This is an outdated version published on 12-12-2024. Read the most recent version.
Forthcoming

Improved functionality of roselle (Hibiscus sabdariffa) calyx extract blended Kombucha, a fermented beverage

Authors

DOI:

https://doi.org/10.14719/pst.3791

Keywords:

bioactive compounds, black tea, Kombucha, roselle calyx extract, starter cultures

Abstract

Kombucha is a fermented drink with a range of medicinal benefits prepared from sweetened tea infusion (Camellia sinensis), which is cultured symbiotically with yeast and acetic acid bacteria. In the present investigation, kombucha was prepared from sugared black tea extract blended with aqueous calyx extract of roselle (Hibiscus sabdariffa) @15% and fermented with cultures viz., Komagataeibacter rhaeticus (NAIMCCTB-3976) and Brettanomyces bruxellensis (CAP9) at 35°C. The floating water insoluble mat of kombucha was observed under a scanning electron microscope, which revealed the cellulosic nanofibrils secreted by K. rhaeticus. The total phenolic and flavanoid content, DPPH, and ABTS activity of roselle calyx blended kombucha were significantly higher than black tea kombucha. Further, the compounds present in kombucha, when analyzed by fourier transform infra-red spectroscopy, denoted the presence of carbonyl compounds, aromatic olefinic compounds, ketones, aldehydes, and esters. The different bioactive metabolites formed during fermentation were elucidated using gas chromatography-mass spectrometry and the major compounds excited within the retention time of 45 min with maximum peak area were 13-hexyloxacyclotridec-10-en-2-one (37.64%), palmitins such as 1,3 dipalmitin (6.42%), glycidyl palmitate (3.30%), organic acids such as undecanedioic acid, linoleic acid, acetic acid (3.88%), etc. The results proved that blending black tea extract with 15% roselle calyx extract as a substrate for kombucha fermentation was highly accepted with an organoleptic score of 95% and improved functional properties compared to black tea extract kombucha alone.

Downloads

Download data is not yet available.

References

Alobo AP, Offonry SU. Characteristics of coloured wine produced from roselle (Hibiscus sabdariffa) calyx extract. J Inst Brew. 2009;115(2):91-94. doi:10.1002/j.2050-0416.2009.tb00351.x

Salami SO, Afolayan AJ. Suitability of Roselle-Hibiscus sabdariffa L. as raw material for soft drink production. J Food Qual. 2020;1-9. doi:10.1155/2020/8864142.

Jamini TS, Islam AA. Roselle (Hibiscus sabdariffa L.): Nutraceutical and pharmaceutical significance. Academic Press, Roselle, Production, Processing, Products and Biocomposites. 2021;103-19. ISBN:9780323852135. doi:10.1016/B978-0-323-85213-5.00001-9.

Mendelson C, Sparkes S, Merenstein DJ, Christensen C, Sharma V, Desale S, Hutkins R. Kombucha tea as an anti-hyperglycemic agent in humans with diabetes–a randomized controlled pilot investigation. Front Nutr. 2023;10:1190248. doi:10.3389/fnut.2023.1190248.

Jarrell JA, Walia N, Nemergut D, Agadi A, Bennett JW. Inoculation, growth and bactericidal effects of three kombucha cultures. Microbiol Res. 2022;13(1):128-36. doi:10.3390/microbiolres13010010.

Jakubczyk K, Ka?dunska J, Kochman J, Janda K. Chemical profile and antioxidant activity of the kombucha beverage derived from white, green, black and red tea. Antioxidants. 2020;9(5):447. doi:10.3390/antiox9050447.

Nummer BA. Kombucha brewing under the food and drug administration model food code: Risk analysis and processing guidance. J Environ Health. 2013;76:8-11. https://pubmed.ncbi.nlm.nih.gov/24341155/

Jayalakshmi T, Gayathry G, Kumutha K, Sabarinathan KG, Amutha R, Veeramani P. Plausible avenues and applications of bioformulations from symbiotic culture of bacteria and yeast. J Pure Appl Microbiol. 2024. doi:10.22207/JPAM.18.3.42.

