Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Implications, challenges, and prospects of industrial hemp as a sustainable natural fiber in Pakistan: An overview

DOI
https://doi.org/10.14719/pst.3656
Submitted
1 April 2024
Published
12-07-2025 — Updated on 21-07-2025
Versions

Abstract

Industrial hemp (Cannabis sativa L.) is a sustainable source of fiber due to its fast growth rate and adaptability to diverse climates, and low demand for pesticides and water. Additionally, hemp fibers are versatile and used for a variety of products, including clothing, textiles, paper, and building materials. As a bast fibers with a high cellulose content, industrial hemp is both sustainable and resource-efficient sources. Considerations of environmental protection, as well as their intrinsic qualities like low density, high specific strength, and stiffness, increased researchers' interest in hemp fibers. This review examines the current status and significance of hemp fiber in the textile sector, comparing it with cotton and synthetic fibers while discussing its processing and use. Although, industrial hemp shows great promise, further research is needed to improve its quality and expand its applications. Hemp fiber processing is a significant issue in the textile sector, and thus this review provides comprehensive information on the complete value chain of hemp fiber, its challenges, and future implications.

References

  1. 1. Ataullah MA, Sajid A, Khan MR. Quality-related issues and their effects on returns of Pakistan textile industry. J Quality Technol Manag. 2014;10:69-91.
  2. 2. Rivero RM, Mittle R, Blumwald E, Zandalinas SI. Developing climate‐resilient crops: improving plant tolerance to stress combination. Plant J. 2022;109:373-389. https://doi.org/10.1111/tpj.15483.
  3. 3. Zandalinas SI, Fritschi FB, Mittler R. Global warming, climate change, and environmental pollution: recipe for a multifactorial stress combination disaster. Trend Plant Sci. 2021;26: 588-599. https://doi.org/10.1016/j.tplants.2021.02.011.
  4. 4. Abbas S. Climate change and major crop production: evidence from Pakistan. Environ Sci Pollut Res. 2022;29:5406-5414. https://doi.org/10.1007/s11356-021-16041-4.
  5. 5. Ali MA, Farooq J, Batool A, Zahoor A, Azeem F, Mahmood A, Jabran K. Cotton production in Pakistan. Cotton Prod. 2019;249-276. https://doi.org/10.1002/9781119385523.ch12.
  6. 6. Bashir MA, Batool M, Khan H, Shahid Nisar M, Farooq H, Hashem M, Alamri SA, El-Zohri M, Alajmi RA, Tahir M, Jawad R. Effect of temperature & humidity on population dynamics of insects’ pest complex of cotton crop. PLOS One. 2022;17. https://doi.org/10.1371/journal.pone.0263260
  7. 7. Schumacher AGD, Pequito S, Pazour J. Industrial hemp fiber: A sustainable and economical alternative to cotton. J Cleaner Prod. 2020;268. https://doi.org/10.1016/j.jclepro.2020.122180
  8. 8. Zhao X, Wei X, Guo Y, Qiu C, Long S, Wang Y, Qiu H. Industrial hemp-An old but versatile bast fiber crop. J Natural Fiber. 2022;19:6269-6282. https://doi.org/10.1080/15440478.2021.1907834
  9. 9. Gill AR, Loveys BR, Cavagnaro TR, Burton RA. The potential of industrial hemp (Cannabis sativa L.) as an emerging drought resistant fiber crop. Plant Soil. 2023;493:1-10. https://doi.org/10.1007/s11104-023-06219-9
  10. 10. Khan MA, Qureshi RA, Gillani SA, Ghufran MA, Batool A, Sultana KN. Invasive species of federal capital area Islamabad, Pakistan. Pak J Bot. 2010;42:1529-1534.
