This is an outdated version published on 16-06-2024. Read the most recent version.
Forthcoming

Understanding the advances in Sorghum grain quality improvement: An overview

Authors

DOI:

https://doi.org/10.14719/pst.3527

Keywords:

Sorghum grain, phenolic compounds, kafirin, flavonoids, quantitative trait loci, antioxidant activity

Abstract

Sorghum, a crucial cereal crop with versatile applications, is increasingly recognized for its grain quality attributes. The nutritional and biochemical diversity within sorghum, encompassing elements such as iron (Fe), zinc (Zn), proteins, starch, dietary fibers, and ß-carotene, plays a pivotal role in enhancing the quality across diverse sorghum accessions. Breeding programs offer a promising avenue for further improvement in these traits. Additionally, sorghum features a spectrum of phenolic compounds, including tannins and flavonoids, influencing both pigmentation and potential health benefits. The antioxidative properties of these compounds underscore their critical role in promoting health and mitigating oxidative stress. The significance of sorghum is shaped by genetic factors, environmental conditions, ripening stages, and varietal distinctions, highlighting the complex interplay between grain structure, genetics, and nutritional content.  As the global demand for diverse, nutritionally rich food sources continues to rise, this review provides insights aimed at deepening our understanding of sorghum's potential as a staple crop with substantial nutritional and health-promoting attributes.

Downloads

Download data is not yet available.

References

Kumar AA. Botany, taxonomy and breeding. The Sorghum Genome. 2016;27-45.

https://doi.org/10.1007/978-3-319-47789-3_2

De Wet J. Special paper: Systematics and evolution of Sorghum sect. Sorghum (Gramineae). American Journal of Botany. 1978;65(4):477-84. https://doi.org/10.1002/j.15372197.1978.tb06096.x

Food and Agriculture Organization Corporate Statistical Database [Internet]. FAO; 2021. Available from: http://www.fao.org/faostat/en/#data/QC.

International production assessment division [Internet]. USDA; 2023. Available from: https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=0459200.

Mullet J, Morishige D, McCormick R, Truong S, Hilley J, McKinley B et al. Energy Sorghum—A genetic model for the design of C4 grass bioenergy crops. Journal of Experimental Botany. 2014;65(13):3479-89. https://doi.org/10.1093/jxb/eru229

ME, Tonapi V, Bhat P, Varanavasiappan S, Seetharama N. Indian Sorghum landraces and their protection. 2015.

Nagaraj N, Basavaraj G, Rao PP, Bantilan C, Haldar S. Sorghum and pearl millet economy of India: Future outlook and options. Economic and Political Weekly. 2013;74-81.

Przybylska-Balcerek A, Frankowski J, Stuper-Szablewska K. Bioactive compounds in sorghum. European Food Research and Technology. 2019;245:1075-80. https://doi.org/10.1007/s00217-018-3207-0

Taylor JR, Schober TJ, Bean SR. Novel food and non-food uses for sorghum and millets. Journal of Cereal Science. 2006;44(3):252-71. https://doi.org/10.1016/j.jcs.2006.06.009

Shen S, Huang R, Li C, Wu W, Chen H, Shi J et al. Phenolic compositions and antioxidant

activities differ significantly among sorghum grains with different applications. Molecules. 2018;23(5):1203. https://doi.org/10.3390/molecules23051203

González-Montilla FM, Chávez-Santoscoy RA, Gutiérrez-Uribe JA, Serna-Saldivar SO. Isolation and identification of phase II enzyme inductors obtained from black Shawaya sorghum [Sorghum bicolor (L.) Moench] Bran. Journal of Cereal Science. 2012;55(2):126-31. https://doi.org/10.1016/j.jcs.2011.10.009

Venkateswaran K, Elangovan M, Sivaraj N. Origin, domestication and diffusion of Sorghum bicolor. Breeding Sorghum for diverse end uses. Elsevier. 2019; p. 15-31. https://doi.org/10.1016/B978-0-08-101879-8.00002-4

Harlan JR, de Wet JM. A simplified classification of cultivated sorghum 1. Crop Science. 1972;12(2):172-76. https://doi.org/10.2135/cropsci1972.0011183X001200020005x

Prabhakar, Madhusudhana R, Aruna C. Sorghum breeding. Fundamentals of Field Crop Breeding. Springer. 2022; p. 367-447. https://doi.org/10.1007/978-981-16-9257-4_7

Deu M, Hamon P. The genetic organisation of sorghum; 1994.

Serna-Saldivar S. Structure and chemistry of sorghum and millets. Sorghum and Millets:

Chemistry and Technology. 1995;69-124. https://doi.org/10.1016/B978-034061457-0/50006-1

Earp C, McDonough C, Rooney L. Microscopy of pericarp development in the caryopsis of Sorghum bicolor (L.) Moench. Journal of Cereal Science. 2004;39(1):21-27.

https://doi.org/10.1016/S0733-5210(03)00060-2

Slavin J. Whole grains and human health. Nutrition Research Reviews. 2004;17(1):99-110.

https://doi.org/10.1079/NRR200374

Waniska RD, Rooney LW. Sorghum grain quality for increased utilization. Sorghum and

Millets Diseases. 2002;327-35.