Batista P, Penas MR, Pintado M, Oliveira-Silva P. Kombucha: perceptions and future prospects. Foods. 2022;11(13):1977. doi:10.3390/foods11131977.

Nyhan LM, Lynch KM, Sahin AW, Arendt EK. Advances in kombucha tea fermentation: A review. Appl Microbiol. 2022;2(1):73-103. doi:10.3390/ applmicrobiol2010005.

Harrison K, Curtin C. Microbial composition of SCOBY starter cultures used by commercial kombucha brewers in North America. Microorganisms. 2021;9(5):1060. doi:10.3390/microorganisms9051060.

Fu C, Yan F, Cao Z, Xie, F, Lin J. Antioxidant activities of kombucha prepared from three different substrates and changes in content of probiotics during storage. Food Sci Technol. 2014;34(1):123-26. doi:10.1590/S0101-20612014005000012.

Su J, Tan Q, Tang Q, Tong Z, Yang M. Research progress on alternative kombucha substrate transformation and the resulting active components. Front Microbiol. 2023;14:1254014. doi:10.3389/fmicb.2023.1254014.

Malbasa R, Loncar E, Djuric M, Klasnja M, Kolarov LJ, Markov S. Scale-up of black tea batch fermentation by kombucha. Food Bioprod Process. 2006;84(3):193-99. doi:10.1205/fbp.05061.

Sutthiphatkul T, Mangmool S, Rungjindamai N, Ochaikul D. Characteristics and antioxidant activities of kombucha from black tea and roselle by a mixed starter culture. Curr Appl Sci Technol. 2023;23(4). doi:10.55003/cast.2022.04.23.002.

Yilmaz-Ersan L, Ozcan T, Akpinar-Bayizit A, Sahin S. Comparison of antioxidant capacity of cow and ewe milk kefirs. J Dairy Sci. 2018;101(5):3788-98. doi:10.3168/jds.2017-13871.

Sultana B, Anwar F, Ashraf M. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules. 2009;14(6):2167- 80. doi:10.3390/molecules14062167.

Huh MK, Lee C, Moon SG. Inhibitory effect of DPPH radical scavenging activity and hydroxyl radicals (OH) activity of Chelidonium majus var asiaticum. Int J Adv Multidiscip Res. 2016;3:15-22.

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26:1231-37. doi:10.1016/S0891-5849(98)00315-3.

Ihekoronye AI, Ngoddy PO. Integrated food science and technology for the tropics. Macmillan Publishers Ltd: London. 1985;377.

Kopecka I, Svobodova E. Methodology for infrared spectroscopy analysis of sandwich multilayer samples of historical materials. Herit Sci. 2014;2(22):1-8. doi:10.1186/s40494-014-0022-1.

Majumder S, Ghosh A, Chakraborty S, Bhattacharya M. Withdrawal of stimulants from tea infusion by SCOBY during kombucha fermentation: A biochemical investigation. Int J Food Ferment Technol. 2020;10(1):21-26. https://doi.org/10.30954/2277-9396.01.2020.5.

Snedecor GW, Cochran WG. Statistical methods,7th Edition, Iowa State University Press: Ames, IA. 1981.

Neffe-Skocinska K, Sionek B, Scibisz I, Kolozyn-Krajewska D. Acid contents and the effect of fermentation condition of kombucha tea beverages on physicochemical, microbiological and sensory properties. CyTA-Journal of Food. 2017;15(4):601-07. doi:10.1080/19476337.2017.1321588.

Su N, Li J, Yang L, Hou G, Ye M. Hypoglycemic and hypolipidemic effects of fermented milks with added roselle (Hibiscus sabdariffa L.) extract. J Funct Foods. 2018;43:234-41. doi:10.1016/j.jff.2018.02.017.

Dima SO, Panaitescu DM, Orban C, Ghiurea M, Doncea SM, Fierascu RC, Oancea F. Bacterial nanocellulose from side-streams of kombucha beverages production: Preparation and physical-chemical properties. Polymers. 2017;9(8):374. doi:10.3390/polym9080374.

