Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 11 No. 4 (2024)

Morphological variations of gynostemium and floral biology of Thottea ponmudiana Sivar., an endemic species of the Western Ghats, India

DOI
https://doi.org/10.14719/pst.3711
Submitted
15 April 2024
Published
29-11-2024 — Updated on 04-12-2024
Versions

Abstract

Thottea ponmudiana is an endemic species restricted to the Ponmudi hills, a part of Agasthyamala Biosphere Reserve, Western Ghats, India. The gynostemium morphology is quite interesting in T. ponmudiana as this is a partial fusion product of the male and female reproductive parts. The present study deals primarily with the micromorphological analysis of gynostemium, with particular emphasis on its appendages and lobes and the floral biology of T. ponmudiana. The morphological variations in the gynostemium are discussed from the evolutionary point of view.

References

  1. Yao TL. Aristolochiaceae. In: Kiew R, Chung RCK, Saw LG, Soepadmo E, editors. Flora of Peninsular Malaysia, Series II: seed plants, vol 5. Kepong: Forest Research Institute Malaysia; 2015;5-46.
  2. Kumar ES, Mathew SP, Jabbar MA, Krishnan SG, Murugesan, K. Rediscovery of Thottea dalzellii (Hook.f.) Karthik and Moorthy (Aristolochiaceae) from the Western Ghats. Int J Advanced Res. 2015;3(4):1-4.
  3. Nazarudeen A, Sabu T. Staminal instability in Thottea duchartrei. Indian J Forest. 2002;25(2):194-95.
  4. Shaiju PN, Omanakumari N. Floral morphology and systematics of the genus Thottea Rottb. (Aristolochiaceae) from Western Ghats, India. Pl Syst Evol. 2010;288:213-25. https://doi.org/10.1007/s00606-010-0326-x
  5. Gonzalez F, Stevenson DW. Gynostemium development in Aristolochia (Aristolochiaceae). Bot Jahrb Syst. 2000;122(2):249-91.
  6. Rudall PJ, Bateman RM. Roles of synorganisation, zygomorphy and heterotopy in floral evolution: the gynostemium and labellum of orchids and other lilioid monocots. Biol Rev Cambridge Philos Soc. 2002;77(3):403-41. https://doi.org/10.1017/S1464793102005936
  7. Wagstaff SJ, Wege J. Patterns of diversification in New Zealand Stylidiaceae. Amer J Bot. 2002;89(5):865-74. https://doi.org/10.3732/ajb.89.5.865
  8. Peréz Mesa P, Ortíz Ramírez CI, González F, Ferrándiz C, Pabón Mora N. Expression of gynoecium patterning transcription factors in Aristolochia fimbriata (Aristolochiaceae) and their contribution to gynostemium development. EvoDevo. 2020;11(4):2-16. https://doi.org/10.1186/s13227-020-00149-8
  9. Endress PK. Synorganisation without organ fusion in the flowers of Geranium robertianum (Geraniaceae) and its not so trivial obdiplostemony. Ann Bot. 2010;106(5):687-95. https://doi.org/10.1093/aob/mcq171
  10. Leins P, Erbar C, Van Heel WA. Note on the floral development of Thottea (Aristolochiaceae). Blumea. 1988;33(2):357-70.
  11. Renuka C, Swarupanandan K. Morphology of the flower in Thottea siliquosa and the existence of staminodes in Aristolochiaceae. Blumea. 1986;31(2):313-18.
  12. Sunil CN, Kumar VVN. Thottea adichilthottiana (Aristolochiaceae), a new species from Ernakulam, Western Ghats, India. Webbia. 2014;69(2):239-42. https://doi.org/10.1080/00837792.2014.951205
  13. Moorthy K, Punitha T, Vinodhini R, Mickymaray S, Shonga A, Tomass Z, et al. Efficacy of different solvent extracts of Aristolochia krisagathra and Thottea ponmudiana for potential antimicrobial activity. J Pharm Res. 2015;9(1):35-40.