Awika JM, Rooney LW. Sorghum phytochemicals and their potential impact on human

health. Phytochemistry. 2004;65(9):1199-221. https://doi.org/10.1016/j.phytochem.2004.04.001

Dykes L, Peterson GC, Rooney WL, Rooney LW. Flavonoid composition of lemon-yellow

sorghum genotypes. Food Chemistry. 2011;128(1):173-79. https://doi.org/10.1016/j.foodchem.2011.03.020

Dykes L, Rooney WL, Rooney LW. Evaluation of phenolics and antioxidant activity of

black sorghum hybrids. Journal of Cereal Science. 2013;58(2):278-83.

https://doi.org/10.1016/j.jcs.2013.06.006

Earp C, Rooney L. Scanning electron microscopy of the pericarp and testa of several

sorghum varieties. Food Structure. 1982;1(2):3.

Nagaraja T, Parveen SG, Aruna C, Hariprasanna K, Singh S, Singh AK et al. Millets and

pseudocereals: A treasure for climate resilient agriculture ensuring food and nutrition security. Indian Journal of Genetics and Plant Breeding. 2024;84(01):1-37.

https://doi.org/10.31742/ISGPB.84.1.1

Audilakshmi S, Aruna C. Genetic analysis of physical grain quality characters in sorghum. The Journal of Agricultural Science. 2005;143(4):267-73.

https://doi.org/10.1017/S0021859605005368

Cabrera-Ramírez A, Luzardo-Ocampo I, Ramírez-Jiménez A, Morales-Sánchez E, Campos-Vega R, Gaytán-Martínez M. Effect of the nixtamalization process on the protein bioaccessibility of white and red sorghum flours during in vitro gastrointestinal digestion. Food Research International. 2020;134:109234. https://doi.org/10.1016/j.foodres.2020.109234

USDA. National nutrient database for standard reference legacy release: Full report (all

nutrients) 20067, sorghum grain. [Internet]; 2019. Available from:

https://ndb.nal.usda.gov/ndb/foods/show/20067?n1=%7BQv%3D1%7D&

Zhu F. Structure, physicochemical properties, modifications and uses of sorghum starch.

Comprehensive Reviews in Food Science and Food Safety. 2014;13(4):597-610.

https://doi.org/10.1111/1541-4337.12070

Sasaki T, Yasui T, Matsuki J. Effect of amylose content on gelatinization, retrogradation

and pasting properties of starches from waxy and nonwaxy wheat and their F1 seeds. Cereal

Chemistry. 2000;77(1):58-63. https://doi.org/10.1094/CCHEM.2000.77.1.58

Behall KM, Scholfield DJ. Food amylose content affects postprandial glucose and insulin

responses. Cereal Chemistry. 2005;82(6):654-59. https://doi.org/10.1094/CC-82-0654

Cagampang G, Kirleis A. Properties of starches isolated from sorghum floury and corneous endosperm. Starch?Stärke. 1985;37(8):253-57. https://doi.org/10.1002/star.19850370802

Beta T, Corke H, Rooney LW, Taylor JRN. Starch properties as affected by sorghum grain chemistry. Journal of the Science of Food and Agriculture. 2001;81(2):245-51.

https://doi.org/10.1002/1097-0010(20010115)81:2<245::AID-JSFA805>3.0.CO;2-S

Hill H, Lee LS, Henry RJ. Variation in sorghum starch synthesis genes associated with

differences in starch phenotype. Food Chemistry. 2012;131(1):175-83.

https://doi.org/10.1016/j.foodchem.2011.08.057

Wester T, Gramlich S, Britton R, Stock R. Effect of grain sorghum hybrid on in vitro rate of starch disappearance and finishing performance of ruminants. Journal of Animal Science.

;70(9):2866-76. https://doi.org/10.2527/1992.7092866x

Sullins R, Rooney L. Microscopic evaluation of the digestibility of sorghum lines that differ in endosperm characteristics. 1974.

Sang Y, Bean S, Seib PA, Pedersen J, Shi Y-C. Structure and functional properties of

sorghum starches differing in amylose content. Journal of Agricultural and Food Chemistry. 2008;56(15):6680-85. https://doi.org/10.1021/jf800577x

Taylor JR, Emmambux MN. Developments in our understanding of sorghum polysaccharides and their health benefits. Cereal Chemistry. 2010;87(4):263-71.

https://doi.org/10.1094/CCHEM-87-4-0263

Verbruggen MA, Beldman G, Voragen AG. Enzymic degradation of sorghum glucuronoarabinoxylans leading to tentative structures. Carbohydrate Research. 1998;306(1-2):275-82. https://doi.org/10.1016/S0008-6215(97)10065-9

