Genomic insights into maize: Advanced techniques for analysing diversity and enhancing crop traits
DOI:
https://doi.org/10.14719/pst.4011Keywords:
Genetic distance, traditional tools, markers, cluster analysis, utilization, future breedingAbstract
Maize is the third important staple food crop grown globally. The demand for maize production has increased significantly due to its multiple uses, including food, feed and various industrial applications. As a result, the area under maize cultivation is expanding, driven by its lucrative market price. Being a highly adaptive crop, the development of high-yielding hybrids better suited to climate change will help bridge the gap between demand and supply. Maize is an allogamous crop, exhibiting greater genetic diversity compared to autogamous crops. Therefore, intensified exploration of maize genetic diversity and effective utilization of germplasm will enhance the maize breeding programs. However, the domestication of maize has led to a decline in genetic diversity and the loss of valuable alleles. Human selection has significantly altered the morphology of maize from its wild ancestor. CIMMYT currently maintains around 28000 maize accessions, including landraces and wild relatives. Genetic diversity can be analysed using D2 statistics and clustering methods, employing morphological, molecular, quantitative and qualitative data. Careful consideration is needed when selecting appropriate methods and software for such analyses based on available data. In recent years, SSR markers and SNPs have gained popularity for diversity analysis. Studying genetic diversity in maize is crucial for identifying novel traits and the introgression of these traits into new hybrids using advanced technology requires further attention.
Downloads
References
World Maize Scenario - ICAR-Indian Institute of Maize Research [Internet]. Available from: World Maize Scenario – ICAR-Indian Institute of Maize Research.
FAO. Biannual Report on Global Food Markets [Internet]. 2020. Available from: https://doi.org/10.4060/ca9509en
Indiastat [Internet]. 2021. Available from: www-indiastat-com.
APEDA [Internet]. 2023. Available from: Maize (apeda.gov.in)
Soliman ER, El-Shazly HH, Börner A, Badr A. Genetic diversity of a global collection of maize genetic resources in relation to their subspecies assignments, geographic origin and drought tolerance. Breeding Science. 2021;71(3):313-25. https://doi.org/10.1270/jsbbs.20142
Begna T. Role and economic importance of crop genetic diversity in food security. International Journal of Agricultural Science and Food Technology. 2021;7(1):164-69. https://doi.org/10.17352/2455-815X.000104
Singh BD, Singh AK. Marker-assisted plant breeding: principles and practices. Springer. 2015. https://doi.org/10.1007/978-81-322-2316-0
Rao R, Hodgkin T. Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell Tissue and Organ Culture. 2002 Jan 1;68:1-19. https://doi.org/10.1023/A:1013359015812
Wills DM, Whipple CJ, Takuno S, Kursel LE, Shannon LM, Ross-Ibarra J, et al. From many, one: genetic control of prolificacy during maize domestication. PLoS Genetics. 2013; 9(6):e1003604. https://doi.org/10.1371/journal.pgen.1003604
Doebley J. The genetics of maize evolution. Annu Rev Genet. 2004;38:37-59. https://doi.org/10.1146/annurev.genet.38.072902.092425
Chen Z, Hu K, Yin Y, Tang D, Ni J, Li P, et al. Identification of a major QTL and genome-wide epistatic interactions for single vs. paired spikelets in a maize-teosinte F2 population. Molecular Breeding. 2022;42(2):9. https://doi.org/10.1007/s11032-022-01276-x
Yang CJ, Samayoa LF, Bradbury PJ, Olukolu BA, Xue W, York AM, et al. The genetic architecture of teosinte catalyzed and constrained maize domestication. Proceedings of the National Academy of Sciences. 2019;116(12):5643-52. https://doi.org/10.1073/pnas.1820997116
Prasanna B. Diversity in global maize germplasm: characterization and utilization. Journal of Biosciences. 2012;37(5):843-55. https://doi.org/10.1007/s12038-012-9227-1
Flint-Garcia SA. Genetics and consequences of crop domestication. J Agric Food Chem [Internet]. 2013 Sep 4 [cited 2024 Sep 12];61(35):8267-76. Available from: https://pubs.acs.org/doi/10.1021/jf305511d
Phundan S, Narayanan S. Biometrical techniques in plant breeding. Kalyani Publishers; 1993.
