Skip to main navigation menu Skip to main content Skip to site footer

Mini Reviews

Vol. 1 No. 4 (2014)

Carboxymethyl starch as a polymeric plant based excipient in drug delivery

DOI
https://doi.org/10.14719/pst.2014.1.4.38
Submitted
25 April 2014
Published
01-10-2014

Abstract

Polysaccharides extracted and isolated from plant products serve as potential candidates in pharmaceutics mainly drug delivery, owing to its biodegradability, bioavailability and non-toxic character. Hydrogels, three-dimensional hydrophilic polymeric networks, exhibit dramatic changes in their swelling behaviour, network structure, and mechanical strength in response to different stimuli to the body. A wide variety of polysaccharides (chitosan, alginate, cellulose, starch, etc) and their derivatives have been used to synthesize hydrogels that tend to swell in water or biological fluids. Such systems have numerous biomedical applications including: drug delivery, wound dressing, and tissue engineering. However, single-network hydrogels have weak mechanical properties and slow response at swelling. To enhance the mechanical strength and swelling/deswelling response of hydrogels, multicomponent networks as interpenetrating polymer networks have also been reported and recently have gained much importance in research on different biomedical applications. The present review focuses on the application of carboxymethyl starch as a pharmaceutical excipient where the effect of crosslinking modification and the formation of Semi Interpenetrating Polymer Network with montmorillonite clay mineral have been investigated.

References

  1. Angellier, H., Choisnard, L., Molina-Boisseau, S., Dole, P., & Dufresne, A. (2004). Biomacromolecules, 5, 1545-1551. http://dx.doi.org/10.1021/bm049914u PMid:15244476
  2. Anirudhan, T. S., & Parvathy, J. (2014). International Journal of Biological Macromolecules, 67, 238-245. http://dx.doi.org/10.1016/j.ijbiomac.2014.03.041 PMid:24685463
  3. Bi, Y., Liu, M., Wu, L., & Cui, D. (2008). Polymers for Advanced Technologies, 19, 1185–1192. http://dx.doi.org/10.1002/pat.1102
  4. Gunaratne, A., & Corke, H. (2007). Carbohydrate Polymers, 68, 305–313. http://dx.doi.org/10.1016/j.carbpol.2006.12.004
  5. Kim, H. S., Choi, H. S., Kim, B. Y. & Baik, M. Y. (2011). Carbohydrate Polymers, 83, 755–761. http://dx.doi.org/10.1016/j.carbpol.2010.08.048
  6. Kittipongpatana, O. S., Chaichanasak, N., Kanchongkittipoan, S., Panturat, A., Taekanmark, T., & Kittipongpatana, N. (2006). Starch, 58 587-589. http://dx.doi.org/10.1002/star.200600528
  7. Lawal, O. S., Lechner, M. D., Hartmann, B., & Kulicke, W.-M. (2007). Starch – Stärke, 59, 224–233. http://dx.doi.org/10.1002/star.200600594
  8. Mason, W. R. (2003). Starch Use in Foods. In Starch: Chemistry and Technology, Third Edition, Chapter 20, 746.
  9. Mishra, S., Mukul, A., Sen, G., & Jha, U. (2011). International Journal of Biological Macromolecules, 48, 106–111. http://dx.doi.org/10.1016/j.ijbiomac.2010.10.004 PMid:20951725
  10. Nabais, T., Brouillet, F., Kyriacos, S., & Mroueh, M. (2007). European Journal of Pharmaceutics and Biopharmaceutics, 65, 371-378. http://dx.doi.org/10.1016/j.ejpb.2006.12.001 PMid:17275270
  11. Nagasawa, N., Yagi, T., Kume, T., & Yoshii, F. (2004). Carbohydrate Polymers, 58, 109–113. http://dx.doi.org/10.1016/j.carbpol.2004.04.021
  12. Prochaska, K., Konowal, E., Sulej-Chojnacka, J., Lewandowicz, G. (2009). Colloids and Surfaces B: Biointerfaces, 74(1), 238-243. http://dx.doi.org/10.1016/j.colsurfb.2009.07.034 PMid:19734024
  13. Qiu, H., & He, L. (1999). Polymers for Advanced Technologies, 10, 468–472. http://dx.doi.org/10.1002/(SICI)1099-1581(199907)10:7<468::AID-PAT898>3.0.CO;2-W
  14. Sen, G., & Pal, S. (2009). Journal of Applied Polymer Science, 114, 2798-2805. http://dx.doi.org/10.1002/app.30762
  15. Teramoto, N., Motoyama, T., Yosomia, R., & Shibata, M. (2003). European Polymer Journal, 39, 255-263. http://dx.doi.org/10.1016/S0014-3057(02)00199-4
  16. Tolvanen, P., Mäki-Arvela, P., Sorokin, A. B., Salmi, T., Murzin, D. Y. (2009). Chemical Engineering Journal, 154, 52–59. http://dx.doi.org/10.1016/j.cej.2009.02.001
  17. Wang, J., Zhou, X., & Xiao, H. (2013). Carbohydrate Polymers, 94, 749-754. http://dx.doi.org/10.1016/j.carbpol.2013.01.036 PMid:23544629.

Downloads

Download data is not yet available.