  11. 11. Rehman M, Fahad S, Du G, Cheng X, Yang Y, Tang K, Liu L, Liu FH, Deng G. Evaluation of industrial hemp (Cannabis sativa L.) as an industrial crop: a review. Environ Sci Pollut Res. 2021;28:52832-52843. https://doi.org/10.1007/s11356-021-16264-5
  12. 12. Khalid A, Haseeb A, Mushtaq G, Kamal MA. Medicinal and economic benefits of legalization of marijuana in Pakistan. EXCLI J. 2022;21:1304. https://doi.org/10.17179/Fexcli2022-5477
  13. 13. Raihan A, Bijoy TR. A review of the industrial use and global sustainability of Cannabis sativa. Global Sustain Res. 2023;2(4):1-29. https://doi.org/10.56556/gssr.v2i4.597
  14. 14. Adesina I, Bhowmik A, Sharma H, Shahbazi A. A review on the current state of knowledge of growing conditions, agronomic soil health practices and utilities of hemp in the United States. Agronomy. 2020;10(4):129. https://doi.org/10.3390/agriculture10040129
  15. 15. Parvez AM, Lewis JD, Afzal MT. Potential of industrial hemp (Cannabis sativa L.) for bioenergy production in Canada: Status, challenges and outlook. Renew Sustain Energy Rev. 2021;141:110784. https://doi.org/10.1016/j.rser.2021.110784
  16. 16. Liu H, Zhang B, Huang J, Tian K, Shen C. Prospects of blockchain technology in China’s industrial hemp industry. J Nat Fiber. 2023;20:2160406. https://doi.org/10.1080/15440478.2022.2160406
  17. 17. Amaducci S, Scordia D, Liu FH, Zhang Q, Guo H, Testa G, Cosentino SL. Key cultivation techniques for hemp in Europe and China. Indust Crop Prod. 2015;68:2-16. https://doi.org/10.1016/j.indcrop.2014.06.041
  18. 18. Cheng X, Deng G, Su Y, Liu JJ, Yang Y, Du GH, Chen ZY, Liu FH. Protein mechanisms in response to NaCl-stress of salt-tolerant and salt-sensitive industrial hemp based on iTRAQ technology. Indust Crop Prod. 2016;83:444-52. https://doi.org/10.1016/j.indcrop.2015.12.086
  19. 19. Hu H, Liu H, Du G, Fei Y, Deng G, Yang Y, Feihu L. Fiber and seed type of hemp (Cannabis sativa L.) responded differently to salt-alkali stress in seedling growth and physiological indices. Indust Crop Prod. 2019;129:624-30. https://doi.org/10.1016/j.indcrop.2018.12.028
  20. 20. de C Lambert CF, Barbosa Filho EA, Coronado KV, Malabadi RB. Exploring the potentialities of industrial hemp for sustainable rural development. World J Biol Pharm Health Sci. 2024;18:305-20. https://doi.org/10.30574/wjbphs.2024.18.1.0205
  21. 21. Malabadi RB, Kolkar KP, Chalannavar RK. Industrial Cannabis sativa (Hemp fiber): Hempcrete-a plant based and eco-friendly building construction material. Int J Res Innov Appl Sci. 2023;8:67-78. https://doi.org/10.51584/IJRIAS
  22. 22. Hussain A, Abidi SH, Syed Q, Saeed A. Current knowledge on ethnobotany, phytochemistry and biological activities of Cannabis (hemp) from Pakistan with emphasis on its legalization and regulation: Current knowledge on Cannabis from Pakistan. Ethnobot Res Appl. 2022;23:1-33. https://orcid.org/0000-0002-8611-322X
  23. 23. Mehar MA. Magnitude of investment and global value chain: a case study of textile and clothing industry of Pakistan. J Textile Inst. 2022113:191-8. https://doi.org/10.1080/00405000.2020.1868138
  24. 24. Memon JA, Aziz A, Qayyum M. The rise and fall of Pakistan’s textile industry: an analytical view. Eur J Business Manag. 2020;12:136-42. https://doi.org/10.7176/EJBM/12-12-12
  25. 25. Shuli F, Jarwar AH, Wang X, Wang L, Ma Q. Overview of the cotton in Pakistan and its future prospects. Pak J Agric Res. 2018;31(4):396. https://doi.org/10.17582/journal.pjar/2018/31.4.396.407
  26. 26. Shahzad K, Mubeen I, Zhang M, Zhang X, Wu J, Xing C. Progress and perspective on cotton breeding in Pakistan. J Cotton Res. 2022;5(1):29. https://doi.org/10.1186/s42397-022-00137-4
  27. 27. Irshad MS, Xin Q. Determinants of exports competitiveness: An empirical analysis through revealed comparative advantage of external sector of Pakistan. Asian Econ Finan Rev. 2017;6:623-33. https://doi.org/10.18488/journal.aefr.2017.76.623.633
  28. 28. Atkar A, Pabba M, Sekhar SC, Sridhar S. Current limitations and challenges in the global textile sector. In: Mondal IH, editor. Fundamentals of Natural Fibres and Textiles. Woodhead Publishing, Cambridge, United Kingdom; 2021. p. 741-764.
