.
  119. Parnian F, Taghizadeh A, Paya H, Nobari BB. In vitro fermentation response to alkaline treated sorghum grain. Journal of BioScience & Biotechnology. 2014;3(1).
  120. de Oliveira KG, Queiroz VAV, de Almeida Carlos L, de Morais Cardoso L, Pinheiro- Sant’Ana HM, Anunciação PC et al. Effect of the storage time and temperature on phenolic compounds of sorghum grain and flour. Food Chemistry. 2017;216:390-98. https://doi.org/10.1016/j.foodchem.2016.08.047
  121. Aguilar CN, Aguilera-Carbo A, Robledo A, Ventura J, Belmares R, Martinez D et al. Production of antioxidant nutraceuticals by solid-state cultures of pomegranate (Punica granatum) peel and creosote bush (Larrea tridentata) leaves. Food Technology and Biotechnology. 2008;46(2):218.
  122. Vila-Real C, Pimenta-Martins A, Maina N, Gomes A, Pinto E. Nutritional value of ndigenous whole grain cereals millet and sorghum. Nutrition and Food Science International
  123. Journal. 2017;4(1).
  124. Dykes L, Rooney LW. Sorghum and millet phenols and antioxidants. Journal of Cereal Science. 2006;44(3):236-51. https://doi.org/10.1016/j.jcs.2006.06.007
  125. Daglia M. Polyphenols as antimicrobial agents. Current Opinion in Biotechnology. 2012;23(2):174-81. https://doi.org/10.1016/j.copbio.2011.08.007
  126. Jiang Y, Zhang H, Qi X, Wu G. Structural characterization and antioxidant activity of condensed tannins fractionated from sorghum grain. Journal of Cereal Science. 2020;92:102918.
  127. https://doi.org/10.1016/j.jcs.2020.102918
  128. Ahmad F, Pasha I, Saeed M, Asgher M. Biochemical profiling of Pakistani sorghum and millet varieties with special reference to anthocyanins and condensed tannins. International Journal of Food Properties. 2018;21(1):1586-97. https://doi.org/10.1080/10942912.2018.1502198
  129. Awika JM, McDonough CM, Rooney LW. Decorticating sorghum to concentrate healthy phytochemicals. Journal of Agricultural and Food Chemistry. 2005;53(16):6230-34. https://doi.org/10.1021/jf0510384
  130. Chandrasekara A, Shahidi F. Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity. Journal of Agricultural and Food Chemistry. 2010;58(11):6706-14. https://doi.org/10.1021/jf100868b
  131. Khoddami A, Truong HH, Liu SY, Roberts TH, Selle PH. Concentrations of specific phenolic compounds in six red sorghums influence nutrient utilisation in broiler chickens. Animal Feed Science and Technology. 2015;210:190-99. https://doi.org/10.1016/j.anifeedsci.2015.09.029
  132. Awika JM, Rooney LW, Waniska RD. Properties of 3-deoxyanthocyanins from sorghum. Journal of Agricultural and Food Chemistry. 2004;52(14):4388-94. https://doi.org/10.1021/jf049653f
  133. Semere T, Tsehaye Y, Tareke L, Westengen OT, Fjellheim S. Nutritional and antinutritional potentials of sorghum: A comparative study among different sorghum landraces of Tigray, Northern Ethiopia. Agriculture. 2023;13(9):1753. https://doi.org/10.3390/agriculture13091753
  134. Taleon V, Dykes L, Rooney W, Rooney L. Effect of genotype and environment on flavonoid concentration and profile of black sorghum grains. Journal of Cereal Science. 2012;56(2):470-75. https://doi.org/10.1016/j.jcs.2012.05.001
  135. Dykes L, Seitz LM, Rooney WL, Rooney LW. Flavonoid composition of red sorghum genotypes. Food Chemistry. 2009;116(1):313-17. https://doi.org/10.1016/j.foodchem.2009.02.052
