Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 11 No. 4 (2024)

Exploring pioneering efforts in tea breeding and genetic transformation and designing driving innovative strategies for better brewing

DOI
https://doi.org/10.14719/pst.3543
Submitted
14 March 2024
Published
25-12-2024 — Updated on 20-01-2025
Versions

Abstract

Tea is the second most consumed drink in the world, following water. It is known for its aromatic allure, sense of refreshment, medicinal values and also nutritional properties, including antioxidants, anti-ageing, anti-inflammatory and anti-microbial nature. Tea breeding plays a pivotal role in the development of superior lines which can thrive in wider environmental conditions. However, conventional methods met with limited success, biotechnological interventions have shown their potential to evolve superior cultivars within a short span of time. Plant tissue culture technology allows for in vitro propagation that enables mass multiplication of uniform, elite clones with desirable traits besides serving as basic requirement for all the transgenic endeavours. Advances in omics technologies, coupled with advanced bioinformatics pipelines have led to the elucidation of key genes driving molecular events that confer increased tea yield and quality.  Genetic transformation mediated by Agrobacterium, particle bombardment, and CRISPR-Cas9 facilitate the production of transgenic tea with desirable traits. Inter-disciplinary collaboration among breeders, geneticists, agronomists and biotechnologists holds great promise in addressing the demands of consumers and overcoming the existing and emerging challenges posed by varied biotic and abiotic stress.

References

  1. Mondal TK, Bhattacharya A, Laxmikumaran M, Singh Ahuja P. Recent advances of tea (Camellia sinensis) biotechnology. Plant Cell Tissue Organ Cult. 2004;76(3):195-254. https://doi.org/10.1023/B:TICU.0000009254.87882.71
  2. Muoki CR, Maritim TK, Oluoch WA, Kamunya SM, Bore JK. Combating climate change in the Kenyan tea industry. Front Plant Sci. 2020;11:339. https://doi.org/10.3389/fpls.2020.00339
  3. Kumar V, Kaur J, Panghal A, Kaur S, Handa V. Caffeine: a boon or bane. Nutr Food Sci. 2018;48(1):61-75. https://doi.org/10.1108/NFS-05-2017-0100
  4. Nur S, Aisyah AN, Fadri A, Sapra A, Sami FJ. Comparative study of catechin levels from green tea, oolong tea and black tea product with various treatments. GSC Biol Pharm Sci. 2021;14(1):1-10. https://doi.org/10.30574/gscbps.2021.14.1.0416
  5. Maslov OY, Komisarenko MA, Kolisnyk YS, Kostina TA. Determination of catechins in green tea leaves by HPLC compared to spectrophotometry. J Org Pharm Chem. 2021;19(3(75)):28-33. https://doi.org/10.24959/ophcj.21.238177
  6. Abdullah ATM, Sayka MI, Rahman MM, Sharif M, Khan TA, Jahan S, et al. Tea (Camellia sinensis) cultivated in three agro-ecological regions of Bangladesh: Unveiling the variability of methylxanthine, bioactive phenolic compound and antioxidant activity. Heliyon. 2024;10(7). https://doi.org/10.1016/j.heliyon.2024.e28760
  7. Li MY, Liu HY, Wu DT, Kenaan A, Geng F, Li HB, et al. L-theanine: a unique functional amino acid in tea (Camellia sinensis L.) with multiple health benefits and food applications. Front Nutr. 2022;9:853846. https://doi.org/10.3389/fnut.2022.853846
  8. Nawrot P, Jordan S, Eastwood J, Rotstein J, Hugenholtz A, Feeley M. Effects of caffeine on human health. Food Addit Contam. 2003;20(1):1-30. https://doi.org/10.1080/0265203021000007840
  9. Institute of Medicine (US) Committee on Military Nutrition Research. Caffeine for the sustainment of mental task performance: formulations for military operations. Washington (DC): National Academies Press (US); 2002. 10.17226/10219
  10. Pandey AK, Sinniah GD, Babu A, Tanti A. How the global tea industry copes with fungal diseases - challenges and opportunities. Plant Dis. 2021 Jul;105(7):1868-79. https://doi.org/10.1094/PDIS-09-20-1945-FE
  11. Kumarihami HP, Song KJ. Review on challenges and opportunities in global tea industry. J Korean Tea Soc. 2018;24(3):79-87. https://doi.org/10.29225/jkts.2018.24.3.79
  12. Jayasinghe SL, Kumar L. Potential impact of the current and future climate on the yield, quality and climate suitability for tea [Camellia sinensis (L.) O. Kuntze]: A systematic review. MDPI. 2021;11(4):619. https://doi.org/10.3390/agronomy11040619
  13. Bandara SN. Agronomy of irrigated tea in low elevation growing areas of Sri Lanka. PhD [Dissertation]. Adelaide: University of Adelaide; 2011.
