Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Nutrient nourishment through organic approach: a critical review on foliar nutrition

DOI
https://doi.org/10.14719/pst.3659
Submitted
2 April 2024
Published
17-10-2024
Versions

Abstract

Nutrients play a pivotal role in the growth, development and overall health of plants. However, the widespread use of inorganic fertilizers in modern agriculture has led to significant environmental and health concerns, including soil degradation, water contamination and the disruption of beneficial soil microbiota. These issues underscore the urgency of exploring alternative, sustainable fertilization methods. This review critically examines the potential of organic fertilizers in addressing the nutritional deficiencies in soil that are exacerbated by the reliance on inorganic inputs. Our research hypothesizes that organic fertilizers not only replenish essential nutrients but also restore soil health by enhancing microbial diversity and activity. This hypothesis is significant and timely, given the growing global demand for sustainable agricultural practices. For the first time, our synthesis reveals overlooked interdisciplinary connections between soil microbiology, plant nutrition and sustainable agricultural economics, offering a novel perspective on the integration of organic fertilizers into mainstream agricultural practices. The breakthrough identified in this review lies in the comprehensive understanding of how organic fertilizers contribute to long-term soil fertility and crop productivity, beyond merely supplying nutrients. Moreover, this review identifies promising business opportunities in the development and commercialization of organic fertilizers tailored to specific crop and soil needs. Prospective directions for further research include the exploration of advanced organic formulations and the assessment of their economic viability on a large scale.

References

  1. Boone L, Roldán-Ruiz I, Muylle H, Dewulf J. Environmental sustainability of conventional and organic farming: Accounting for ecosystem services in life cycle assessment. Science of the Total Environment. 2019 Dec 10;695:133841. https://doi.org/10.1016/j.scitotenv.2019.133841
  2. FAO. The state of the world’s land and water resources for food and agriculture: Managing systems at risk. Rome: FAO; 2021.
  3. Chabert A, Sarthou J-P. Conservation agriculture as a promising trade-off between conventional and organic agriculture in bundling ecosystem services. Agric Ecosyst Environ. 2020;292. https://doi.org/10.1016/j.agee.2019.106815
  4. The World Bank. Fertilizer prices and energy prices. Washington, DC: The World Bank; 2022.
  5. Seufert V, Ramankutty N, Foley JA. Comparing the yields of organic and conventional agriculture. Nature. 2012;485(7397):229-32. DOI:10.1038/nature11069
  6. Badgley C, Moghtader J, Quintero E, et al. Organic agriculture and the global food supply. Renewable Agriculture and Food Systems. 2007;22(2):86-108. DOI:10.1017/S1742170507001640
  7. Mahanta D, Dhar S. Liquid organic manures a boon to organic farmers. Indian Farming. 2021;71(11). https://epubs.icar.org.in/index.php/IndFarm/article/view/118188
  8. Maroušek J, Strunecký O, Maroušková A. Insect rearing on biowaste represents a competitive advantage for fish farming. Reviews in Aquaculture. 2023 Jun;15(3):965-75. https://doi.org/10.1111/raq.12772
  9. Veeral DK, Kalaimathi P. Improving physiological and yield traits of groundnut (Arachis hypogaea L.) by using various sources of organic wastes and bio fertilizers, rhizobia. Indian Journal of Agricultural Research. 2021;55(4):473-77. https://arccjournals.com/journal/indian-journal-of-agricultural-research/A-581
  10. Herrera-Franco G, Merchán-Sanmartín B, Caicedo-Potosí J, Bitar JB, Berrezueta E, Carrión-Mero P. A systematic review of coastal zone integrated waste management for sustainability strategies. Environmental Research. 2023 Dec 25;117968. https://doi.org/10.1016/j.envres.2023.117968.