  136. Speranza S, Knechtl R, Witlaczil R, Schönlechner R. Reversed-phase HPLC characterization and quantification and antioxidant capacity of the phenolic acids and flavonoids extracted from eight varieties of sorghum grown in Austria. Frontiers in Plant Science. 2021;12:769151. https://doi.org/10.3389/fpls.2021.769151
  137. Riddick EW. Potential of quercetin to reduce herbivory without disrupting natural enemies and pollinators. Agriculture. 2021;11(6):476. https://doi.org/10.3390/agriculture11060476
  138. Chatterjee D, Lesko T, Peiffer M, Elango D, Beuzelin J, Felton GW et al. Sorghum and maize flavonoids are detrimental to growth and survival of fall armyworm Spodoptera frugiperda. Journal of Pest Science. 2023;96(4):1551-67. https://doi.org/10.3390/agriculture11060476
  139. Kariyat RR, Gaffoor I, Sattar S, Dixon CW, Frock N, Moen J et al. Sorghum 3-deoxyanthocyanidin flavonoids confer resistance against corn leaf aphid. Journal of Chemical Ecology. 2019;45:502-14. https://doi.org/10.1007/s10886-019-01062-8
  140. Lopez-Contreras JJ, Zavala-Garcia F, Urias-Orona V, Martinez-Avila GCG, Rojas R,Guillermo N-M. Chromatic, phenolic and antioxidant properties of Sorghum bicolor genotypes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2015;43(2):366-70. https://doi.org/10.15835/nbha4329949
  141. Shahidi F, Peng H. Bioaccessibility and bioavailability of phenolic compounds. Journal of Food Bioactives. 2018;4:11–68. https://doi.org/10.31665/JFB.2018.4162
  142. Granato D, Shahidi F, Wrolstad R, Kilmartin P, Melton LD, Hidalgo FJ et al. Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods? Food Chemistry. 2018;264:471-75. https://doi.org/10.1016/j.foodchem.2018.04.012
  143. Farida K, Messaoud B, Noureddine B, Bernard W. Free radical scavenging activity correlated with phenolic.
  144. Awika JM, Rooney LW, Waniska RD. Anthocyanins from black sorghum and their antioxidant properties. Food Chemistry. 2005;90(1-2):293-301. https://doi.org/10.1016/j.foodchem.2004.03.058
  145. Awika JM, Yang L, Browning JD, Faraj A. Comparative antioxidant, antiproliferative and phase II enzyme inducing potential of sorghum (Sorghum bicolor) varieties. LWT-Food Science and Technology. 2009;42(6):1041-46. https://doi.org/10.1016/j.lwt.2009.02.003
  146. Tian Y, Zou B, Li C-m, Yang J, Xu S-f, Hagerman AE. High molecular weight persimmon tannin is a potent antioxidant both ex vivo and in vivo. Food Research International. 2012;45(1):26-30. https://doi.org/10.1016/j.foodres.2011.10.005
  147. Cox S, Noronha L, Herald T, Bean S, Lee S-H, Perumal R et al. Evaluation of ethanol- based extraction conditions of sorghum bran bioactive compounds with downstream anti- proliferative properties in human cancer cells. Heliyon. 2019;5(5). https://doi.org/10.1016/j.heliyon.2019.e01589
  148. Hargrove JL, Greenspan P, Hartle DK, Dowd C. Inhibition of aromatase and ?-amylase by flavonoids and proanthocyanidins from Sorghum bicolor bran extracts. Journal of Medicinal Food. 2011;14(7-8):799-807. https://doi.org/10.1089/jmf.2010.0143
  149. Moraes ÉA, da Silva Marineli R, Lenquiste SA, Queiroz VAV, Camargo RL, Borck PC et al. Whole sorghum flour improves glucose tolerance, insulin resistance and preserved pancreatic islets function in obesity diet-induced rats. Journal of Functional Foods. 2018;45:530-40.
