This is an outdated version published on 03-02-2025. Read the
most recent version.
Research Articles
Early Access
Anticariogenic potential of selected medicinal plants from Dayak Benuaq tribe, Indonesia
Agriculture Faculty, Universitas Borneo Tarakan, Tarakan 75112, Indonesia; United Graduate School of Agriculture Sciences, Gifu University, Gifu 501 1121, Japan
Forestry Faculty, Universitas Mulawarman, Samarinda 75133, Indonesia
Forestry Faculty, Universitas Mulawarman, Samarinda 75133, Indonesia
Agriculture Faculty, Universitas Borneo Tarakan, Tarakan 75112, Indonesia
Applied Biological Sciences, Gifu University, Gifu 501 1121, Japan
Applied Biological Sciences, Gifu University, Gifu 501 1121, Japan
Forestry Faculty, Universitas Mulawarman, Samarinda 75133, Indonesia
Abstract
Several selected medicinal plants from the indigenous Dayak Benuaq tribe of Indonesia were analyzed for their potential as anticariogenic. The plant parts of leaves, stems, roots, and tubers were extracted using methanol. Streptococcus sobrinus and Streptococcus mutans are used to determine antibacterial and anticariogenic activities. Toxicity activity was evaluated using Artemia salina with the brine shrimp lethality assay (BSLT) method. This study also calculated the content of total tannins, total flavonoids and total phenols. The results of this study indicate that four selected medicinal plants, namely Cratoxylum sumatranum (Jack) Blume., Areca catechu L., Syzygium aromaticum (L.) Merr. & L.M. Perry., and Lepisanthes amoena (Hassk.) Leenh., have the potential to inhibit the growth of S. sobrinus bacteria with inhibition values of 89.75%, 80.17%, 71.37%, and 74.69% in concentrations of 100 ppm. The highest content of total tannins, total phenols and total flavonoids was in Uncaria gambir (W. Hunter) Roxb, with respective values of 205.94 g/g, 478.52 mg GAE/g, and 0.725 g CE/g. Anticariogenic activity showed that U. gambir, Helminthostachys. zeylanica, S. aromaticum, L. amoena, and Eurycoma longifolia (Jack) had the potential to inhibit acid production in bacteria with a pH of 6.380, 6.563, 6.140, 5.987 and 5.933, respectively. Besides that, it can also inhibit the attachment of bacterial cells with values of 31%, 50%, 43%, 53%, and 40%. The results of this study indicate the potential of several selected medicinal plants from the Dayak Benuaq tribe in Temula village as natural antibacterial, anticancer, and anticariogenic agents.
References
- Baqiyah U, Kamelia E, Miko H, Jurusan M, Gigi K, Kemenkes P. Analysis of tooth loss due to caries with dental and oral health behavior in the elderly. Incisor (Indonesian J Care’s Oral Heal. 2022;6(1):155-63. https://doi.org/10.2147/CIA.S54630
- Achmad MH, Ramadhany S, Mudjari S, Adam AM. Determinant factors of dental caries in Indonesian children age 8-12 years. Pesqui Bras Odontopediatria Clin Integr. 2018;18(1):4037. https://doi.org/10.4034/PBOCI.2018.181.64
- Peres MA, Macpherson LMD, Weyant RJ, Daly B, Venturelli R, Mathur MR, et al. Oral diseases: a global public health challenge. Lancet. 2019;394(10194):249-60. https://doi.org/10.1016/S0140-6736(19)31146-8
- Larsen T, Apmis NF. Dental biofilm infections–an update. Wiley Online Libr. 2017 Apr;125(4):376-84. https://doi.org/10.1111/apm.12688
- Abranches J, Zeng L, Kajfasz JK, Palmer SR, Chakraborty B, Wen ZT, et al. Biology of oral Streptococci. Microbiol Spectr. 2018 Sep;6(5). https://doi.org/10.1128/microbiolspec.GPP3-0042-2018
- Jahangir GZ, Ashraf DS, Nasir IA, Sadiq M, Shahzad S, Naz F, et al. The myth of oral hygiene using synthetic mouthwash products. Springerplus. 2016;5(1):1-13. https://doi.org/10.1186/s40064-016-3158-5
- Eid MA, Selim HA, Al-Shammery AR. The relationship between chewing sticks (Miswak) and periodontal health. Part I. Review of the literature and profile of the subjects. Quintessence Int (Berl). 1990;21(11). https://doi.org/10.3390/healthcare12212150