  11. Kumaresan G, Reetha D. Survival of Azospirillum brasilense in liquid formulation amended with different chemical additives. J phytol. 2011;3(10). http://journal-phytology.com/
  12. Singh KA, Singh B, Pavithran N, Fayaz A, Kaundal M. Panchagavya: A novel approach for the sustainable production of crops. Current Journal of Applied Science and Technology. 2023 Dec 30;43(1):42-48. http://dx.doi.org/10.9734/cjast/2024/v43i14342
  13. Rawal JS, Joshi GR, Gurung L, RC P. Application of panchagavya in agriculture: practices and benefits. I Tech Mag. 2024. http://doi.org/10.26480/itechmag.06.2024.44.49
  14. Naskar S, Kumari M. A review on effect of organic conditioner on physico-chemical and microbiological properties of soil. International Journal of Plant and Soil Science. 2024 Apr 3;36(5):570-77. https://doi.org/:10.9734/ijpss/2024/v36i54554
  15. Ranasinghe A, Jayasekera R, Kannangara S, Rathnayake S. Effect of nutrient enriched organic liquid fertilizers on growth of Albemonchus esculentus. J Environ Prot Sustain Dev. 2019;5(3):96-106. http://www.aiscience.org/journal/jepsd
  16. Ram AAM. Panchagavya is a bio–fertilizer in organic farming. Int J Adv Sci Res. 2017;2(5):54-57.
  17. Raghavendra KV, Gowthami R, Shashank R, Harish Kumar S. Panchagavya in organic crop production. Popular Kheti. 2014;2(2):233-36. www.popularkheti.info
  18. Choudhary GL, Sharma S, Choudhary S, Singh KP, Kaushik M, Bazaya B. Effect of panchagavya on quality, nutrient content and nutrient uptake of organic blackgram [Vigna mungo (L.) Hepper]. J Pharmacogn Phytochem. 2017;6(5):1572-75. https://doi.org/10.20546/ijcmas.2017.610.195
  19. Sugumaran M. Studies on analyzing the shelf life of panchagavya with different alternatives for ghee. International J Agriculture Sciences, 2018;ISSN.0975-3710. https://www.bioinfopublication.org/jouarchive.php?opt=&jouid=BPJ0000217
  20. Nekar MM. Panchagavya a valuable organic product: A review. International Journal of Advanced Biochemistry Research. 2024;8:381-86. https://doi.org/10.33545/26174693.2024.v8.i6Se.1313
  21. Kumar RS, Ganesh P, Tharmaraj K, Saranraj P. Growth and development of blackgram (Vigna mungo) under foliar application of panchagavya as organic source of nutrient. Curr Bot. 2011;2(3).
  22. Shubha S. Effect of seed treatment, panchagavya application, growth and yield of maize. Building Organic Bridges. 2014;2:631-34. https://doi.org/10.3220/REP_20_1_2014
  23. Sumathi V. Smart automation for production of panchagavya natural fertilizer. Agronomy. 2022;12(12):3044. https://www.mdpi.com/2073-4395/12/12/3044#
  24. Jain P, Sharma RC, Bhattacharyya P, Banik P. Effect of new organic supplement (panchgavya) on seed germination and soil quality. Environmental Monitoring and Assessment. 2014 Apr;186:1999-2011. http://dx.doi.org/10.1007/s10661-013-3513-8
  25. Surya K, Kaushal S. Performance of wheat (Triticum aestivum L.) under foliar application of dasagavya and fermented butter milk as organic source of nutrition. 2021;ISSN: 2455-541X.
  26. Kaur P. Effect of doses and time of application of Jeevamrit on nutrient uptake and soil health under natural farming system. IJCS. 2020;8(6):2537-41. https://doi.org/10.22271/chemi.2020.v8.i6aj.11154
  27. Devakumar N, Shubha S, Gowder S, Rao G. Microbial analytical studies of traditional organic preparations beejamrutha and jeevamrutha. Building Organic Bridges. 2014;2:639-42. https://doi.org/10.3220/REP_20_1_2014
  28. Gopal V, Gurusiddappa LH. Influence of jeevamrutha (fermented liquid manure) on growth and yield parameters of tomato (Solanum lycopersicum L.). World J Environ Biosci. 2022;11(3):1-7. https://doi.org/10.51847/WFD516GS8o
  29. Ramesh S, Sudhakar P, Elankavi S. Effect of organic foliar nutrition on growth and yield of maize (Zea mays L.). Int J Res Anal Rev. 2018;5(3):64-67.