  150. https://doi.org/10.1016/j.jff.2017.03.047
  151. Chung I-M, Kim E-H, Yeo M-A, Kim S-J, Seo MC, Moon H-I. Antidiabetic effects of three Korean sorghum phenolic extracts in normal and streptozotocin-induced diabetic rats. Food Research International. 2011;44(1):127-32. https://doi.org/10.1016/j.foodres.2010.10.051
  152. Kim J, Park Y. Anti-diabetic effect of sorghum extract on hepatic gluconeogenesis of streptozotocin-induced diabetic rats. Nutrition & Metabolism. 2012;9:1-7. https://doi.org/10.1186/1743-7075-9-106
  153. Links MR, Taylor J, Kruger MC, Taylor JR. Sorghum condensed tannins encapsulated in kafirin microparticles as a nutraceutical for inhibition of amylases during digestion to attenuate hyperglycaemia. Journal of Functional Foods. 2015;12:55-63. https://doi.org/10.1016/j.jff.2014.11.003
  154. Rhodes D, Gadgil P, Perumal R, Tesso T, Herald TJ. Natural variation and genome?wide association study of antioxidants in a diverse sorghum collection. Cereal Chemistry. 2017;94(2):190-98. https://doi.org/10.1094/CCHEM-03-16-0075-R
  155. Welderufael S, Abay F, Ayana A, Amede T. Genetic diversity, correlation and genotype× yield× trait (GYT) analysis of grain yield and nutritional quality traits in sorghum (Sorghum bicolor [L.] Moench) genotypes in Tigray, Northern Ethiopia. Discover Agriculture. 2024;2(1):4. https://doi.org/10.1007/s44279-024-00016-3
  156. Kumar AA, Reddy BV, Ramaiah B, Sahrawat KL, Pfeiffer WH. Gene effects and heterosis for grain iron and zinc concentration in sorghum [Sorghum bicolor (L.) Moench]. Field Crops Research. 2013;146:86-95. https://doi.org/10.1016/j.fcr.2013.03.001
  157. Gaddameedi A, Phuke RM, Polavarapu KKB, Gorthy S, Subhasini V, Jagannathan J et al. Heterosis and combining ability for grain Fe and Zn concentration and agronomic traits in sorghum [Sorghum bicolor (L.) Moench]. Journal of King Saud University-Science. 2020;32(7):2989-94. https://doi.org/10.1016/j.jksus.2020.08.003
  158. Flint-Garcia SA. Genetics and consequences of crop domestication. Journal of Agricultural and Food Chemistry. 2013;61(35):8267-76. https://doi.org/10.1021/jf305511d
  159. Rhodes DH, Hoffmann Jr L, Rooney WL, Ramu P, Morris GP, Kresovich S. Genome-wide association study of grain polyphenol concentrations in global sorghum [Sorghum bicolor (L.) Moench] germplasm. Journal of Agricultural and Food Chemistry. 2014;62(45):10916-27. https://doi.org/10.1021/jf503651t
  160. Rooney WL, Portillo O, Hayes C. Registration of ATx3363 and BTx3363 black sorghum germplasms. Journal of Plant Registrations. 2013;7(3):342-46. https://doi.org/10.3198/jpr2013.01.0006crg
  161. Mace E, Innes D, Hunt C, Wang X, Tao Y, Baxter J et al. The sorghum QTL Atlas: A powerful tool for trait dissection, comparative genomics and crop improvement. Theoretical and Applied Genetics. 2019;132:751-66. https://doi.org/10.1007/s00122-018-3212-5
  162. Sukumaran S, Xiang W, Bean SR, Pedersen JF, Kresovich S, Tuinstra MR et al. Association mapping for grain quality in a diverse sorghum collection. The Plant Genome. 2012;5(3). https://doi.org/10.3835/plantgenome2012.07.0016
  163. Kimani W, Zhang L-M, Wu X-Y, Hao H-Q, Jing H-C. Genome-wide association study reveals that different pathways contribute to grain quality variation in sorghum (Sorghum bicolor). BMC Genomics. 2020;21:1-19. https://doi.org/10.1186/s12864-020-6538-8
  164. Rooney LW, Waniska RD. Sorghum food and industrial utilization. Sorghum: Origin, History, Technology and Production. 2000;689-729. https://doi.org/10.1007/1-4020-0613-6_8400
  165. Bouargalne Y, Ben Mrid R, Bouchmaa N, Zouaoui Z, Benmrid B, Kchikich A et al. Genetic diversity for agromorphological traits, phytochemical profile and antioxidant activity in Moroccan sorghum ecotypes. Scientific Reports. 2022;12(1):5895. https://doi.org/10.1038/s41598-022-09810-9
  166. Rao S, Santhakumar AB, Chinkwo KA, Wu G, Johnson SK, Blanchard CL. Characterization of phenolic compounds and antioxidant activity in sorghum grains. Journal of Cereal Science. 2018;84:103-11. https://doi.org/10.1016/j.jcs.2018.07.013
  167. Ba K, Tine E, Destain J, Cisse N, Thonart P. Comparative study of phenolic compounds, antioxidant power of various Senegalese sorghum cultivars and amylolytic enzymes of their malt. Biotechnologie, Agronomie, Société et Environnement. 2010;14(1):131-39.