Niba LL, Hoffman J. Resistant starch and ?-glucan levels in grain sorghum (Sorghum bicolor M.) are influenced by soaking and autoclaving. Food Chemistry. 2003;81(1):113-18. https://doi.org/10.1016/S0308-8146(02)00386-2

Ramesh HP, Tharanathan RN. Structural characteristics of a mixed linkage ?-D-glucan from sorghum (Sorghum bicolor). Carbohydrate Research. 1998;308(1-2):239-43. https://doi.org/10.1016/S0008-6215(98)00064-0

Boyer CD, Liu K-C. Starch and water-soluble polysaccharides from sugary endosperm of

sorghum. Phytochemistry. 1983;22(11):2513-15. https://doi.org/10.1016/0031-9422(83)80151-4

Taylor J, Schüssler L. The protein compositions of the different anatomical parts of sorghum grain. Journal of Cereal Science. 1986;4(4):361-69. https://doi.org/10.1016/S0733-5210(86)80040-6

Rooney LW, Serna-Saldivar SO. Sorghum. Handbook of Cereal Science and Technology,

Revised and Expanded: CRC Press. 2000; p. 149-75.

Proietti I, Frazzoli C, Mantovani A editors. Exploiting nutritional value of staple foods in the world’s semi-arid areas: Risks, benefits, challenges and opportunities of sorghum. Healthcare;2015. https://doi.org/10.3390/healthcare3020172

Bean S, Ioerger B, Smith B, Blackwell D. Sorghum protein structure and chemistry: Implications for nutrition and functionality. Advances in Cereal Science: Implications to Food Processing and Health Promotion. ACS Publications. 2011; p. 131-47.

Taylor J, Bean SR, Ioerger BP, Taylor JR. Preferential binding of sorghum tannins with ?-kafirin and the influence of tannin binding on kafirin digestibility and biodegradation. Journal of Cereal Science. 2007;46(1):22-31. https://doi.org/10.1016/j.jcs.2006.11.001

Watterson J, Shull J, Kirleis A. Quantitation of ?-, ?-, and ?-kafirins in vitreous and opaque endosperm of Sorghum bicolor. 1993.

Gebremariam MM, Zarnkow M, Becker T. Teff (Eragrostis tef) as a raw material for

malting, brewing and manufacturing of gluten-free foods and beverages: A review. Journal of Food Science and Technology. 2014;51:2881-95. https://doi.org/10.1007/s13197-012-0745-5

Kumar MVN, Ramya V, Maheshwaramma S, Ganapathy KN, Govindaraj M, Kavitha K, et al. Exploiting Indian landraces to develop biofortified grain sorghum with high protein and minerals. Frontiers in Nutrition. 2023;10. https://doi.org/10.3389%2Ffnut.2023.1228422

Fernandez MGS, Hamblin MT, Li L, Rooney WL, Tuinstra MR, Kresovich S. Quantitative trait loci analysis of endosperm color and carotenoid content in sorghum grain. Crop Science. 2008;48(5):1732-43. https://doi.org/10.2135/cropsci2007.12.0684

de Morais Cardoso L, Pinheiro SS, da Silva LL, de Menezes CB, de Carvalho CWP, Tardin FD et al. Tocochromanols and carotenoids in sorghum (Sorghum bicolor L.): Diversity and stability to the heat treatment. Food Chemistry. 2015;172:900-08.

https://doi.org/10.1016/j.foodchem.2014.09.117

Kean EG, Ejeta G, Hamaker BR, Ferruzzi MG. Characterization of carotenoid pigments in mature and developing kernels of selected yellow-endosperm sorghum varieties. Journal of Agricultural and Food Chemistry. 2007;55(7):2619-26. https://doi.org/10.1021/jf062939v

Kean EG, Bordenave N, Ejeta G, Hamaker BR, Ferruzzi MG. Carotenoid bioaccessibility from whole grain and decorticated yellow endosperm sorghum porridge. Journal of Cereal Science. 2011;54(3):450-59. https://doi.org/10.1016/j.jcs.2011.08.010

Lipkie TE, De Moura FF, Zhao Z-Y, Albertsen MC, Che P, Glassman K et al. Bioaccessibility of carotenoids from transgenic provitamin A biofortified sorghum. Journal of Agricultural and Food Chemistry. 2013;61(24):5764-71. https://doi.org/10.1021/jf305361s

Shen Y. Sorghum pericarp pigments are associated with the contents of carotenoids and provitamin A: Kansas State University; 2016.