Sigiro LM, Maksum A, Dhaneswara D. Utilization of cellulose symbiotic culture of bacteria and yeast (SCOBY) with sweet tea media as methylene blue and brilliant green biosorbent material. Journal of Material Exploration and Findings. 2023;2(1):2. doi:10.7454/jmef.v2i1.1028.

Brza MA, Shujahadeen B, Aziz H Anuar, Fathilah Ali, Elham MA, Dannoun, et al. Tea from the drinking to the synthesis of metal complexes and fabrication of PVA-based polymer composites with controlled optical band gap. Scientific Reports. 2020;10:18108. doi:10.1038/s41598-020-75138-x.

Pure AE, Pure ME. Antioxidant and antibacterial activity of kombucha beverages prepared using banana peel, common nettles and black tea infusions. Appl Food Biotechnol. 2016;3(2):125-30. doi:10.22037/afb.v3i2.11138.

Juhari NH, Bredie WL, Toldam-Andersen TB, Petersen MA. Characterization of roselle calyx from different geographical origins. Food Res Int. 2018;112:378-89. doi:10.1016/j.foodres.2018.06.049.

Huang HC, Chang WT, Wu YH, Yang BC, Xu MR, Lin MK, Lee MS. Phytochemical levels and biological activities in Hibiscus sabdariffa L. were enhanced using microbial fermentation. Ind Crop Prod. 2022;176:114408. doi:10.1016/j.indcrop.2021.114408.

Anantachoke N, Duangrat R, Sutthiphatkul, T, Ochaikul D, Mangmool S. Kombucha beverages produced from fruits, vegetables and plants: A review on their pharmacological activities and health benefits. Foods. 2023;12(9):1818. doi:10.3390/foods12091818.

Suffys S, Richard G, Burgeon C, Werrie PY, Haubruge E, Fauconnier ML, Goffin D. Characterization of aroma active compound production during kombucha fermentation: towards the control of sensory profiles. Foods. 2023;12(8):1657. doi:10.3390/foods12081657.

Khan A, More KC, Mali MH, Deore SV, Patil MB. Phytochemical screening and gas chromatography-mass spectrometry analysis on Ischaemum pilosum (Kleinex Willd.). Plant Sci Today. 2023;10(4):88-96. doi:10.14719/pst.2349.

Pinto TMS, Neves ACC, Leao MVP, Jorge AOC. Vinegar as an antimicrobial agent for control of Candida spp. in complete denture wearers. J Appl Oral Sci. 2008;16(6):385-90. doi:10.1590/s1678-77572008000600006.

Khalid H. In-silico molecular docking of di-(2-ethylhexyl) phthalate and 13-hexyloxacyclotridec-10-en-2-one identified in Ambrosia Maritima L. (Asteraceae). World J Pharm Res. 2014;3(10):8-16. https://api.semanticscholar.org/CorpusID:85581263.

Kumari R, Mishra RC, Yadav A, Yadav JP. Screening of traditionally used medicinal plants for their antimicrobial efficacy against oral pathogens and GC-MS analysis of Acacia nilotica extract. Indian J Tradit Knowl. 2019;18(1):162-68. http://nopr.niscpr.res.in/handle/123456789/45667.

Zannou O, Kelebek H, Selli S. Elucidation of key odorants in Beninese Roselle (Hibiscus sabdariffa L.) infusions prepared by hot and cold brewing. Food Res Int. 2020;133:109133. doi:10.1016/j.foodres.2020.109133.

Jayabalan R, Chen PN, Hsieh YS, Prabhakara K, Pitchai P, Marimuthu S, et al. Effect of solvent fractions of kombucha tea on viability and invasiveness of cancer cells-characterization of dimethyl 2-(2-hydroxy-2-methoxypropylidine) malonate and vitexin. Indian J Biotechnol. 2011;10:75-82. http://nopr.niscpr.res.in/handle/123456789/10955.