  29. 29. Damalas CA. Understanding benefits and risks of pesticide use. Sci Res Essay. 2009;4: 945-949.
  30. 30. Khan FZ, Manzoor SA, Akmal M, Imran MU, Taqi M, Manzoor SA, Lukac M, Gul HT, Joseph SV. Modeling pesticide use intention in Pakistani farmers using expanded versions of the theory of planned behavior. Human Ecol Risk Assess. 2021;27(3):687-707. https://doi.org/10.1080/10807039.2020.1750345
  31. 31. Saki Z. An Investigation of US Textile and Apparel (TAP) Industry Competitiveness (thesis). North Carolina State University, Raleigh, North Carolina, United States. 2020.
  32. 32. Cororaton CB, Orden D. Pakistan's cotton and textile economy: Intersectoral linkages and effects on rural and urban poverty. Int Food Policy Res Inst. 2008; 158:107. https://doi.org/10.2499/9780896291676
  33. 33. Syed SA. Cotton market still looking for direction. Business Recorder. 2006;18.
  34. 34. Fadara TG, Wong KY. A decision support system for sustainable textile product assessment. Text Res J. 2023;93:1971-89. https://doi.org/10.1177/00405175221135167
  35. 35. Franco MA. Circular economy at the micro level: A dynamic view of incumbents’ struggles and challenges in the textile industry. J Clean Prod. 2017;168:833-45. https://doi.org/10.1016/j.jclepro.2017.09.056
  36. 36. Niinimäki K, Peters G, Dahlbo H, Perry P, Rissanen T, Gwilt A. The environmental price of fast fashion. Nat Rev Earth Environ. 2020;1:189-200. https://doi.org/10.1038/s43017-020-0039-9
  37. 37. Kostic M, Pejic B, Skundric P. Quality of chemically modified hemp fibers. Bioresource Technol. 2008;99:94-99. https://doi.org/10.1016/j.biortech.2006.11.050
  38. 38. Drastig K, Flemming I, Gusovius HJ, Herppich WB. Study of water productivity of industrial hemp under hot and dry conditions in Brandenburg (Germany) in the year 2018. Water. 2020;12: 2982. https://doi.org/10.3390/w12112982
  39. 39. Gill AR, Loveys BR, Cowley JM, Hall T, Cavagnaro TR, Burton RA. Physiological and morphological responses of industrial hemp (Cannabis sativa L.) to water deficit. Indust Crop Prod. 2022;187:115331. https://doi.org/10.1016/j.indcrop.2022.115331
  40. 40. Hu H, Liu H, Liu F. Seed germination of hemp (Cannabis sativa L.) cultivars responds differently to the stress of salt type and concentration. Indust Crop Prod. 2018;123:254-61. https://doi.org/10.1016/j.indcrop.2018.06.089
  41. 41. Visković J, Zheljazkov VD, Sikora V, Noller J, Latković D, Ocamb CM, Koren A. Industrial hemp (Cannabis sativa L.) agronomy and utilization: A review. Agronomy. 2023;13:931. https://doi.org/10.3390/agronomy13030931
  42. 42. Qin C, Wang F, Wen D, Qin W. Effect of different temperatures on the germination of fire hemp seeds. Med Plant Sci. 2014;5:70.