Kayodé AP, Linnemann AR, Hounhouigan JD, Nout MJ, van Boekel MA. Genetic and environmental impact on iron, zinc and phytate in food sorghum grown in Benin. Journal of Agricultural and Food Chemistry. 2006;54(1):256-62. https://doi.org/10.1021/jf0521404

Pontieri P, Troisi J, Calcagnile M, Bean SR, Tilley M, Aramouni F et al. Chemical composition, fatty acid and mineral content of food-grade white, red and black sorghum varieties grown in the mediterranean environment. Foods. 2022;11(3):436.https://doi.org/10.3390/foods11030436

Kotla A, Phuke R, Hariprasanna K, Mehtre SP, Rathore A, Gorthy S et al. Identification of QTLs and candidate genes for high grain Fe and Zn concentration in sorghum [Sorghum bicolor (L.) Moench]. Journal of Cereal Science. 2019;90:102850. https://doi.org/10.1016/j.jcs.2019.102850

Motlhaodi T, Bryngelsson T, Chite S, Fatih M, Ortiz R, Geleta M. Nutritional variation in sorghum [Sorghum bicolor (L.) Moench] accessions from Southern Africa revealed by protein and mineral composition. Journal of Cereal Science. 2018;83:123-29. https://doi.org/10.1016/j.jcs.2018.08.010

Ashok Kumar A, Reddy BV, Ramaiah B, Sahrawat KL, Pfeiffer WH. Genetic variability and character association for grain iron and zinc contents in sorghum germplasm accessions and commercial cultivars. European Journal of Plant Science and Biotechnology. 2012;6(1):1-5.

Bean S, Wilson J, Moreau R, Galant A, Awika J, Kaufman R et al. Structure and composition of the sorghum grain. Sorghum: A State of the Art and Future Perspetives. 2019;58:173-214. https://doi.org/10.2134/agronmonogr58.c9

Lasztity R. Phytic acid in cereal technology. Advances in Cereal Science and Technology. 1990;10:309-71.

Reddy N, Pierson MD, Sathe SK, Salunkhe D. Phytates in cereals and legumes: CRC Press;1989.

Doherty C, Rooney L, Faubion J editors. Phytin content of sorghum and sorghum products. Proc Int Symp On Sorghum Grain Quality (LW Rooney and DS Murty eds) Int Crops Res Inst Semi-arid Tropics (ICRISAT), Patancheru, AP India; 1981.

Badigannavar A, Girish G, Ganapathi T. Genetic variability for phytic acid and inorganic phosphorous in Indian Sorghum (Sorghum bicolor) landraces. Electronic Journal of Plant Breeding. 2014;5(3):451-58.

Soetan K, Oyewole O. The need for adequate processing to reduce the anti-nutritional factors in plants used as human foods and animal feeds: A review. African Journal of Food Science. 2009;3(9):223-32.

Jahromi SG. Extraction techniques of phenolic compounds from plants. Plant Physiological Aspects of Phenolic Compounds. 2019;1-18.

Wu G, Bornman JF, Bennett SJ, Clarke MW, Fang Z, Johnson SK. Individual polyphenolic profiles and antioxidant activity in sorghum grains are influenced by very low and high solar UV radiation and genotype. Journal of Cereal Science. 2017;77:17-23. https://doi.org/10.1016/j.jcs.2017.07.014

Salazar-López NJ, Gonzalez-Aguilar G, Rouzaud-Sandez O, Robles-Sanchez M. Technologies applied to sorghum (Sorghum bicolor L. Moench): Changes in phenolic compounds and antioxidant capacity. Food Science and Technology. 2018;38:369-82.

https://doi.org/10.1590/fst.16017

Chiremba C, Taylor JR, Rooney LW, Beta T. Phenolic acid content of sorghum and maize

cultivars varying in hardness. Food Chemistry. 2012;134(1):81-88. https://doi.org/10.1016/j.foodchem.2012.02.067

Yang L, Allred KF, Geera B, Allred CD, Awika JM. Sorghum phenolics demonstrate estrogenic action and induce apoptosis in nonmalignant colonocytes. Nutrition and Cancer. 2012;64(3):419-27. https://doi.org/10.1080/01635581.2012.657333

Girard AL, Awika JM. Sorghum polyphenols and other bioactive components as functional and health promoting food ingredients. Journal of Cereal Science. 2018;84:112-24. https://doi.org/10.1016/j.jcs.2018.10.009

Xiong Y, Zhang P, Warner RD, Fang Z. Sorghum grain: From genotype, nutrition and phenolic profile to its health benefits and food applications. Comprehensive Reviews in Food Science and Food Safety. 2019;18(6):2025-46. https://doi.org/10.1111/1541-4337.12506

Althwab S, Carr TP, Weller CL, Dweikat IM, Schlegel V. Advances in grain sorghum and its co-products as a human health promoting dietary system. Food Research International. 2015;77:349-59. https://doi.org/10.1016/j.foodres.2015.08.011

Vanamala JK, Massey AR, Pinnamaneni SR, Reddivari L, Reardon KF. Grain and sweet sorghum (Sorghum bicolor L. Moench) serves as a novel source of bioactive compounds for human health. Critical Reviews in Food Science and Nutrition. 2018;58(17):2867-81. https://doi.org/10.1080/10408398.2017.1344186