  14. Shivanna KR, Tandon R. Reproductive ecology of flowering plants: A manual. New Delhi: Springer. 2014;p.42. https://doi.org/10.1007/978-81-322-2003-9
  15. Heslop-Harrison J, Heslop-Harrison Y. Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate. Stain Technol. 1970;45(3):115-20. https://doi.org/10.3109/10520297009085351
  16. Brewbaker JL, Kwack BH. The essential role of calcium ion in pollen germination and pollen tube growth. Amer J Bot. 1963;50(9):859-65. https://doi.org/10.1002/j.1537-2197.1963.tb06564.x
  17. Kearns CA, Inouye DW. Techniques for the pollination biologists. Niwot: University press of Colorado; 1993.
  18. Mattsson O, Knox RB, Heslop-Harrison J, Heslop-Harrison Y. Protein pellicle of stigmatic papillae as a probable recognition site in incompatibility reactions. Nature. 1974;247:298-300. https://doi.org/10.1038/247298a0
  19. Sharma MV, Kuriakose G, Shivanna KR. Reproductive strategies of Strobilanthes kunthianus, an endemic, Semelparous species in southern Western Ghats, India Bot J Linn Soc. 2008;157(1):155-63. https://doi.org/10.1111/j.1095-8339.2008.00786.x
  20. Shivanna KR, Rangaswamy NS. Pollen biology: a laboratory manual. Berlin: Springer; 1992. https://doi.org/10.1007/978-3-642-77306-8
  21. Alvarez-Buylla ER, Benítez M, Corvera-Poiré A, Cador CÁ, de Folter S, de Buen AG, et al. Flower development. The Arabidopsis Book. 2010;8:1-57. https://doi.org/10.1199/tab.0127
  22. Tennakoon TMSG, Borosova R, Suraweera C, Herath S, De Silva T, Padumadasa C, et al. First record of Thottea duchartrei Sivar., A. Babu and Balach. (Aristolochiaceae) in Sri Lanka. J Natn Sci Foundation Sri Lanka. 2022;50(2):441-52. https://doi.org/10.4038/jnsfsr.v50i2.10546
  23. Decraene LPR, Smets EF. Merosity in flowers: definition, origin and taxonomic significance. Pl Syst Evol. 1994;191:83-104. https://doi.org/10.1007/bf02858099
  24. Hou D. Florae malesianae praecursores LXII on the genus Thottea (Aristolochiaceae). Blumea. 1981;27(2):301-32.
  25. Yao TL. Nine new species of Thottea (Aristolochiaceae) in Peninsular Malaysia and Singapore, with two taxa in Peninsular Malaysia redefined and a taxon lectotypified. Blumea. 2013;58(3):245-62. https://doi.org/10.3767/000651913X675791
  26. Mustaqim WA, Putra HF. Thottea tapanuliensis (Aristolochiaceae): A new species from Sumatra, Indonesia. Telopea. 2020;23:163-68. https://doi.org/10.7751/telopea14535
  27. Walker-Larsen J, Harder LD. The evolution of staminodes in angiosperms: patterns of stamen reduction, loss and functional re-invention. Amer J Bot. 2000;87(10):1367-84. https://doi.org/10.2307/2656866
  28. Rao RR. Trends in the evolution of the angiosperm flowers. Palaeobotanist. 1992;41:167-75. https://doi.org/10.54991/jop.1992.1118
  29. Botnaru L, Schenk JJ. Staminode evolution in Mentzelia section Bartonia (Loasaceae) and its impact on insect visitation rates. Bot J Linn Soc. 2019;190:151-64. https://doi.org/10.1093/botlinnean/boz012
  30. Kumar ESS, Chitra CR, Khan AES. Studies on the trichomes of Indian Thottea Rottb. (Aristolochiaceae). J Econ Taxon Bot Addit Ser. 2001;19:237-40.