- Jayanti AT, Nasution A, Suyanto H, Bramantoro T. The content of active materials in miswak (Salvadora persica): an analytical study using fourier-transform infrared spectroscopy and ultraviolet–visible spectrophotometer. J Int Oral Heal. 2021;13(3):258. https://doi.org/10.4103/jioh.jioh_298_20
- Sudarmin S, Khusniati M, Nur F, Seyla A, Khoirur R. Science analysis of Nginang culture in context of science technology engineering and mathematics (stem) integration of ethnoscience. In: International Conference on Science and Education and Technology 2018 (ISET 2018). Atlantis Press; 2018. p. 413-18. https://doi.org/10.2991/iset-18.2018.84
- Qamariah N, Mulia DS, Fakhrizal D. Indigenous knowledge of medicinal plants by dayak community in mandomai village, central kalimantan, indonesia. Pharmacogn J. 2020;12(2). https://doi.org/10.5530/pj.2020.12.60
- Egra S, Kuspradini H, Kusuma IW, Batubara I, Imra, Nurjannah, et al. Potential of prospective medicinal plants of Rhizophoraceae from North Kalimantan, Indonesia. Biodiversitas. 2023;24(3):1346-55. https://doi.org/10.13057/biodiv/d240303
- Egra S, Kurnia A, Murtilaksono A, Kuspradini H. Uji potensi ekstrak daun tanaman ketepeng (Cassia alata L.) dalam menghambat pertumbuhan bakteri Ralstonia solanacearum dan Streptococcus sobrinus. Hut Trop. 2015;3(1):1183. https://doi.org/10.32522/ujht.v3i1.2059
- JB Harborne. Phytochemical method: The guide to modern way to analyze the plant, the 2nd issue. 1987. https://doi.org/10.1007/978-94-009-5570-7
- Charlwood BV, Jeffrey B Harborne, Herbert Baxter (Editors). Phytochemical dictionary. Taylor and Francis, London, UK; 1993. £150.00, ix + 791 pp. ISBN 0-85066-736-4. https://doi.org/10.4324/9780203483756
- Kuspradini H, Mitsunaga T, Ohashi H. Antimicrobial activity against Streptococcus sobrinus and glucosyltransferase inhibitory activity of taxifolin and some flavanonol rhamnosides from kempas (Koompassia malaccensis) extracts. Journal of Wood Science. 2009; Vol. 55. https://doi.org/10.1007/s10086-009-1026-4
- Vandenburg H, Clifford A, Bartle K, Carlson R, Newton I. A simple solvent selection method for accelerated solvent extraction of additives from polymers. Analyst. 1999;124(11):1707-10. https://doi.org/10.1039/a904631c
- Waterman PG. Roles for secondary metabolites in plants. In: Ciba Foundation Symposium 171?Secondary Metabolites: their Function and Evolution: Secondary Metabolites: Their Function and Evolution: Ciba Foundation Symposium 171. Wiley Online Library; 2007. p. 255-75. https://doi.org/10.1002/9780470514344.ch15
- Hamedi A, Bayat M, Asemani Y, Amirghofran Z. A review of potential anti-cancer properties of some selected medicinal plants grown in Iran. J Herb Med. 2022;33:100557. https://doi.org/10.1016/j.hermed.2022.100557
- Guo Z, Wei Y, Zhang Y, Xu Y, Zheng L, Zhu B, et al. Carrageenan oligosaccharides: A comprehensive review of preparation, isolation, purification, structure, biological activities and applications. Algal Res. 2022;61:102593. https://doi.org/10.1016/j.algal.2021.102593
- Bilal M, Iqbal HMN. Marine seaweed polysaccharides-based engineered cues for the modern biomedical sector. Mar Drugs. 2019;18(1):7. https://doi.org/10.3390/md18010007
- Majdiyah R, Soekamto NH, Firdaus F. Identification of bioactive compounds methanol extract of red algae Kappaphycus alvarezii and toxicity test on Artemia salina leach larva. In: AIP Conference Proceedings. AIP Publishing; 2023. https://doi.org/10.1063/5.0127036
- Abou Baker DH. An ethnopharmacological review on the therapeutical properties of flavonoids and their mechanisms of actions: A comprehensive review based on up to date knowledge. Toxicol Reports. 2022;9:445-69. https://doi.org/10.1016/j.toxrep.2022.03.011
- Peng W, Liu Y-J, Wu N, Sun T, He X-Y, Gao Y-X, et al. Areca catechu L.(Arecaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J Ethnopharmacol. 2015;164:340-56. https://doi.org/10.1016/j.jep.2015.02.010