Seo JW, Ham DY, Lee JG, Kim NY, Kim MJ, Yu CY et al. Antioxidant activity, phenolic content and antioxidant gene expression in genetic resources of sorghum collected from Australia, Former Soviet Union, USA, Sudan and Guadeloupe. Agronomy. 2023;13(7):1698. https://doi.org/10.3390/agronomy13071698

Punia H, Tokas J, Bhadu S, Mohanty AK, Rawat P, Malik A et al. Proteome dynamics and transcriptome profiling in sorghum [Sorghum bicolor (L.) Moench] under salt stress. 3 Biotech. 2020;10:1-10. https://doi.org/10.1007/s13205-020-02392-1

Ghimire B-K, Seo J-W, Yu C-Y, Kim S-H, Chung I-M. Comparative study on seed characteristics, antioxidant activity and total phenolic and flavonoid contents in accessions of

Sorghum bicolor (L.) Moench. Molecules. 2021;26(13):3964. https://doi.org/10.3390/molecules26133964

Punia H, Tokas J, Malik A, Satpal, Sangwan S. Characterization of phenolic compounds and antioxidant activity in sorghum [Sorghum bicolor (L.) Moench] grains. Cereal Research Communications. 2021;49:343-53. https://doi.org/10.1007/s42976-020-00118-w

Kim J, Noh SK, Woo K-S, Seo M-C. Sorghum extract lowers lymphatic absorption of trans fat and cholesterol in rats. Journal of the Korean Society of Food Science and Nutrition. 2016;45(6):783-88. https://doi.org/10.3746/jkfn.2016.45.6.783

Liu H, Huang L, Pei X. Effects of sorghum rice and black rice on genes associated with cholesterol metabolism in hypercholesterolemic mice liver and intestine. Food Science and nutrition. 2021;9(1):217-29. https://doi.org/10.1002/fsn3.1986

Kim E, Kim S, Park Y. Sorghum extract exerts cholesterol-lowering effects through the regulation of hepatic cholesterol metabolism in hypercholesterolemic mice. International Journal of Food Sciences and Nutrition. 2015;66(3):308-13. https://doi.org/10.3109/09637486.2014.1000839

Queiroz VAV, da Silva Aguiar A, de Menezes CB, de Carvalho CWP, Paiva CL, Fonseca PC et al. A low calorie and nutritive sorghum powdered drink mix: Influence of tannin on the sensorial and functional properties. Journal of Cereal Science. 2018;79:43-49. https://doi.org/10.1016/j.jcs.2017.10.001

Iyabo O, Ibiyinka O, Abimbola Deola O. Comparative study of nutritional, functional and antinutritional properties of white Sorghum bicolor (Sorghum) and Pennisetum glaucum (Pearl Millet). International Journal of Engineering Technologies and Management Research. 2018;5(3):151-58.

Parnian F, Taghizadeh A, Paya H, Nobari BB. In vitro fermentation response to alkaline treated sorghum grain. Journal of BioScience & Biotechnology. 2014;3(1).

de Oliveira KG, Queiroz VAV, de Almeida Carlos L, de Morais Cardoso L, Pinheiro- Sant’Ana HM, Anunciação PC et al. Effect of the storage time and temperature on phenolic compounds of sorghum grain and flour. Food Chemistry. 2017;216:390-98. https://doi.org/10.1016/j.foodchem.2016.08.047

Aguilar CN, Aguilera-Carbo A, Robledo A, Ventura J, Belmares R, Martinez D et al. Production of antioxidant nutraceuticals by solid-state cultures of pomegranate (Punica granatum) peel and creosote bush (Larrea tridentata) leaves. Food Technology and Biotechnology. 2008;46(2):218.

Vila-Real C, Pimenta-Martins A, Maina N, Gomes A, Pinto E. Nutritional value of ndigenous whole grain cereals millet and sorghum. Nutrition and Food Science International

Journal. 2017;4(1).

Dykes L, Rooney LW. Sorghum and millet phenols and antioxidants. Journal of Cereal Science. 2006;44(3):236-51. https://doi.org/10.1016/j.jcs.2006.06.007

Daglia M. Polyphenols as antimicrobial agents. Current Opinion in Biotechnology. 2012;23(2):174-81. https://doi.org/10.1016/j.copbio.2011.08.007

Jiang Y, Zhang H, Qi X, Wu G. Structural characterization and antioxidant activity of condensed tannins fractionated from sorghum grain. Journal of Cereal Science. 2020;92:102918.

https://doi.org/10.1016/j.jcs.2020.102918

Ahmad F, Pasha I, Saeed M, Asgher M. Biochemical profiling of Pakistani sorghum and millet varieties with special reference to anthocyanins and condensed tannins. International Journal of Food Properties. 2018;21(1):1586-97. https://doi.org/10.1080/10942912.2018.1502198

Awika JM, McDonough CM, Rooney LW. Decorticating sorghum to concentrate healthy phytochemicals. Journal of Agricultural and Food Chemistry. 2005;53(16):6230-34. https://doi.org/10.1021/jf0510384