  168. Lee S, Choi Y-M, Shin M-J, Yoon H, Wang X, Lee Y et al. Exploring the potentials of sorghum genotypes: A comprehensive study on nutritional qualities, functional metabolites and antioxidant capacities. Frontiers in Nutrition. 2023;10. https://doi.org/10.3389%2Ffnut.2023.1238729
  169. Lee S, Choi Y-M, Shin M-J, Yoon H, Wang X, Lee Y et al. Agro-morphological and biochemical characterization of Korean sorghum (Sorghum bicolor (L.) Moench) landraces. Agronomy. 2022;12(11):2898. https://doi.org/10.3390/agronomy12112898
  170. Desta KT, Choi Y-M, Shin M-J, Yoon H, Wang X, Lee Y et al. Comprehensive evaluation of nutritional components, bioactive metabolites and antioxidant activities in diverse sorghum (Sorghum bicolor (L.) Moench) landraces. Food Research International. 2023;173:113390.
  171. https://doi.org/10.1016/j.foodres.2023.113390
  172. Nguni D, Geleta M, Hofvander P, Fatih M, Bryngelsson T. Comparative genetic diversity and nutritional quality variation among some important Southern African sorghum accessions [Sorghum bicolor (L.) Moench]. Australian Journal of Crop Science. 2012;6(1):56-64.
  173. Moraes ÉA, da Silva Marineli R, Lenquiste SA, Steel CJ, de Menezes CB, Queiroz VAV et al. Sorghum flour fractions: Correlations among polysaccharides, phenolic compounds, antioxidant activity and glycemic index. Food chemistry. 2015;180:116-23. https://doi.org/10.1016/j.foodchem.2015.02.023
  174. Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE et al. Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain non-structural carbohydrates. Crop Science. 2008;48(6):2165-79. https://doi.org/10.2135/cropsci2008.01.0016
  175. Patil NY, Pugh NA, Klein RR, Martinez HS, Martinez RS, Rodriguez-Herrera R et al. Heritability and quantitative trait loci of composition and structural characteristics in sorghum grain. Journal of Crop Improvement. 2019;33(1):1-24.
  176. https://doi.org/10.1080/15427528.2018.1536006
  177. Chen B-R, WANG C-y, Ping W, ZHU Z-x, Ning X, SHI G-s et al. Genome-wide association study for starch content and constitution in sorghum (Sorghum bicolor (L.) Moench). Journal of Integrative Agriculture. 2019;18(11):2446-56. https://doi.org/10.1016/S2095-3119(19)62631-6
  178. Rhodes DH, Hoffmann L, Rooney WL, Herald TJ, Bean S, Boyles R et al. Genetic architecture of kernel composition in global sorghum germplasm. BMC Genomics. 2017;18(1):1-8. https://doi.org/10.1186/s12864-016-3403-x
  179. Li J, Tang W, Zhang Y-W, Chen K-N, Wang C, Liu Y et al. Genome-wide association studies for five forage quality-related traits in sorghum (Sorghum bicolor L.). Frontiers in Plant Science. 2018;9:1146. https://doi.org/10.3389/fpls.2018.01146
  180. Cruet?Burgos C, Cox S, Ioerger BP, Perumal R, Hu Z, Herald TJ et al. Advancing provitamin A biofortification in sorghum: Genome?wide association studies of grain carotenoids in global germplasm. The Plant Genome. 2020;13(1):e20013. https://doi.org/10.1002/tpg2.20013
  181. Habyarimana E, Dall’Agata M, De Franceschi P, Baloch FS. Genome-wide association mapping of total antioxidant capacity, phenols, tannins and flavonoids in a panel of Sorghum bicolor and S. bicolor× S. halepense populations using multi-locus models. PLoS One. 2019;14(12):e0225979. https://doi.org/10.1371/journal.pone.0225979
  182. Marla SR, Burow G, Chopra R, Hayes C, Olatoye MO, Felderhoff T et al. Genetic architecture of chilling tolerance in sorghum dissected with a nested association mapping population. G3: Genes, Genomes, Genetics. 2019;9(12):4045-57. https://doi.org/10.1534/g3.119.400353

Downloads

Download data is not yet available.