- Christanto R, Andre A, Foustine S, Hartiadi LY. Combination of Piper betel leaves and Areca catechu nuts ethanolic extract effects on in vitro antimicrobial test against aerobic mouth microbiota. Indones J Life Sci. 2019;48-53. https://doi.org/10.54250/ijls.v1i2.24
- Haro-González JN, Castillo-Herrera GA, Martínez-Velázquez M, Espinosa-Andrews H. Clove essential oil (Syzygium aromaticum L. Myrtaceae): Extraction, chemical composition, food applications and essential bioactivity for human health. Molecules. 2021;26(21):6387. https://doi.org/10.3390/molecules26216387
- Scalbert A. Antimicrobial properties of tannins. Phytochemistry. 1991;30(12):3875-83. https://doi.org/10.1016/0031-9422(91)83426-L
- Park E-S, Moon W-S, Song M-J, Kim M-N, Chung K-H, Yoon J-S. Antimicrobial activity of phenol and benzoic acid derivatives. Int Biodeterior Biodegradation. 2001;47(4):209-14. https://doi.org/10.1016/S0964-8305(01)00058-0
- RACCACH M. The antimicrobial activity of phenolic antioxidants in foods: A review. J Food Saf. 1984;6(3):141-70. https://doi.org/10.1111/j.1745-4565.1984.tb00479.x
- Sharma K, Kumar V, Kaur J, Tanwar B, Goyal A, Sharma R, et al. Health effects, sources, utilization and safety of tannins: A critical review. Toxin Rev. 2021;40(4):432-44. https://doi.org/10.1080/15569543.2019.1662813
- Ismail AS, Rizal Y, Armenia A, Kasim A. Identification of bioactive compounds in gambier (Uncaria gambir) liquid by-product in West Sumatra, Indonesia. Biodiversitas J Biol Divers. 2021;22(3). https://doi.org/10.13057/biodiv/d220351
- Rugg-Gunn A. Dental caries: strategies to control this preventable disease. Acta Med Acad. 2013;42(2):117-30. https://doi.org/10.5644/ama2006-124.80
- Min B-M. Saliva BT - Oral biochemistry. In: Min B-M, editor. Singapore: Springer Nature Singapore; 2023. p. 99-124. https://doi.org/10.1007/978-981-99-3596-3
- Vaernewyck V, Arzi B, Sanders NN, Cox E, Devriendt B. Mucosal vaccination against periodontal disease: Current status and opportunities. Front Immunol. 2021 Dec;12. https://doi.org/10.3389/fimmu.2021.768397
- Rosan B, Lamont RJ. Dental plaque formation. Microbes Infect. 2000;2(13):1599-607. https://doi.org/10.1016/S1286-4579(00)01316-2
- Kaur D, Chandrul KK. Syzygium aromaticum L.(Clove): A vital herbal drug used in periodontal disease. Indian J Pharm Biol Res. 2017;5(02):45-51. https://doi.org/10.30750/ijpbr.5.2.9
- Sendamangalam V. Antibiofouling effect of polyphenols on Streptococcus biofilms. University of Toledo; 2010. . https://doi.org/10.1080/08927014.2010.535897
- Gupta A, Verma UP, Lal N, Ojha SK. Evolution and exploration of Azadirachta indica in dentistry: an update. Br J Med Med Res. 2017;21(8):1-15. https://doi.org/10.9734/BJMMR/2017/33538
- Abdul WM, Mohammed K, Mohammed FA, Razvi SS, Banaganapalli B, Shaik NA, et al. Salvadora persica L.: A medicinal plant with multifaceted role in maintaining oral hygiene. Plant Hum Heal Vol 3 Pharmacol Ther Uses. 2019;353-71. https://doi.org/10.1007/978-3-030-04408-4_17
- Valadas LAR, Oliveira Filho RD de, Rodrigues Neto EM, Bandeira MAM, Fonteles MM de F, Passos VF, et al. Camellia sinensis in dentistry: Technological prospection and scientific evidence. Evidence?Based Complement Altern Med. 2021;2021(1):9966738. https://doi.org/10.1155/2021/9966738
- Aftab S, Dhingra MS, Kumari M. Neem (Azadirachta indica) in oral hygiene-An update. Int J Med Pharm Res. 2023;4(1):40-43. https://doi.org/10.4103/0973-7847.156337
- Vyas T, Nagi R, Bhatia A, Bains SK. Therapeutic effects of green tea as an antioxidant on oral health-A review. J Fam Med Prim care. 2021;10(11):3998-4001. https://doi.org/10.4103/jfmpc.jfmpc_943_21
- Hunaydi ZFO, Shafiai NAA, Noor SNFM, Rahman NRA. Clinical effects, uses and applications of miswak (Salvadora persica) on oral health over the last three decades: A scoping review of literature. J Heal Transl Med. 2023;310-24. https://doi.org/10.22452/jummec.sp2023no1.33
Downloads
Download data is not yet available.