Chandrasekara A, Shahidi F. Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity. Journal of Agricultural and Food Chemistry. 2010;58(11):6706-14. https://doi.org/10.1021/jf100868b

Khoddami A, Truong HH, Liu SY, Roberts TH, Selle PH. Concentrations of specific phenolic compounds in six red sorghums influence nutrient utilisation in broiler chickens. Animal Feed Science and Technology. 2015;210:190-99. https://doi.org/10.1016/j.anifeedsci.2015.09.029

Awika JM, Rooney LW, Waniska RD. Properties of 3-deoxyanthocyanins from sorghum. Journal of Agricultural and Food Chemistry. 2004;52(14):4388-94. https://doi.org/10.1021/jf049653f

Semere T, Tsehaye Y, Tareke L, Westengen OT, Fjellheim S. Nutritional and antinutritional potentials of sorghum: A comparative study among different sorghum landraces of Tigray, Northern Ethiopia. Agriculture. 2023;13(9):1753. https://doi.org/10.3390/agriculture13091753

Taleon V, Dykes L, Rooney W, Rooney L. Effect of genotype and environment on flavonoid concentration and profile of black sorghum grains. Journal of Cereal Science. 2012;56(2):470-75. https://doi.org/10.1016/j.jcs.2012.05.001

Dykes L, Seitz LM, Rooney WL, Rooney LW. Flavonoid composition of red sorghum genotypes. Food Chemistry. 2009;116(1):313-17. https://doi.org/10.1016/j.foodchem.2009.02.052

Speranza S, Knechtl R, Witlaczil R, Schönlechner R. Reversed-phase HPLC characterization and quantification and antioxidant capacity of the phenolic acids and flavonoids extracted from eight varieties of sorghum grown in Austria. Frontiers in Plant Science. 2021;12:769151. https://doi.org/10.3389/fpls.2021.769151

Riddick EW. Potential of quercetin to reduce herbivory without disrupting natural enemies and pollinators. Agriculture. 2021;11(6):476. https://doi.org/10.3390/agriculture11060476

Chatterjee D, Lesko T, Peiffer M, Elango D, Beuzelin J, Felton GW et al. Sorghum and maize flavonoids are detrimental to growth and survival of fall armyworm Spodoptera frugiperda. Journal of Pest Science. 2023;96(4):1551-67. https://doi.org/10.3390/agriculture11060476

Kariyat RR, Gaffoor I, Sattar S, Dixon CW, Frock N, Moen J et al. Sorghum 3-deoxyanthocyanidin flavonoids confer resistance against corn leaf aphid. Journal of Chemical Ecology. 2019;45:502-14. https://doi.org/10.1007/s10886-019-01062-8

Lopez-Contreras JJ, Zavala-Garcia F, Urias-Orona V, Martinez-Avila GCG, Rojas R,Guillermo N-M. Chromatic, phenolic and antioxidant properties of Sorghum bicolor genotypes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2015;43(2):366-70. https://doi.org/10.15835/nbha4329949

Shahidi F, Peng H. Bioaccessibility and bioavailability of phenolic compounds. Journal of Food Bioactives. 2018;4:11–68. https://doi.org/10.31665/JFB.2018.4162

Granato D, Shahidi F, Wrolstad R, Kilmartin P, Melton LD, Hidalgo FJ et al. Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods? Food Chemistry. 2018;264:471-75. https://doi.org/10.1016/j.foodchem.2018.04.012

Farida K, Messaoud B, Noureddine B, Bernard W. Free radical scavenging activity correlated with phenolic.

Awika JM, Rooney LW, Waniska RD. Anthocyanins from black sorghum and their antioxidant properties. Food Chemistry. 2005;90(1-2):293-301. https://doi.org/10.1016/j.foodchem.2004.03.058

Awika JM, Yang L, Browning JD, Faraj A. Comparative antioxidant, antiproliferative and phase II enzyme inducing potential of sorghum (Sorghum bicolor) varieties. LWT-Food Science and Technology. 2009;42(6):1041-46. https://doi.org/10.1016/j.lwt.2009.02.003

Tian Y, Zou B, Li C-m, Yang J, Xu S-f, Hagerman AE. High molecular weight persimmon tannin is a potent antioxidant both ex vivo and in vivo. Food Research International. 2012;45(1):26-30. https://doi.org/10.1016/j.foodres.2011.10.005

Cox S, Noronha L, Herald T, Bean S, Lee S-H, Perumal R et al. Evaluation of ethanol- based extraction conditions of sorghum bran bioactive compounds with downstream anti- proliferative properties in human cancer cells. Heliyon. 2019;5(5). https://doi.org/10.1016/j.heliyon.2019.e01589

Hargrove JL, Greenspan P, Hartle DK, Dowd C. Inhibition of aromatase and ?-amylase by flavonoids and proanthocyanidins from Sorghum bicolor bran extracts. Journal of Medicinal Food. 2011;14(7-8):799-807. https://doi.org/10.1089/jmf.2010.0143