  14. Drinnan JE. Fertiliser strategies for mechanical tea production. Australia: Rural Industries and Research and Development Corporation; 2008.
  15. Baruah PM, Begum A, Dutta AM. A study of the tea pest prevalence and plant protection measures adopted in some parts of Sonitpur district of Assam. Int J Phys Soc Sci. 2012;2(7):286-93.
  16. Kumar R, Kuldip, Ahuja PS, Sharma RK. Status and opportunities of molecular breeding approaches for genetic improvement of tea. In: Rajpal VR, Rao SR, Raina SN, editors. Molecular Breeding for Sustainable Crop Improvement: Springer International Publishing; 2016. 2:p. 101-25. https://doi.org/10.1007/978-3-319-27090-6_5
  17. Mondal TK. Breeding and biotechnology of tea and its wild species. New Delh (India): Springer; 2014. https://doi.org/10.1007/978-81-322-1704-6
  18. Boopathi NM. Genetic mapping and marker assisted selection: Basics, practice and benefits. Singapore: Springer; 2021 https://doi.org/10.1007/978-981-15-2949-8
  19. Jian’an H, Jiaxian L, Yihuan H, JUnwu L, Zhihua G, Zhonghua L. Genetic diversity of tea (Camellia sinensis (L.) O. Kuntze) cultivars revealed by AFLP Analysis Genetic diversity of tea. Acta Hortic Sin. 2006;33(2):317-22.
  20. Parmar R, Seth R, Sharma RK. Genome-wide identification and characterization of functionally relevant microsatellite markers from transcription factor genes of Tea (Camellia sinensis (L.) O. Kuntze). Sci Rep. 2022 Jan 7;12(1):201. https://doi.org/10.1038/s41598-021-03848-x
  21. Fan W, Du G, Zhang X, Wang S, Long F, Li C, et al. Effect of tea polyphenols as an antioxidant on pork for frying at different temperatures and times. Food Sci Nutr. 2024;12(3):2029-36. https://doi.org/10.1002/fsn3.3901
  22. Karunarathna KH, Mewan KM, Weerasena OV, Perera SA, Edirisinghe EN. A functional molecular marker for detecting blister blight disease resistance in tea (Camellia sinensis L.). Plant Cell Rep. 2021;40(2):351-59. https://doi.org/10.1007/s00299-020-02637-6
  23. Borchetia S, Handique G, Roy S, Wani SH. Genomics approaches for biotic and abiotic stress improvement in tea. In: Han WY, Li X, Ahammed GJ, editors. Stress Physiology of Tea in the Face of Climate Change. Singapore: Springer; 2019. p. 289-312. https://doi.org/10.1007/978-981-13-2140-5_13
  24. Nisha SN, Prabu G, Mandal AK. Biochemical and molecular studies on the resistance mechanisms in tea (Camellia sinensis (L.) O. Kuntze) against blister blight disease. Physiol Mol Biol Plants. 2018;24(5):867-80. https://doi.org/10.1007/s12298-018-0565-9
  25. Lei X, Li H, Li P, Zhang H, Han Z, Yang B, et al. Genome-wide association studies of biluochun tea plant populations in dongting mountain and comprehensive identification of candidate genes associated with core agronomic traits by four analysis models. Plants (Basel). 2023;12(21):3719. https://doi.org/10.3390/plants12213719