  30. Nongtdu D, Krishnamoorthy R, Raman R, Dhanasekaran K. Effect of organic foliar nutrients on the growth and yield of rice (Oryza sativa). Crop Res. 2023;58(1and2):24-28. http://dx.doi.org/10.31830/2454-1761.2023.CR-839
  31. Chakraborty B, Sarkar I, Kulukunde S, Maitra S, Khan AM, Bandyopadhyay S, Sinha AK. Production of kunapajala and sanjibani, their nutritional contributions, microbial and pesticidal effect. Curr J Appl Sci Technol. 2019;37(2):1-11. http://dx.doi.org/10.9734/cjast/2019/v37i230278
  32. Revathi M, Vasuki V, Parameswari E, Janaki P, Krishnan R. Biocharacterization study on fermented liquid organic manure (kunapajala) using analytical technique: Gas chromatography– mass spectrometry (GC-MS). Int J Environ Clim Change. 2023;13(9):1001-10. http://dx.doi.org/10.9734/ijecc/2023/v13i92321
  33. Duraivadivel P, Kongkham B, Satya S, Hariprasad P. Untangling microbial diversity and functional properties of jeevamrutha. Journal of Cleaner Production. 2022 Oct 1; 369:133218. https://doi.org/10.1016/j.jclepro.2022.133218
  34. Biswas S, Das R. Kunapajala: A traditional organic formulation for improving agricultural productivity: A review. Agric Rev. 2023;0976-0741. https://doi.org/10.18805/ag.R-2570
  35. Ayangarya VS. INDSAFARI–An organic pesticide for tea. Asian Agri-History. 2005;9(4):317.
  36. Chakraborty B, Sarkar I. Quality analysis and characterization of panchagavya, jeevumrutha and sasyamrutha. Int J Curr Microbiol App Sci. 2019a;8(5):2018-26. https://doi.org/10.20546/ijcmas.2019.805.234
  37. Ali MN, Chakraborty S, Paramanik A. Enhancing the shelf life of kunapajala and shasyagavya and their effects on crop yield. J Bio-resour Stress Manag. 2012;3:289-94. https://ojs.pphouse.org/index.php/IJBSM/article/view/274
  38. Rajasree M, Vasuki V, Djanaguiraman M, Kathirvelan P. Effect of vegetarian kunapajala on pigments and soluble protein content in rice. Pharma Innov J. 2022;11(7):3005-08. https://doi.org/10.22271/tpi.2022.v11.i7al.14463
  39. Jani S, Prajapati P, Harisha C, Patel B. Kunapajala a liquid organic manure: preparation and its quality parameters. World J Pharm Pharm Sci. 2017;6(8):1989-2000. http://dx.doi.org/10.20959/wjpps20178-9865
  40. Naresh R, Dhaliwal S. Effects of kunapajala and panchagavya on nutrients release, crop productivity and soil health. Asian Agri-Hist. 2020;24(2).