  43. 43. Sandin G, Peters GM. Environmental impact of textile reuse and recycling-A review. J Clean Prod. 2018;184:353-65. https://doi.org/10.1016/j.jclepro.2018.02.266
  44. 44. Michael C. European hemp industry: cultivation, processing and applications for fibres, shivs, seeds and flowers. Eur Indust Hemp Assoc. 2017;1994:1-9.
  45. 45. Wu Y, Trejo HX, Chen G, Li S. Phytoremediation of contaminants of emerging concern from soil with industrial hemp (Cannabis sativa L.): a review. Nat Rev Earth Environ. 2021;1:1-31. https://doi.org/10.1007/s10668-021-01289-0
  46. 46. Golia EE, Bethanis J, Ntinopoulos N, Kaffe GG, Komnou AA, Vasilou C. Investigating the potential of heavy metal accumulation from hemp. The use of industrial hemp (Cannabis sativa L.) for phytoremediation of heavily and moderated polluted soils. Sustain Chem Pharm. 2023;31:100961. https://doi.org/10.1016/j.scp.2022.100961
  47. 47. Tang K, Struik PC, Yin X, Calzolari D, Musio S, Thouminot C, Bjelková M, Stramkale V, Magagnini G, Amaducci S. A comprehensive study of planting density and nitrogen fertilization effect on dual-purpose hemp (Cannabis sativa L.) cultivation. Indust Crop Prod. 2017;107:427-38. https://doi.org/10.1016/j.indcrop.2017.06.033
  48. 48. Manian AP, Cordin M, Pham T. Extraction of cellulose fibers from flax and hemp: a review. Cellulose. 2021;13:8275-94. https://doi.org/10.1007/s10570-021-04051-x
  49. 49. Jankauskienė Z, Butkutė B, Gruzdevienė E, Cesevičienė J, Fernando AL. Chemical composition and physical properties of dew-and water-retted hemp fibers. Indust Crop Prod. 2015;75:206-11. https://doi.org/10.1016/j.indcrop.2015.06.044
  50. 50. Ahmed AF, Islam MZ, Mahmud MS, Sarker ME, Islam MR. Hemp as a potential raw material toward a sustainable world: A review. Heliyon. 2022;8. https://doi.org/10.1016/j.heliyon.2022.e08753
  51. 51. Horne MRL. Bast fibres: hemp cultivation and production. In: Kozłowski RM, Mackiewicz-Talarczyk M, editors. Handbook of Natural Fibres. 2nd ed. Woodhead Publishing, Cambridge, Cambridgeshire, United Kingdom; 2020. p. 163-196.
  52. 52. Liu Y, Xu RC, Zhang YP. Development of fabric knitted by hemp/cotton yarn. Adv Mat Res. 2011;332:667-671. https://doi.org/10.4028/www.scientific.net/AMR.332-334.667
  53. 53. Stankovic SB, Bizjak M. Effect of yarn folding on comfort properties of hemp knitted fabrics. Cloth Text Res J. 2014;32:02-14. https://doi.org/10.1177/0887302X14537114
  54. 54. Kim HA, Kim SJ. Hand and wear comfort of knitted fabrics made of hemp/tencel yarns applicable to garment. Fiber Polymer. 2018;19:1539-47. https://doi.org/10.1007/s12221-018-8275-z
  55. 55. Brzyski P, Fic S. The application of raw materials obtained from the cultivation of industrial hemp in various industries. Econ Reg Stud. 2017;10:100-13. https://doi.org/10.2478/ers-2017-0008
  56. 56. Singh A, Gahlot M, Negi M. A sustainable and potential alternative to commercial household upholstery: hemp–cotton union fabric. Ecol Environ Cons. 2016;22:373-378.