  26. Yamashita H, Uchida T, Tanaka Y, Katai H, Nagano AJ, Morita A, et al. Genomic predictions and genome-wide association studies based on RAD-seq of quality-related metabolites for the genomics-assisted breeding of tea plants. Sci Rep. 2020;10(1):17480. https://doi.org/10.1038/s41598-020-74623-7
  27. Gunasekare MT. Applications of molecular markers to the genetic improvement of Camellia sinensis L. (tea) – A review. J Hortic Sci Biotechnol. 2007;82(2):161-69. https://doi.org/10.1080/14620316.2007.11512214
  28. Mukhopadhyay M, Mondal TK, Chand PK. Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review. Plant Cell Rep. 2016;35(2):255-87. https://doi.org/10.1007/s00299-015-1884-8
  29. Agarwal B, Singh U, Banerjee M. In vitro clonal propagation of tea (Camellia sinensis (L.) O. Kuntze). Plant Cell Tiss Organ Cult. 1992;30(1):1-5. https://doi.org/10.1007/BF00039995
  30. Nakamura Y, Shibata M. Micropropagation of tea plant (Camellia sinensis (L.) O. Kuntze) through in vitro cuttings: Effects of various hormones on the growth of shoots from axillary buds. Chagyo Kenkyu Hokoku. Tea Res J. 1990 Dec 10;1990(72):9-17. https://doi.org/10.5979/cha.1990.72_9
  31. Mondal TK, Bhattacharya A, Sood A, Ahuja PS. Micropropagation of tea (Camellia sinensis (L.) O. Kuntze) using Thidiazuron. Plant Growth Regul. 1998;26:57-61. https://doi.org/10.1023/A:1006019206264
  32. Rajakumar R, Ayyappan P. Micropropagation of Camellia sinensis (L.) O. Kuntze. J Plant Crops. 1992;20:252-52.
  33. Sandal I, Bhattacharya A, Singh Ahuja P. An efficient liquid culture system for tea shoot proliferation. Plant Cell Tissue Organ Cult. 2001;65(1):75-80. https://doi.org/10.1023/A:1010662306067
  34. Banerjee MA, Agarwal BE. In vitro rooting of tea (Camellia sinensis (L.) O. Kuntze). Indian J Exp Biol. 1990;28(10):936-39.
  35. Frisch CH, Camper ND. Effect of synthetic auxins on callus induction from tea stem tissue. Plant Cell Tiss Organ Cult. 1987;8(3):207-13. https://doi.org/10.1007/BF00040947
  36. Akula A, Akula C. Somatic embryogenesis in tea (Camellia sinensis (L.) O. Kuntze). In: Jain SM, Gupta PK, Newton RJ, editors. Somatic Embryogenesis in Woody Plants: Dordrecht: Springer Netherlands; 1999. 5: p. 239-57. https://doi.org/10.1007/978-94-011-4774-3_15
  37. Kato M. Somatic embryogenesis from immature leaves of in vitro grown tea shoots. Plant Cell Rep. 1996;15(12):920-23. https://doi.org/10.1007/BF00231588
  38. Nakamura Y. In vitro propagation techniques of tea plants. Jpn Agric Res Q. 1991;25(3):185-94. https://doi.org/10.5979/cha.1991.74_31
  39. Ponsamuel J, Samson NP, Ganeshan PS, Sathyaprakash V, Abraham GC. Somatic embryogenesis and plant regeneration from the immature cotyledonary tissues of cultivated tea (Camellia sinensis (L). O. Kuntze). Plant Cell Rep. 1996;16(3):210-14. https://doi.org/10.1007/s002990050208
  40. Sarathchandra TM, Upali PD, Wijewardene RG. Studies on the tissue culture of tea (Camellia sinensis (L.) O. Kuntze). 4. Somatic embryogenesis in stem and leaf callus cultures. Sri Lankan J Tea Sci. 1988;57(2):50-54.