  41. Kavya S, Ushakumari K. Kunapajala-a vista to organic and sustainable agriculture. Green Farming. 2019;10(4):496-99. doi:10.37322
  42. Kamla N, Limpinuntana V, Ruaysoongnern S, Bell RW. Role of fermented bio-extracts produced by farmers on growth, yield and nutrient contents in cowpea (Vigna unguiculata (L.) Walp.) in Northeast Thailand. Biol Agri Hort. 2008;25(4):353-68. http://dx.doi.org/10.1080/01448765.2008.9755061
  43. Johari NS, Abdul Mutalib A, Ismail Z, Ismail F, Ab Latif Z, Che Man SI, Tang JR. Effects of fish amino acid (Faa) application on growth and development of okra (Abelmoschus esculentus) at different sampling times. J Vocational Education Studies. 2020;3(2):35-42. http://dx.doi.org/10.12928/joves.v3i2.2932
  44. Weerasinghe WG, Karunarathna B, Madhuwanthi AK. Effect of fish amino acid on yield of radish (Raphanus sativus L.). Proceedings of the 6th National Symposium on Agriculture 2024. Theme of the Symposium "“Resilient Agriculture – A Tool for Reviving Sri Lankan Economy. http://www.digital.lib.esn.ac.lk//handle/1234/15241
  45. Balraj TH, Palani S, Arumugam G. Influence of gunapaselam, a liquid fermented fish waste on the growth characteristics of Solanum melongena. J Chem Pharm Res. 2014;6(12):58-66.
  46. Hepsibha BT, Geetha A. Effect of biofertilizer (fermented fish waste–gunapaselam) on structure and biochemical components of Vigna radiata leaves. Res J Chem Environ. 2021;25:7. http://dx.doi.org/10.25303/257rjce6421
  47. Ramesh T, Rathika S, Murugan A, Soniya R, Mohanta K, Prabharani B. Foliar spray of fish amino acid as liquid organic manure on the growth and yield of Amaranthus. Chem Sci Rev Lett. 2020;9(34):511-15. DOI: 10.37273/chesci.CS205101114
  48. Kumar MS, Kiran VU, Prathap BS. Organic farming: Significance of liquid organic manures on crop production: A review. Agriculture and Food, E Newsletter.
  49. Priyanka B, Anoob D, Gowsika M, Kavin A, Sri SK, Kumar RK, et al. Effect of fish amino acid and egg amino acid as foliar application to increase the growth and yield of green gram. Pharma Innov. 2019;8(6):684-86. https://doi.org/10.20546/ijcmas.2019.802.351
  50. Verma S, Singh A, Swayamprabha Pradhan S, Singh RK, Singh JP. Bio-efficacy of organic formulations on crop production-A review. Int J Curr Microbiol App Sci. 2017;6(5):648-65. http://dx.doi.org/10.20546/ijcmas.2017.605.075
  51. Lei H, Zhang J, Jia C, Feng J, Liang L, Cheng Q, et al. Foliar application of fish protein peptide improved the quality of deep-netted melon. Journal of Plant Nutrition. 2023Sep14;46(15):3683-96. https://doi.org/10.1080/01904167.2023.2210607
  52. Vinutha M, Somasundaram E, Sanbagavalli S, Sivakumar U, Ganesan K, Sunitha R. Effect of organic and liquid manures on productivity and profitability of blackgram. Agricultural Science Digest. 2023;43(4):466-71. DOI: 10.18805/ag.D-5702
  53. Ramesh T, Rathika S, Nandhini DU, Jagadeesan R. Effect of organic foliar nutrition on performance and production potential of mungbean [Vigna radiata L.]. Legum Rese Int J (Of). 2023; doi:10.18805/LR-5081
  54. Hepsibha BT, Geetha A. Physicochemical characterization of traditionally fermented liquid manure from fish waste (gunapaselam). NIScPR. 2019; http://dx.doi.org/10.13140/RG.2.2.28751.23206
  55. Neff JC, Chapin III FS, Vitousek PM. Breaks in the cycle: dissolved organic nitrogen in terrestrial ecosystems. Front Ecol Environ. 2003;1(4):205-11. https://doi.org/10.2134/jeq2008.0277
  56. Kim SI, Ko BG, Park HD, Lee JH, Kim CM, Kang HJ. Preparation and application of egg amino acid as a flair fertilizer. Hort Environ and Biotechnol. 2014;55(6):531-35. doi:10.1007/s13580-014-1040-5.