Moraes ÉA, da Silva Marineli R, Lenquiste SA, Queiroz VAV, Camargo RL, Borck PC et al. Whole sorghum flour improves glucose tolerance, insulin resistance and preserved pancreatic islets function in obesity diet-induced rats. Journal of Functional Foods. 2018;45:530-40.

https://doi.org/10.1016/j.jff.2017.03.047

Chung I-M, Kim E-H, Yeo M-A, Kim S-J, Seo MC, Moon H-I. Antidiabetic effects of three Korean sorghum phenolic extracts in normal and streptozotocin-induced diabetic rats. Food Research International. 2011;44(1):127-32. https://doi.org/10.1016/j.foodres.2010.10.051

Kim J, Park Y. Anti-diabetic effect of sorghum extract on hepatic gluconeogenesis of streptozotocin-induced diabetic rats. Nutrition & Metabolism. 2012;9:1-7. https://doi.org/10.1186/1743-7075-9-106

Links MR, Taylor J, Kruger MC, Taylor JR. Sorghum condensed tannins encapsulated in kafirin microparticles as a nutraceutical for inhibition of amylases during digestion to attenuate hyperglycaemia. Journal of Functional Foods. 2015;12:55-63. https://doi.org/10.1016/j.jff.2014.11.003

Rhodes D, Gadgil P, Perumal R, Tesso T, Herald TJ. Natural variation and genome?wide association study of antioxidants in a diverse sorghum collection. Cereal Chemistry. 2017;94(2):190-98. https://doi.org/10.1094/CCHEM-03-16-0075-R

Welderufael S, Abay F, Ayana A, Amede T. Genetic diversity, correlation and genotype× yield× trait (GYT) analysis of grain yield and nutritional quality traits in sorghum (Sorghum bicolor [L.] Moench) genotypes in Tigray, Northern Ethiopia. Discover Agriculture. 2024;2(1):4. https://doi.org/10.1007/s44279-024-00016-3

Kumar AA, Reddy BV, Ramaiah B, Sahrawat KL, Pfeiffer WH. Gene effects and heterosis for grain iron and zinc concentration in sorghum [Sorghum bicolor (L.) Moench]. Field Crops Research. 2013;146:86-95. https://doi.org/10.1016/j.fcr.2013.03.001

Gaddameedi A, Phuke RM, Polavarapu KKB, Gorthy S, Subhasini V, Jagannathan J et al. Heterosis and combining ability for grain Fe and Zn concentration and agronomic traits in sorghum [Sorghum bicolor (L.) Moench]. Journal of King Saud University-Science. 2020;32(7):2989-94. https://doi.org/10.1016/j.jksus.2020.08.003

Flint-Garcia SA. Genetics and consequences of crop domestication. Journal of Agricultural and Food Chemistry. 2013;61(35):8267-76. https://doi.org/10.1021/jf305511d

Rhodes DH, Hoffmann Jr L, Rooney WL, Ramu P, Morris GP, Kresovich S. Genome-wide association study of grain polyphenol concentrations in global sorghum [Sorghum bicolor (L.) Moench] germplasm. Journal of Agricultural and Food Chemistry. 2014;62(45):10916-27. https://doi.org/10.1021/jf503651t

Rooney WL, Portillo O, Hayes C. Registration of ATx3363 and BTx3363 black sorghum germplasms. Journal of Plant Registrations. 2013;7(3):342-46. https://doi.org/10.3198/jpr2013.01.0006crg

Mace E, Innes D, Hunt C, Wang X, Tao Y, Baxter J et al. The sorghum QTL Atlas: A powerful tool for trait dissection, comparative genomics and crop improvement. Theoretical and Applied Genetics. 2019;132:751-66. https://doi.org/10.1007/s00122-018-3212-5

Sukumaran S, Xiang W, Bean SR, Pedersen JF, Kresovich S, Tuinstra MR et al. Association mapping for grain quality in a diverse sorghum collection. The Plant Genome. 2012;5(3). https://doi.org/10.3835/plantgenome2012.07.0016

Kimani W, Zhang L-M, Wu X-Y, Hao H-Q, Jing H-C. Genome-wide association study reveals that different pathways contribute to grain quality variation in sorghum (Sorghum bicolor). BMC Genomics. 2020;21:1-19. https://doi.org/10.1186/s12864-020-6538-8

Rooney LW, Waniska RD. Sorghum food and industrial utilization. Sorghum: Origin, History, Technology and Production. 2000;689-729. https://doi.org/10.1007/1-4020-0613-6_8400

Bouargalne Y, Ben Mrid R, Bouchmaa N, Zouaoui Z, Benmrid B, Kchikich A et al. Genetic diversity for agromorphological traits, phytochemical profile and antioxidant activity in Moroccan sorghum ecotypes. Scientific Reports. 2022;12(1):5895. https://doi.org/10.1038/s41598-022-09810-9

Rao S, Santhakumar AB, Chinkwo KA, Wu G, Johnson SK, Blanchard CL. Characterization of phenolic compounds and antioxidant activity in sorghum grains. Journal of Cereal Science. 2018;84:103-11. https://doi.org/10.1016/j.jcs.2018.07.013

Ba K, Tine E, Destain J, Cisse N, Thonart P. Comparative study of phenolic compounds, antioxidant power of various Senegalese sorghum cultivars and amylolytic enzymes of their malt. Biotechnologie, Agronomie, Société et Environnement. 2010;14(1):131-39.