  41. Tahardi JS, Raisawati T, Riyadi I, Dood WA. Direct somatic embryogenesis and plant regeneration in tea by temporary liquid immersion. Menara Perkeb. 2000;68(1):1-9. https://doi.org/10.22302/iribb.jur.mp.v68i1.133
  42. Yurteri E, Can MS, Seyis F, Kuplemez H. In vitro regeneration of tea (Camellia sinensis (L). O. Kuntze) by somatic embryogenesis from immature cotyledon tissues. Turk J Agric Food Sci Technol. 2021;9:2587-90. https://doi.org/10.24925/turjaf.v9isp.2587-2590.4940
  43. Nakamura Y. Isolation of protoplasts from tea plant. Chagyo Kenkyu Hokuku (Tea Res J). 1983;(58):36-37. https://doi.org/10.5979/cha.1983.58_36
  44. Kuboi T, Suda M, Terao R, Konishi S. Efficient preparation of protoplasts from tea leaves. Chagyo Kenkyu Hokoku (Tea Res J). 1991;(74):15-23. https://doi.org/10.5979/cha.1991.74_15
  45. Chen Z, Liao H. Obtaining plantlet through anther culture of tea plants. Zhongguo chaye. 1982;4:6-7.
  46. Tosca A, Pandolfi R, Vasconi S. Organogenesis in Camellia x Williamsii: cytokinin requirement and susceptibility to antibiotics. Plant Cell Rep. 1996;15(7):541-44. https://doi.org/10.1007/s002990050070
  47. Kato M, Kato M, Watanabe M, Kato A. Agrobacterium tumefaciens-mediated transformation tea embryogenic callus. 1996.
  48. Matsumoto S, Fukui M. Agrobacterium tumefaciens- mediated gene transfer to tea plant (Camellia sinensis) Cells. Jpn Agric Res Q. 1998;32:287-91.
  49. Matsumoto S, Fukui M. Effect of acetosyringone application on Agrobacterium-mediated gene transfer in tea plant (Camellia sinensis). Bull Natl Res Inst Veg Ornamental Plants Tea. 1999;(14):9-15.
  50. Mondal TK, Bhattacharya A, Sood A, Ahuja PS. An efficient protocol for somatic embryogenesis and its use in developing transgenic tea (Camellia sinensis (L.) O. Kuntze) for field transfer. In: Altman A, Ziv M, Izhar S, editors. Proceedings of the IXth International Congress of the International Association of Plant Tissue Culture and Biotechnology Jerusalem, Israel, Dordrecht: Springer Netherlands; 1998. p 181-84. https://doi.org/10.1007/978-94-011-4661-6_42
  51. Luo YingYing LY, Liang YueRong LY. Studies on the construction of Bt gene expression vector and its transformation in tea plant. J Tea Sci. 2001;20(2):141-47.
  52. Mondal T, Bhattacharya A, Ahuja P, Chand P. Transgenic tea (Camellia sinensis (L.) O. Kuntze cv. Kangra Jat) plants obtained by Agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep. 2001;20(8):712-20. https://doi.org/10.1007/s002990100382
  53. Zhao Dong ZD, Liu ZuSheng LZ, Lu JianLiang LJ, Qian LiSheng QL, Tu YouYing TY, Xi Biao XB. Study on Agrobacterium tumefaciens - mediated transformation of tea plant. J Tea Sci. 2001;21(2):108-11.
  54. Wu S, Liang Y, Luo Y, Lu J. The construction of Bt gene expression vector and its transformation in tea ’plant (Camellia sinensis L.). Proceedings of the 2001 International Conference on O-Cha (tea) Cultivation and Science II; 2001.
  55. Aoshima Y. Investigation of gene delivery condition in tea callus by Agrobacterium-mediated transformation using high level expressing reporter gene. Bull Shizuoka Tea Exp Stn. 2001;23:29-36.