  57. Priyanka B, Ramesh T, Rathika S, Balasubramaniam P. Foliar application of fish amino acid and egg amino acid to improve the physiological parameters of rice. Int J Curr Microbiol App Sci. 2019;8(2):3005-09. https://doi.org/10.20546/ijcmas.2019.802.351
  58. Sajeena A, Sukumari P, John J, Nayar K. Fermented extract of Setaria barbata and egg-lemon juice for eco-friendly disease management and crop growth. Indian Phytopathol. 2016;69(4s):590-93. https://epubs.icar.org.in/index.php/IPPJ/article/view/71400
  59. Nath G, Singh K, Singh D. Chemical analysis of vermicomposts/vermiwash of different combinations of animal, agro and kitchen wastes. Aust J Basic Appl Sci. 2009;3(4):3671-76.
  60. Nath G, Singh K. Effect of vermiwash of different vermicomposts on the Kharif crops. J Cent Eur Agric. 2012;13(2):377-99. http://dx.doi.org/10.5513/JCEA01/13.2.1063
  61. Jaybhaye MM, Bhalerao SA. Influence of vermiwash on germination and growth parameters of seedlings of green gram (Vigna radiata L.) and black gram (Vigna mungo L.). Int J Curr Microbiol App Sci. 2015;4(9):635-43.
  62. Makkar C, Singh J, Parkash C. Vermicompost and vermiwash as supplement to improve seedling, plant growth and yield in Linum usitassimum L. for organic agriculture. Int J Recycl Org Waste Agric. 2017;6(3):203-18. http://dx.doi.org/10.1007/s40093-017-0168-4
  63. Ansari AA, Kumar S. Effect of vermiwash and vermicompost on soil parameters and productivity of okra (Abelmoschus esculentus) in Guyana. Curr Adv Agric Sci Int J. 2010;2(1):1-4. doi:10.5897/AJAR09.107
  64. Palanichamy V, Mitra B, Reddy N, Katiyar M, Rajkumari RB, Ramalingam C, Arangantham A. Utilizing food waste by vermicomposting, extracting vermiwash, castings and increasing relative growth of plants. International J Chem Anal Sci. 2011; 2(11):1241-46.
  65. Nayak H, Rai S, Mahto R, Rani P, Yadav S, Prasad SK, Singh RK. Vermiwash: A potential tool for sustainable agriculture. Journal of Pharmacognosy and Phytochemistry. 2019;8(5S):308-12.
  66. Jusoh MLC, Manaf LA, Latiff PA. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality. Iran J Environ Health Sci Eng. 2013;10:1-9. https://doi.org/10.1186/1735-2746-10-17
  67. Joseph A, Ademiluyi BO, Aluko PA, Alabeni TM. Effect of poultry manure treated and untreated with effective microorganisms on growth performance and insect pest infestation on Amaranthus hybridus. African J Plant Sci. 2016;(1):10-15. doi: 10.5897/AJPS2015.1364.
  68. Yamada K, Xu H-L. Properties and applications of an organic fertilizer inoculated with effective microorganisms. J Crop Prod. 2001;3(1):255-68. http://dx.doi.org/10.1300/J144v03n01_21
  69. Galindo A, Jeronimo C, Spaans E, Weil M. An introduction to modern agriculture. Tierra. Trop. 2007;3:91-96.
  70. Haripriya RJ, Kalaiselvi P, Parameswari E, Ramalakshmi A, Jayakanthan M. Assessing the pollution reduction potential of organically formulated effective microorganisms (EM) in sewage water. Ecol Environ Conserv. 2022;130-35.doi:10.53550/EEC. 2022.v28i03s.017
  71. Scheuerell S, Mahaffee W. Compost tea: principles and prospects for plant disease control. Compost Science and Utilization. 2002;10(4):313-38. https://doi.org/10.1080/1065657X.2002.10702095