  57. 57. Appendino G, Gibbons S, Giana A, Pagani A, Grassi G, Stavri M, Smith E, Rahman MM. Antibacterial cannabinoids from Cannabis sativa: a structure-activity study. J Nat Prod. 2008;71:1427-30. https://doi.org/10.1021/np8002673
  58. 58. Zeng XP, Liu JF. Alkali pre-treatment dyeing technology for hemp/cotton/polyester knitted fabric. Adv Mat Res. 2014;915:871-4. https://www.scientific.net/AMR.915-916.871
  59. 59. Guo Y, Sun Z, Guo X, Zhou Y, Jiang L, Chen S, Ma J. Study on enzyme washing process of hemp organic cotton blended fabric. Int J Cloth Sci Technol. 2019;3:58-64. https://doi.org/10.1108/IJCST-08-2017-0117
  60. 60. Townsend T. World natural fibre production and employment. In: Kozłowski RM, Mackiewicz-Talarczyk M, editors. Handbook of Natural Fibres. 2nd ed. Woodhead Publishing, Cambridge, United Kingdom; 2020. p. 15-36.
  61. 61. Punja ZK. Emerging diseases of Cannabis sativa and sustainable management. Pest Manag Sci. 2021;77:3857-70. https://doi.org/10.1002/ps.6307
  62. 62. Burton RA, Andres M, Cole M, Cowley JM, Augustin MA. Industrial hemp seed: From the field to value-added food ingredients. J Cannabis Res. 2022;4(1):45. https://doi.org/10.1186/s42238-022-00156-7
  63. 63. Cherrett N, Barrett J, Clemett A, Chadwick M, Chadwick MJ. Ecological Footprint and Water Analysis of Cotton, Hemp and Polyester; Stockholm Environmental Institute: Stockholm, Sweden; 2005.
  64. 64. Wise K, Baziotopoulos E, Zhang C, Leaming M, Shen LH, Selby-Pham J. Comparative study of water requirements and water footprints of fibre crops hemp (Cannabis sativa) and cotton (Gossypium hirsutum L.). J Agromet. 2023;25(3):392-396. https://doi.org/10.54386/jam.v25i3.2260
  65. 65. Keller A, Leupin M, Mediavilla V, Wintermantel E. Influence of the growth stage of industrial hemp on chemical and physical properties of the fibres. Indust Crop Prod. 2001;13:35-48. https://doi.org/10.1016/S0926-6690(00)00051-0
  66. 66. Salentijn EM, Zhang Q, Amaducci S, Yang M, Trindade LM. New developments in fiber hemp (Cannabis sativa L.) breeding. Industrial Crops and Products. 2015;68:32-41. https://doi.org/10.1016/j.indcrop.2014.08.011
  67. 67. Guedes G, Carvalhas R, Gomes G. Hemp fiber: the textile material as a fashion value. In: International Fashion and Design Congress, Cham: Springer Nature Switzerland. 2023; p. 483-494. https://doi.org/10.1007/978-3-031-43937-7_43
  68. 68. Mahesha CR, Suprabha R, Harne MS, Galme SG, Thorat SG, Nagabhooshanam N, Seikh AH, Siddique MH, Markos M. Nanotitanium oxide particles and jute-hemp fiber hybrid composites: evaluate the mechanical, water absorptions, and morphological behaviors. J Nanomat. 2022;2022:1-7. https://doi.org/10.1155/2022/3057293
  69. 69. Nurazzi NM, Asyraf MR, Fatimah Athiyah S, Shazleen SS, Rafiqah SA, Harussani MM, Kamarudin SH, Razman MR, Rahmah M, Zainudin ES, Ilyas RA. A review on mechanical performance of hybrid natural fiber polymer composites for structural applications. Polymer. 2021;13:2170. https://doi.org/10.3390/polym13132170
  70. 70. Khan BA, Warner P, Wang H. Antibacterial properties of hemp and other natural fibre plants: a review. Bio Resources. 2014;9:3642-59. https://doi.org/10.15376/biores.9.2.Khan
  71. 71. Zhang H, Zhong Z, Feng L. Advances in the performance and application of hemp fiber. Int J Simul Syst Sci Technol. 2016;17:1-8.