  56. Wu Shan WS, Liang YueRong LY, Lu JianLiang LJ, Kim HyeSuk KH, Wu Ying WY. Optimization of Agrobacterium-mediated and particle bombardment-mediated transformation systems in tea plant (Camellia sinensis). J Tea Sci. 2003;23(1):6-10. 10.13305/j.cnki.jts.2003.01.002
  57. Kumar N, Pandey S, Bhattacharya A, Ahuja PS. Do leaf surface characteristics affect Agrobacterium infection in tea (Camellia sinensis (L.) O Kuntze)? J Biosci. 2004;29(3):309-17. https://doi.org/10.1007/BF02702613
  58. Lopez SJ, Kumar RR, Pius PK, Muraleedharan N. Agrobacterium tumefaciens-mediated genetic transformation in tea (Camellia sinensis [L.] O. Kuntze). Plant Mol Biol Rep. 2004;22(2):201-02. https://doi.org/10.1007/BF02772730
  59. Jeyaramraja PR, Meenakshi SN. Agrobacterium tumefaciens-mediated transformation of embryogenic tissues of tea (Camellia sinensis (L.) O. Kuntze). Plant Mol Biol Rep. 2005;23(3):299-300. https://doi.org/10.1007/BF02772761
  60. Wu Shan WS, Liang YueRong LY, Lu JianLiang LJ, Li HaoYan LH. Combination of particle bombardment-mediated and Agrobacterium-mediated transformation methods in tea plant. J Tea Sci. 2005;25(4):255-64. 10.13305/j.cnki.jts.2005.04.004
  61. Sandal I, Saini U, Lacroix B, Bhattacharya A, Ahuja PS, Citovsky V. Agrobacterium-mediated genetic transformation of tea leaf explants: effects of counteracting bactericidity of leaf polyphenols without loss of bacterial virulence. Plant Cell Rep. 2007;26(2):169-76. https://doi.org/10.1007/s00299-006-0211-9
  62. Mohanpuria P, Kumar V, Ahuja PS, Yadav SK. Agrobacterium-mediated silencing of caffeine synthesis through root transformation in Camellia sinensis L. Mol Biotechnol. 2011;48(3):235-43. https://doi.org/10.1007/s12033-010-9364-4
  63. Kumar N, Gulati A, Bhattacharya A. L-glutamine and L-glutamic acid facilitate successful Agrobacterium infection of recalcitrant tea cultivars. Appl Biochem Biotechnol. 2013;170(7):1649-64. https://doi.org/10.1007/s12010-013-0286-z
  64. Singh HR, Bhattacharyya N, Agarwala N, Bhagawati P, Deka M, Das S. Exogenous gene transfer in Assam tea (Camellia assamica (Masters)) by Agrobacterium-mediated transformation using somatic embryo. Eur J Exp Biol. 2014;4(3):166-75.
  65. Song DP, Feng L, Rana MM, Gao MJ, Wei S. Effects of catechins on Agrobacterium-mediated genetic transformation of Camellia sinensis. Plant Cell Tissue Organ Cult. 2014;119:27-37. https://doi.org/10.1007/s11240-014-0511-7
  66. Singh HR, Deka M, Das S. Enhanced resistance to blister blight in transgenic tea (Camellia sinensis [L.] O. Kuntze) by overexpression of class I chitinase gene from potato (Solanum tuberosum). Funct Integr Genomics. 2015;15(4):461-80. https://doi.org/10.1007/s10142-015-0436-1
  67. Qianru LV, Changsong CH, Yijuan XU, Shunkai HU, Le WA, Kang SU, et al. Optimization of Agrobacterium tumefaciens-mediated transformation systems in tea plant (Camellia sinensis). Hortic Plant J. 2017;3(3):105-09. https://doi.org/10.1016/j.hpj.2017.03.001
  68. Singh HR, Pranita H, Agarwala N, Bhattacharyya N, Bhagawati P, Gohain B, et al. Transgenic tea over-expressing Solanum tuberosum endo-1,3-beta-d-glucanase gene conferred resistance against blister blight disease. Plant Mol Biol Rep. 2018;36:107-22. https://doi.org/10.1007/s11105-017-1063-x
  69. Singh HR, Hazarika P, Deka M, Das S. Study of Agrobacterium-mediated co-transformation of tea for blister blight disease resistance. J Plant Biochem Biotechnol. 2020;29(1):24-35. https://doi.org/10.1007/s13562-019-00508-0
  70. Jin K, Tian N, da Silva Ferreira JF, Sandhu D, Xiao L, Gu M, et al. Comparative transcriptome analysis of Agrobacterium tumefaciens reveals the molecular basis for the recalcitrant genetic transformation of Camellia sinensis L. Biomolecules. 2022;12(5):688. https://doi.org/10.3390/biom12050688
  71. Li J, Lin CR, Huang Y, Deng XM, Wang YQ, Sun WJ. Effects of tea polyphenols on Agrobacterium- mediated plant genetic transformation system. J Tea Sci. 2022;42(4):477-90. 10.13305/j.cnki.jts.2022.04.003
  72. Zhou CZ, Chang XJ, Zhu C, Cheng CZ, Chen YK, Lai ZX, et al. Establishment of an efficient in planta transformation method for Camellia sinensis. Biotechnology Bull. 2022;38(2):263. 10.13560/j.cnki.biotech.bull.1985.2021-0635
  73. Bhattacharya A, Saini U, Ahuja PS. Transgenic tea. Int J Tea Sci. 2006;5(1, 2):39-52. 10.20425/ijts.v5i1and2.4786
  74. Toivonen L. Utilization of hairy root cultures for production of secondary metabolites. Biotechnology Prog. 1993;9(1):12-20. https://doi.org/10.1021/bp00019a002
  75. Zehra M, Banerjee S, Mathur AK, Kukreja AK. Induction of hairy roots in tea (Camellia sinensis L.) using Agrobacterium rhizogenes. Curr Sci. 1996;70(1):84-86.