  72. Ingham E. The compost tea brewing manual. Corvallis, OR, USA: Soil Foodweb Incorporated. 2005.
  73. Shaban H, Fazeli-Nasab B, Alahyari H, Alizadeh G, Shahpesandi S. An overview of the benefits of compost tea on plant and soil structure. Adv Bioresearch. 2015;6(1). http://dx.doi.org/10.15515/abr.0976%E2%80%904585.6.1.154158
  74. Eudoxie G, Martin M. Compost tea quality and fertility. Organic Fertilizers- History, Production and Applications. 2019; http://dx.doi.org/10.5772/intechopen.86877
  75. Pilla N, Tranchida-Lombardo V, Gabrielli P, Aguzzi A, Caputo M, Lucarini M, et al. Effect of compost tea in horticulture. Hort. 2023;9(9):984. https://doi.org/10.3390/horticulturae9090984
  76. Elsadek MA, Yousef EA. Smoke-water enhances germination and seedling growth of four horticultural crops. Plants. 2019; 8(4):104. https://doi.org/10.3390/plants8040104
  77. Noroozi Shahri F, Gholami B, Jalali Honarmand S, Mondani F, Saeedi M. Evaluating the effect of smoke-water and nitrogen fertilizer on wheat (Triticum aestivum L.) ecophysiological traits. Iranian J Field Crops Res. 2018;16(2):459-75. http://dx.doi.org/10.22067/gsc.v16i2.66520
  78. Kulkarni MG, Sparg SG, Light ME, Van Staden J. Stimulation of rice (Oryza sativa L.) seedling vigour by smoke-water and butenolide. Journal of Agronomy and Crop Science. 2006 Oct;192(5):395-98. https://doi.org/10.1111/j.1439-037X.2006.00213.x
  79. Chiwocha SD, Dixon KW, Flematti GR, Ghisalberti EL, Merritt DJ, Nelson DC, et al. Karrikins: a new family of plant growth regulators in smoke. Plant Science. 2009 Oct 1;177(4):252-56. https://doi.org/10.1016/j.plantsci.2009.06.007
  80. Fajinmi OO, Olarewaju OO, Van Staden J. Role of fire and fire cues in seed germination, seedling vigor and establishment of species from fire-prone vegetation and its potential in African underutilized leafy vegetables and edible weeds: a review. Biostimulants for Crops from Seed Germination to Plant Development. 2021;137-64. http://dx.doi.org/10.1016/B978-0-12-823048-0.00002-2
  81. Selvaraj A. Role of pink pigmented facultative methylotrophic (PPFM) bacteria on drought tolerance in plant. Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore–641 003, India. Agriculture and Environment. 2021.
  82. Sivakumar R, Nandhitha GK, Chandrasekaran P, Boominathan P, Senthilkumar M. Impact of pink pigmented facultative methylotroph and PGRs on water status, photosynthesis, proline and NR activity in tomato under drought. Int J Curr Microbiol App Sci. 2017;6(6):1640-51. https://doi.org/10.20546/ijcmas.2017.606.192
  83. Aswathy J, Pillai PS, John J, Meenakumari K. Physiological parameters of rice (Oryza sativa L.) as influenced by pink pigmented facultative methylotrophs (PPFM). J Pharmacogn Phytochemi. 2020;9(5):2920-23. https://doi.org/10.20546/ijcmas.2020.907.049
  84. Raghavendra J, Santhosh G. Effect of efficient strains of pink pigmented facultative methylotrophs on plant growth parameters of direct seeded rice. Int J Curr Microbiol Appl Sci. 2019;8(7):1473-87. https://doi.org/10.20546/ijcmas.2019.807.175
  85. Sivakumar R, Chandrasekaran P, Nithila S. Effect of PPFM and PGRs on root characters, TDMP, yield and quality of tomato (Solanum lycopersicum) under drought. Int J Curr Microbiol Appl Sci. 2018;7(3):2046-54. https://doi.org/10.20546/ijcmas.2018.703.240