  31. Gu L, Post WM, Baldocchi D, Black TA, Verma SB, Vesala T, et al. Phenology of vegetation photosynthesis. In: Schwartz MD, editor. Phenology: An Integrative Environmental Science. Tasks for Vegetation Science, vol 39. Springer, Dordrecht; 2003. p.467-85.https://doi.org/10.1007/978-94-007-0632-3_29
  32. Stace HM. Protogyny, self-incompatibility and pollination in Anthocercis gracilis (Solanaceae). Aust J Botany. 1995;43(5):451-59. https://doi.org/10.1071/BT9950451
  33. Lloyd DG, Webb CJ. The avoidance of interference between the presentation of pollen and stigmas in angiosperms I. Dichogamy, N Z J Bot. 1986;24(1):135-62. https://doi.org/10.1080/0028825X.1986.10409725
  34. Goodwillie C, Weber JJ. The best of both worlds? A review of delayed selfing in flowering plants. Am J Bot. 2018;105(4):641-55. https://doi.org/10.1002/ajb2.1045
  35. Lemos AL, Moreira MM, Benevides CR, Miranda AS, Rodarte ATA, Lima HA. Reproductive biology of Prepusa hookeriana (Gentianaceae): an endangered species of high-altitude grasslands in Brazil. Braz J Bot. 2020;43:379-87. https://doi.org/10.1007/s40415-020-00611-w
  36. Yang WQ, Lai Y, Li MN, Xu WY, Xue YB. A novel C2-domain phospholipid-binding protein, OsPBP1, is required for pollen fertility in rice. Mol Plant. 2008;1(5):770-85. https://doi.org/10.1093/mp/ssn035
  37. Prasad PVV, Boote KJ, Allen Jr LH. Longevity and temperature response of pollen as affected by elevated growth temperature and carbon dioxide in peanut and grain sorghum. Environ Exp Bot. 2011;70(1):51-57. https://doi.org/10.1016/j.envexpbot.2010.08.004
  38. Bhattacharya A. Does canopy height determine the pollen viability and stigma receptivity? A Cross-population Observation on Shorea robusta Gaertn. f. Our Nature. 2011;9(1):41-48. https://doi.org/10.3126/on.v9i1.5732
  39. Makwana MA, Akarsh P. Stigma receptivity test in diverse species of tomato. Int J Agric Sci. 2017;7(5):1-8. https://doi.org/10.24247/ijasroct20171
  40. Hine A, Rojas A, Suarez L, Murillo O, Espinoza M. Optimization of pollen germination in Tectona grandis (Teak) for breeding programs. Forests. 2019;10(10):908. https://doi.org/10.3390/f10100908
  41. Femy KH, Radhamany PM, Gangaprasad A. Reproductive biology of Thottea barberi (Gamble) Ding Hou. (Aristolochaceae) - an endemic taxon of southern Western Ghat, Kerala, India. Int J Plant Rep Biol. 2014;6(1):99-104.
  42. Shaiju PN, Omanakumari N. Chromosomal evolution in the genus Thottea Rottb. (Aristolochiaceae) from the Western Ghats, India. Nucleus. 2013;56(3):179-82. https://doi.org/10.1007/s13237-013-0095-3
  43. Hipólito J, Viana BF, Selbach-Schnadelbach A, Galetto L, Kevan PG. Pollination biology and genetic variability of a giant perfumed flower (Aristolochia gigantea Mart. and Zucc., Aristolochiaceae) visited mainly by small Diptera. Botany. 2012;90(9):815-29. https://doi.org/10.1139/b2012-047
  44. Çetinba? A, Ünal M. An overview of dichogamy in angiosperms. Res Plant Biol. 2014;4(5):9-27.
  45. Nakonechnaya OV, Koren OG, Sidorenko VS, Shabalin SA, Markova TO, Kalachev AV. Poor fruit set due to lack of pollinators in Aristolochia manshuriensis (Aristolochiaceae). Plant Ecol Evol. 2021;154(1):39-48. https://doi.org/10.5091/plecevo.2021.1747
  46. Murugan R, Shivanna KR, Rao RR. Pollination biology of Aristolochia tagala, a rare species of medicinal importance. Curr Sci India. 2006;91(6):795-98.

Downloads

Download data is not yet available.