  76. Konwar BK, Das SC, Bordoloi BJ, Dutta RK. Hairy root development in tea through Agrobacterium rhizogenes-mediated genetic transformation. Two and a Bud. 1998;45(2):19-20. 10.5555/20001609562
  77. Zhang GuangHui ZG, Liang YueRong LY, Lu JianLiang LJ. Agrobacterium rhizogenes-mediated high frequency hairy root induction and genetic transformation in tea plant. J Tea Sci. 2006;26(1):1-10. 10.13305/j.cnki.jts.2006.01.001
  78. Zhang GH, Liang YR, Jin J, Lu JL, Borthakur D, Dong JJ, et al. Induction of hairy roots by Agrobacterium rhizogenes in relation to L-theanine production in Camellia sinensis. J Hortic Sci Biotechnol. 2007;82(4):636-40. https://doi.org/10.1080/14620316.2007.11512284
  79. John KM, Joshi SD, Mandal AK, Kumar SR, Kumar RR. Agrobacterium rhizogenes-mediated hairy root production in tea leaves (Camellia sinensis (L.) O. Kuntze). Indian J Biotechnol. 2009;8(4):430-34.
  80. Li L, Liu Z, Mao Q, Shi Z. Agrobacterium rhizogene mediated tea tree rooting high- frequency induction and genetic transformation. China patent CN101781661A. 2010.
  81. Rana MM, Han ZX, Song DP, Liu GF, Li DX, Wan XC, et al. Effect of medium supplements on Agrobacterium rhizogenes mediated hairy root induction from the callus tissues of Camellia sinensis var. sinensis. Int J Mol Sci. 2016;17(7):1132. https://doi.org/10.3390/ijms17071132
  82. Alagarsamy K, Shamala LF, Wei S. Protocol: high-efficiency in-planta Agrobacterium-mediated transgenic hairy root induction of Camellia sinensis var. sinensis. Plant Methods. 2018;14:1-8. https://doi.org/10.1186/s13007-018-0285-8
  83. Shamala LF, Wei S. An improved in vitro protocol for Agrobacterium rhizogenes-mediated transformation of recalcitrant plants for root biology studies: A case study of tea plants (Camellia sinensis var. sinensis). In: Srivastava V, Mehrotra S, Mishra S, editors. Hairy Root Cultures Based Applications: Methods and Protocols. Singapore: Springer; 2020. p. 175-89. https://doi.org/10.1007/978-981-15-4055-4_12
  84. Sandal I, Koul R, Saini U, Mehta M, Dhiman N, Kumar N, et al. Development of transgenic tea plants from leaf explants by the biolistic gun method and their evaluation. Plant Cell Tiss Organ Cult. 2015;123(2):245-55. https://doi.org/10.1007/s11240-015-0828-x
  85. Kato M, Uematu K, Niwa Y. Transformation of green fluorescent protein in tea plant. In: Proceeding of the International Conference on O-Cha (tea) Cultivation and Science; 2004.