  86. Prabavathi GR, Ramesh S. Effect of enriched organic compost and foliar nutrition on growth and yield of Ragi (Eleusine coracana L.). Int J Plant Soil Sci. 2023; 35(22):948-53. https://doi.org/10.9734/ijpss/2023/v35i224206
  87. El Boukhari MEM, Barakate M, Bouhia Y, Lyamlouli K. Trends in seaweed extract based biostimulants: Manufacturing process and beneficial effect on soil-plant systems. Plants. 2020;9(3):359. https://doi.org/10.3390/plants9030359
  88. Hernández-Herrera RM, Sánchez-Hernández CV, Palmeros-Suárez PA, Ocampo-Alvarez H, Santacruz-Ruvalcaba F, Meza-Canales ID, Becerril-Espinosa A. Seaweed extract improves growth and productivity of tomato plants under salinity stress. Agronomy.2022;12(10):2495. https://doi.org/10.3390/agronomy12102495
  89. Chen CL, Song WL, Sun L, Qin S, Ren CG, Yang JC, et al. Effect of seaweed extract supplement on rice rhizosphere bacterial community in tillering and heading stages. Agronomy. 2022;12(2):342. https://doi.org/10.3390/agronomy12020342
  90. Di Mola I, Cozzolino E, Ottaiano L, Giordano M, Rouphael Y, Colla G, Mori M. Effect of vegetal- and seaweed extract-based biostimulants on agronomical and leaf quality traits of plastic tunnel- grown baby lettuce under four regimes of nitrogen fertilization. Agronomy. 2019;9(10):571. https://doi.org/10.3390/agronomy9100571
  91. Hamouda MM, Saad-Allah KM, Gad D. Potential of seaweed extract on growth, physiological, cytological and biochemical parameters of wheat (Triticum aestivum L.) seedlings. J Soil Sci Plant Nutr. 2022;22:1818-31. https://doi.org/10.1007/s42729-022-00774-3
  92. Fernández V, Brown PH. From plant surface to plant metabolism: the uncertain fate of foliar- applied nutrients. Front Plant Sci. 2013;4:289. https://doi.org/10.3389/fpls.2013.00289
  93. Ranasinghe RH, Jayasekera LR, Kannangara SD, Ratnayake RM. Suitability of selected Sri Lankan weeds for the formulation of organic liquid fertilizers. Trop Plant Res. 2019;6(2):214-25. https://doi.org/10.22271/tpr.2019.v6.i2.031
  94. Bhuimbar MV, Dandge PB. Production of organic liquid biofertilizer from fish waste and study of its plant growth promoting effect. Proceedings of the National Academy of Sciences, India Section B: Biol Sci. 2023;93(1):235-43.
  95. https://doi.org/10.1007/s40011-022-01413-8
  96. Jamilah J. The effect of fermented liquid organic fertilizer and potassium for nutrient uptake and yield of rice at tropical upland. J Environ Res Dev. 2015;9(4):1-6. http://www.jerad.org/archiveabstract.php?vol=9&issue=4
  97. Rusdiyana R, Indriyanti DR, Marwoto P, Iswari RS, Cahyono E. The influence of liquid organic fertilizer from peanut and banana peels toward vegetative growth of spinach. J Penelit Pendidik IPA. 2022;8(2):528-33. https://doi.org/10.29303/jppipa.v8i2.1331
  98. Mohamed MHM, Sami R, Al-Mushhin AAM, Ali MME-S, El-Desouky HS, Ismail KA, et al. Impacts of effective microorganisms, compost tea, fulvic acid, yeast extract and foliar spray with seaweed extract on sweet pepper plants under greenhouse conditions. Plants. 2021;10. https://doi.org/10.3390/plants10091927
  99. Stávková J, Maroušek J. Novel sorbent shows promising financial results on P recovery from sludge water. Chemosphere. 2021;276:130097. ISSN 0045-6535. https://doi.org/10.1016/j.chemosphere.2021.130097.