  72. 72. Nath MK. Benefits of cultivating industrial hemp (Cannabis sativa ssp. sativa)-A versatile plant for a sustainable future. Chem Proceed. 2022;10:14. https://doi.org/10.3390/IOCAG2022-12359
  73. 73. Bambach MR. Direct comparison of the structural compression characteristics of natural and synthetic fiber-epoxy composites: Flax, jute, hemp, glass and carbon fibers. Fibers. 2020;8:62. https://doi.org/10.3390/fib8100062
  74. 74. Schluttenhofer C, Yuan L. Challenges towards revitalizing hemp: A multifaceted crop. Trend Plant Sci. 2017;22:917-29. https://doi.org/10.1016/j.tplants.2017.08.004
  75. 75. Shahzad A. Hemp fiber and its composites-a review. J Comp Mat. 2012;46:973-86. https://doi.org/10.1177/0021998311413623
  76. 76. Hepworth DG, Hobson RN, Bruce DM, Farrent JW. The use of unretted hemp fibre in composite manufacture. Composites Part A: Appl Sci Manuf. 2000;31:1279-83. https://doi.org/10.1016/S1359-835X(00)00098-1
  77. 77. Rahman MA, Rahman MM, Nemoto K, Sarwar AKM Golam.. Comparison of proximate composition and thermal properties of Hemp and Flax fibres. Bangladesh J Sci Ind Res. 2023;58:55-70. https://doi.org/10.3329/bjsir.v58i1.64236
  78. 78. Pickering KL, Beckermann GW, Alam SN, Foreman NJ. Optimising industrial hemp fibre for composites. Composites Part A: Appl Sci Manuf. 2007;38:461-8. https://doi.org/10.1016/j.compositesa.2006.02.020
  79. 79. Fortenbery TR, Bennett M. Opportunities for commercial hemp production. Appl Econ Persp Policy. 2004;26:97-117. https://doi.org/10.1111/j.1467-9353.2003.00164.x
  80. 80. Glivar T, Eržen J, Kreft S, Zagožen M, Čerenak A, Čeh B, Benković ET. Cannabinoid content in industrial hemp (Cannabis sativa L.) varieties grown in Slovenia. Indust Crop Product. 2020;145:112082. https://doi.org/10.1016/j.indcrop.2019.112082
  81. 81. Struik PC, Amaducci S, Bullard MJ, Stutterheim NC, Venturi G, Cromack HT. Agronomy of fibre hemp (Cannabis sativa L.) in Europe. Indust Crop Prod. 2000;11:107-18. https://doi.org/10.1016/S0926-6690(99)00048-5
  82. 82. Wylie SE, Ristvey AG, Fiorellino NM. Fertility management for industrial hemp production: Current knowledge and future research needs. GCB Bioener. 2021;13:517-24. https://doi.org/10.1111/gcbb.12779
  83. 83. Broseus J, Anglada F, Esseiva P. The differentiation of fibre-and drug type Cannabis seedlings by gas chromatography/mass spectrometry and chemometric tools. Foren Sci Int. 2010;200:87-92. https://doi.org/10.1016/j.forsciint.2010.03.034
  84. 84. Su K, Maghirang E, Tan JW, Yoon JY, Armstrong P, Kachroo P, Hildebrand D. NIR spectroscopy for rapid measurement of moisture and cannabinoid contents of industrial hemp (Cannabis sativa). Indust Crop Prod. 2022;184:115007. https://doi.org/10.1016/j.indcrop.2022.115007
  85. 85. Rehman MS, Rashid N, Saif A, Mahmood T, Han JI. Potential of bioenergy production from industrial hemp (Cannabis sativa): Pakistan perspective. Renew Sustain Energy Rev. 2013;18:154-64. https://doi.org/10.1016/j.rser.2012.10.01
  86. 86. Government of Pakistan (GOP). Pakistan Economic Survey 2015-16. Finance and Economic Affairs Division, Ministry of Finance, Govt. of Pakistan, Islamabad, Pakistan; 2016.
  87. 87. GGovernment of Pakistan (GOP). Pakistan Economic Survey 2019-20. Finance and Economic Affairs Division, Ministry of Finance, Govt. of Pakistan, Islamabad, Pakistan; 2020.
  88. 88. GGovernment of Pakistan (GOP). Pakistan Economic Survey 2022-23. Finance and Economic Affairs Division, Ministry of Finance, Govt. of Pakistan, Islamabad, Pakistan; 2023.

Downloads

Download data is not yet available.