  86. Saini U, Kaur D, Bhattacharya A, Kumar S, Singh RD, Ahuja PS. Optimising parameters for biolistic gun-mediated genetic transformation of tea (Camellia sinensis (L.) O. Kuntze). J Hortic Sci Biotechnol. 2012;87(6):605-12. https://doi.org/10.1080/14620316.2012.11512919
  87. Furukawa K, Koizumi M, Hayashi W, Mochizuki H, Yamaki K. Pretreatment and posttreatment in the biolistic transformation of tea plant (Camellia sinensis) somatic embryos. Plant Biotechnol. 2020;37(2):195-203. https://doi.org/10.5511/plantbiotechnology.20.0404a
  88. Unno K, Nakamura Y. The ability of green tea with lowered caffeine to reduce stress and improve sleep. In: Caffeinated and Cocoa Based Beverages. Elsevier; 2019. p. 209-34. https://doi.org/10.1016/B978-0-12-815864-7.00006-4
  89. Mohanpuria P, Kumar V, Ahuja PS, Yadav SK. Producing low-caffeine tea through post-transcriptional silencing of caffeine synthase mRNA. Plant Mol Biol. 2011;76:523-34. https://doi.org/10.1007/s11103-011-9785-x
  90. Malyukova LS, Koninskaya NG, Orlov YL, Samarina LS. Effects of exogenous calcium on the drought response of the tea plant (Camellia sinensis (L.) Kuntze). PeerJ. 2022;10:e13997. https://doi.org/10.7717/peerj.13997
  91. Ashihara H, Crozier A. Biosynthesis and metabolism of caffeine and related purine alkaloids in plants. In: Callow JA, editor. Advances in Botanical Research. Academic Press; 1999.30. p. 117-205. https://doi.org/10.1016/S0065-2296(08)60228-1
  92. Deng WW, Li M, Gu CC, Li DX, Ma LL, Jin Y, et al. Low caffeine content in novel grafted tea with Camellia sinensis as scions and Camellia oleifera as stocks. Nat Prod Commun. 2015;10(5):1934578X1501000522. https://doi.org/10.1177/1934578X1501000522
  93. Kato M. Biochemistry and molecular biology in caffeine biosynthesis- molecular cloning and gene expression of caffeine synthase. In: Proceedings of the 2001 International Conference on O-Cha (tea) Cultivation and Science II; 2001. pp. 21-24.
  94. Li CF, Zhu Y, Yu Y, Zhao QY, Wang SJ, Wang XC, et al. Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis). BMC Genomics. 2015;1-21. https://doi.org/10.1186/s12864-015-1773-0
  95. Li YH, Gu W, Ye S. Expression and location of caffeine synthase in tea plants. Russ J Plant Physiol. 2007;54(5):698-701. https://doi.org/10.1134/S1021443707050196
  96. Rishikesh M, Boopathi NM, Raveendran M, Meenakshisundaram P, Varanavasiappan S, Premnath A, et al. Metabolomic profiling of in vitro and in situ grown Nilgiris tea reveals unique signatures for breeding decaffeinated varieties. Nat Prod Res. 2024;1-8. https://doi.org/10.1080/14786419.2024.2412840
  97. Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. https://doi.org/10.1126/science.1258096
  98. Tang Yuwei TY, Liu LiPing LL, Wang Ruoxian WR, Chen YuHong CY, ZhongHua LZ, ShuoQian LS. Development of a CRISPR/Cas9 constructed for genome editing of caffeine synthase in Camellia sinensis. J Tea Sci. 2016;36(4):414-26. 10.13305/j.cnki.jts.2016.04.010
  99. Ma W, Kang X, Liu P, Zhang Y, Lin X, Li B, et al. The analysis of transcription factor CsHB1 effects on caffeine accumulation in tea callus through CRISPR/Cas9 mediated gene editing. Process Biochem. 2021;101:304-11. https://doi.org/10.1016/j.procbio.2021.01.001
  100. Pan Y, Fang G, Wang Z, Cao Y, Liu Y, Li G, et al. Chromosome-level genome reference and genome editing of the tea geometrid. Mol Ecol Resour. 2021;21(6):2034-49. https://doi.org/10.1111/1755-0998.13385

Downloads

Download data is not yet available.