Lee S, Choi Y-M, Shin M-J, Yoon H, Wang X, Lee Y et al. Exploring the potentials of sorghum genotypes: A comprehensive study on nutritional qualities, functional metabolites and antioxidant capacities. Frontiers in Nutrition. 2023;10. https://doi.org/10.3389%2Ffnut.2023.1238729

Lee S, Choi Y-M, Shin M-J, Yoon H, Wang X, Lee Y et al. Agro-morphological and biochemical characterization of Korean sorghum (Sorghum bicolor (L.) Moench) landraces. Agronomy. 2022;12(11):2898. https://doi.org/10.3390/agronomy12112898

Desta KT, Choi Y-M, Shin M-J, Yoon H, Wang X, Lee Y et al. Comprehensive evaluation of nutritional components, bioactive metabolites and antioxidant activities in diverse sorghum (Sorghum bicolor (L.) Moench) landraces. Food Research International. 2023;173:113390.

https://doi.org/10.1016/j.foodres.2023.113390

Nguni D, Geleta M, Hofvander P, Fatih M, Bryngelsson T. Comparative genetic diversity and nutritional quality variation among some important Southern African sorghum accessions [Sorghum bicolor (L.) Moench]. Australian Journal of Crop Science. 2012;6(1):56-64.

Moraes ÉA, da Silva Marineli R, Lenquiste SA, Steel CJ, de Menezes CB, Queiroz VAV et al. Sorghum flour fractions: Correlations among polysaccharides, phenolic compounds, antioxidant activity and glycemic index. Food chemistry. 2015;180:116-23. https://doi.org/10.1016/j.foodchem.2015.02.023

Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE et al. Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain non-structural carbohydrates. Crop Science. 2008;48(6):2165-79. https://doi.org/10.2135/cropsci2008.01.0016

Patil NY, Pugh NA, Klein RR, Martinez HS, Martinez RS, Rodriguez-Herrera R et al. Heritability and quantitative trait loci of composition and structural characteristics in sorghum grain. Journal of Crop Improvement. 2019;33(1):1-24.

https://doi.org/10.1080/15427528.2018.1536006

Chen B-R, WANG C-y, Ping W, ZHU Z-x, Ning X, SHI G-s et al. Genome-wide association study for starch content and constitution in sorghum (Sorghum bicolor (L.) Moench). Journal of Integrative Agriculture. 2019;18(11):2446-56. https://doi.org/10.1016/S2095-3119(19)62631-6

Rhodes DH, Hoffmann L, Rooney WL, Herald TJ, Bean S, Boyles R et al. Genetic architecture of kernel composition in global sorghum germplasm. BMC Genomics. 2017;18(1):1-8. https://doi.org/10.1186/s12864-016-3403-x

Li J, Tang W, Zhang Y-W, Chen K-N, Wang C, Liu Y et al. Genome-wide association studies for five forage quality-related traits in sorghum (Sorghum bicolor L.). Frontiers in Plant Science. 2018;9:1146. https://doi.org/10.3389/fpls.2018.01146

Cruet?Burgos C, Cox S, Ioerger BP, Perumal R, Hu Z, Herald TJ et al. Advancing provitamin A biofortification in sorghum: Genome?wide association studies of grain carotenoids in global germplasm. The Plant Genome. 2020;13(1):e20013. https://doi.org/10.1002/tpg2.20013

Habyarimana E, Dall’Agata M, De Franceschi P, Baloch FS. Genome-wide association mapping of total antioxidant capacity, phenols, tannins and flavonoids in a panel of Sorghum bicolor and S. bicolor× S. halepense populations using multi-locus models. PLoS One. 2019;14(12):e0225979. https://doi.org/10.1371/journal.pone.0225979

Marla SR, Burow G, Chopra R, Hayes C, Olatoye MO, Felderhoff T et al. Genetic architecture of chilling tolerance in sorghum dissected with a nested association mapping population. G3: Genes, Genomes, Genetics. 2019;9(12):4045-57. https://doi.org/10.1534/g3.119.400353

Published

16-06-2024

Versions

How to Cite

1.
Dhar A, Meena Kumari B, Kavithamani D, Boopathi NM, Meenakshi P. Understanding the advances in Sorghum grain quality improvement: An overview. Plant Sci. Today [Internet]. 2024 Jun. 16 [cited 2024 Dec. 24];. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/3527

Issue

Section

Review Articles

Similar Articles

You may also start an advanced similarity search for this article.