  100. Marousek J, Strunecky O, Vaní?ková R, Midelashvili E, Minofar B. Techno-economic considerations on latest trends in biowaste valuation. Systems Microbiology and Biomanufacturing. 2024 Apr;4(2):598-606. https://doi.org/10.1007/s43393-023-00216-w
  101. Maroušek J, Minofar B, Maroušková A, Strunecký O, Gavurová B. Environmental and economic advantages of production and application of digestate biochar. Environmental Technology and Innovation. 2023 May 1;30:103109. https://doi.org/10.1016/j.eti.2023.103109
  102. Marousek J, Marouškova A, Periakaruppan R, Gokul GM, Anbukumaran A, Bohata A, et al. Silica nanoparticles from coir pith synthesized by acidic sol-gel method improve germination economics. Polymers. 2022;14:266. https://doi.org/10.3390/polym14020266
  103. Kliestik T, Nica E, Durana P, Popescu GH. Artificial intelligence-based predictive maintenance, time-sensitive networking and big data-driven algorithmic decision-making in the economics of industrial internet of things. Oeconomia Copernicana. 2023 Dec 30;14(4):1097-138. https://doi.org/10.24136/oc.2023.033.
  104. Vochozka M, Horak J, Krulicky T, Pardal P. Predicting future brent oil price on global markets. Acta Montanistica Slovaca. 2020 Jul 1;25(3). https://doi.org/10.46544/AMS.v25i3.10
  105. Khan MS, Akther T, Hemalatha S. Impact of panchagavya on Oryza sativa L. grown under saline stress. J Plant Growth Regul. 2017;36:702-13. https://doi.org/10.1007/s00344-017-9674-x
  106. Loganathan V. Influence of panchagavya foliar spray on the growth attributes and yield of baby corn (Zea mays) cv. COBC 1. Journal of Applied and Natural Science. 2014 Dec 1;6(2):397-401. http://dx.doi.org/10.31018/jans.v6i2.434
  107. Patel SP, Malve SH, Chavda MH, Vala YB. Effect of panchagavya and jeevamrut on growth, yield attributes and yield of summer pearl millet. The Pharma Innovation Journal. 2021;10(12):105-09.
  108. Yadav JK, Sharma M, Yadav R, Yadav S, Yadav S. Effect of different organic manures on growth and yield of chickpea (Cicer arietinum L.). J Pharmacogn Phytochem. 2017;6(5):1857-60.
  109. Leo Daniel Amalraj E, Praveen Kumar G, Mir Hassan Ahmed SK, Abdul R, Kishore N. Microbiological analysis of panchagavya, vermicompost and FYM and their effect on plant growth promotion of pigeon pea (Cajanus cajan L.) in India. Org Agric. 2013; 3:23-29. https://doi.org/10.1007/s13165-013-0042-2
  110. Thirumeninathan S, Tamilnayagan T, Rajeshkumar A, Ramadass S. Response of panchagavya foliar spray on growth, yield and economics of fodder cowpea (Vigna unguiculata L.). Int J Chem Stud. 2017;5:1604-06.
  111. Patel D, Patel I, Patel B, Singh N, Patel C. Effect of panchagavya and jivamrut on yield, chemical and biological properties of soil and nutrients uptake by Kharif groundnut (Arachis hypogaea L.). IJCS. 2018;6(3):804-09.
  112. Ali MN, Ghatak S, Ragul T. Biochemical analysis of panchagavya and sanjibani and their effect in crop yield and soil health. J Crop Weed. 2011;7(2):84-86.
  113. Panda D, Padhiary AK, Mondal S. Effect of panchagavya and jeevamrit on growth and yield of tomato (Solanum lycopersicum L). Ann Plant Soil Res. 2020;22(1):80-85.
  114. Rakesh S, Poonguzhali S, Saranya B, Suguna S, Jothibasu K. Effect of panchagavya on growth and yield of Abelmoschus esculentus cv. arka anamika. Int J Curr Microbiol App Sci. 2017;6(8):3090-97. https://doi.org/10.20546/ijcmas.2017.609.380

Downloads

Download data is not yet available.