Chen C, Liu BY. Changes in major components of tea fungus metabolites during prolonged fermentation. J Appl Microbiol. 2000;89(5):834-39. doi:10.1046/j.1365-2672.2000.01188.x.

Tran VC, Truong M-N, Tran TTQ, Nguyen TTN, Nguyen HKL. GC-MS analysis and cytotoxic activity of the n-hexane fraction from Curcuma sahuynhensis Skornick. and N.S.Ly leaves collected in Vietnam. Plant Sci Today. 2024;11(1):308-15. doi: 10.14719/pst.2881.

Shanmuganathan M, Gayathry G, Maheshwari P, Vellaikumar S. Identification of flavor producing compounds and multi elements from chewing cane (Saccharum officinarum L. cv. Badila). Sugar Tech. 2023;22(2):187-94. doi:10.1007/s12355-023-01322-8 10.100

Zhao ZJ, Sui YC, Wu HW, Zhou CB, Hu XC, Zhang J. Flavour chemical dynamics during fermentation of kombucha tea. EJFA. 2018;30(9):732-41. doi:10.9755/ejfa.2018.v30.i9.1794.

Ejuama CK, Onusiriuka BC, Bakar V, Ndibe TO, Yakubu M, Ademu, EG. Effect of Saccharomyces cerevisiae - Induced Fermentation on the antioxidant property of roselle calyx aqueous extract. EJBIO. 2021;2(3):33-38. doi:10.24018/ejbio.2021.2.3.201.

De Melo CWB, De Lima Costa IH, De Souza Santos P, De Jesus Bandeira M. Identification of the profile of volatile compounds in commercial kombucha added with hibiscus (Hibiscus rosa-sinensis). Braz J Dev. 2022;8(3):16208-25. doi:10.34117/bjdv8n3-047.

Jothilakshmi K, Gayathry G, Jayalakshmi T. GCMS elucidation of bioactive metabolites from fermented kombucha tea. Int J Adv Biochem Res. 2024;8(8S):458-62. DOI: 10.33545/26174693.2024.v8.i8Sg.1846.

Bishop P, Pitts ER, Budner D, Thompson-Witrick KA. Kombucha: Biochemical and microbiological impacts on the chemical and flavor profile. Food Chem Adv. 2022;1:100025. doi:10.1016/j.focha.2022.100025.

Mendonca GR, Pinto RA, Praxedes EA, Abreu VKG, Dutra RP, Pereira AF, Pereira ALF. Kombucha based on unconventional parts of the Hibiscus sabdariffa L.: Microbiological, physico-chemical, antioxidant activity, cytotoxicity and sensorial characteristics. Int J Gastron Food Sci. 2023;(34):100804. doi:10.1016/j.ijgfs.2023.100804.

Kluz MI, Pietrzyk K, Pastuszczak M, Kacaniova M, Kita A, Kapusta I, Puchalski C. Microbiological and physicochemical composition of various types of homemade kombucha beverages using alternative kinds of sugars. Foods. 2022;11(10):1523. doi:10.3390/foods11101523.

Biomy, H. Effect of roselle extract (Hibiscus sabdariffa) on stability of carotenoids, bioactive compounds and antioxidant activity of yogurt fortified with carrot juice (Daucus carota). WJDFS. 2017;12(2):94-101. doi:10.5829/idosi.wjdfs.2017.94.101.

Shin S, Oh H, Joung KY, Kim SY, Kim YS. Effects of Roselle (Hibiscus sabdariffa L.) calyx extract improve the physicochemical characteristics, antioxidant activity and consumer preference of yogurt dressing. Prog Nutr. 2021;23(2):e2021065 doi:10.23751/pn.v23i2.8792.

Published

12-12-2024

Versions

How to Cite

1.
G G, T UM, K J, S A. Improved functionality of roselle (Hibiscus sabdariffa) calyx extract blended Kombucha, a fermented beverage. Plant Sci. Today [Internet]. 2024 Dec. 12 [cited 2025 Jan. 7];. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/3791

Issue

Section

Research Articles