Kamal NM, Gorafi YSA, Abdelrahman M, Abdellatef E, Tsujimoto H. Stay-green trait: A prospective approach for yield potential and drought and heat stress adaptation in globally important cereals. IJMS [Internet]. 2019 Nov 20 [cited 2024 Sep 12];20(23):5837. Available from: https://www.mdpi.com/1422-0067/20/23/5837 https://doi.org/10.3390/ijms20235837
Adhikari S, Joshi A, Kumar A, Singh NK. Diversification of maize (Zea mays L.) through teosinte (Zea mays subsp. parviglumis Iltis & Doebley) allelic. Genetic Resources and Crop Evolution. 2021;68(7):2983-95. https://doi.org/10.1007/s10722-021-01170-z
Shayanowako A, Shimelis H, Laing M, Mwadzingeni L. Genetic diversity of maize genotypes with variable resistance to Striga asiatica based on SSR markers. Cereal Research Communications. 2018;46:668-78. https://doi.org/10.1556/0806.46.2018.044
Nei M. Molecular evolutionary genetics. Columbia University Press; 1987. https://doi.org/10.7312/nei-92038
Beaumont MA, Ibrahim KM, Boursot P, Bruford MW. Measuring genetic distance. In A. Karp, P. G. Isaac, D. S. Ingram, Editors. Molecular Tools for Screening Biodiversity. Springer Netherlands; 1998. p. 315-25. https://doi.org/10.1007/978-94-009-0019-6_58
Belalia N, Lupini A, Djemel A, Morsli A, Mauceri A, Lotti C, et al. Analysis of genetic diversity and population structure in Saharan maize (Zea mays L.) populations using phenotypic traits and SSR markers. Genetic Resources and Crop Evolution; 2019;66:243-57. https://doi.org/10.1007/s10722-018-0709-3
Odong T, Van Heerwaarden J, Jansen J, van Hintum TJ, Van Eeuwijk F. Determination of genetic structure of germplasm collections: are traditional hierarchical clustering methods appropriate for molecular marker data? Theoretical and Applied Genetics. 2011;123:195-205.https://doi.org/10.1007/s00122-011-1576-x
Ward JH. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association [Internet]. 1963 Mar [cited 2024 Feb 14];58(301):236-44. https://doi.org/10.2307/2282967
Gasura E, Nyandoro B, Mabasa S, Setimela PS, Kyalo M, Yao N. Breeding strategy for resistance to Striga asiatica (L.) Kuntze based on genetic diversity and population structure of tropical maize (Zea mays L.) lines. Genetic Resources and Crop Evolution. 2022;1-10.https://doi.org/10.21203/rs.3.rs-336459/v1
Ringnér M. What is principal component analysis? Nature Biotechnology; 2008;26(3):303-04. https://doi.org/10.1038/nbt0308-303
Jolliffe IT. Principal component analysis for special types of data. Springer; 2002.
Zhang W, Gao X, Shi X, Zhu B, Wang Z, Gao H, et al. PCA-based multiple-trait GWAS analysis: a powerful model for exploring pleiotropy. Animals. 2018; 8(12):239.https://doi.org/10.3390/ani8120239
Jadhav R, Mehtre S, Patil D, Gite V. Multivariate analysis using D2 and principal component analysis in mung bean [Vigna radiata (L.) Wilczek] for study of genetic diversity. Legume Research- An International Journal. 2023;46(1):10-17. https://doi.org/10.36953/ECJ.15472494
Gower JC. Principal coordinates analysis. Wiley StatsRef: Statistics Reference Online. 2014;1-7. https://doi.org/10.1002/9781118445112.stat05670.pub2
Katayama H, Mori Y, Kuroda M. Variable selection in nonlinear principal component analysis. In: IntechOpen eBooks [Internet]. 2022. Available from: https://doi.org/10.5772/intechopen.103758
Singh DP, Marker S. Comparative evaluation of maize (Zea mays L.) genotypes based on distinctness, uniformity and stability (DUS) testing using physiological and morphological characters. JANS [Internet]. 2016 Jun 1 [cited 2024 Feb 14];8(2):652-57. https://doi.org/10.31018/jans.v8i2.853
Yousuf N, Dar SA, Shikari AB, Dar ZA, Lone AA, Sofi PA, et al. Assessment of genetic diversity at molecular and morphological levels of temperate maize landraces collected from diverse ecological niches in Kashmir. Indian Journal of Genetics and Plant Breeding. 2021;81(04):557-65. https://doi.org/10.31742/IJGPB.81.4.8
Al-Naggar A, Soliman A, Hussien M, Mohamed A. Genetic diversity of maize inbred lines based on morphological traits and its association with heterosis. SABRAO Journal of Breeding and Genetics. 2022;54(3). https://doi.org/10.54910/sabrao2022.54.3.11
Dube SP, Sibiya J, Kutu F. Genetic diversity and population structure of maize inbred lines using phenotypic traits and single nucleotide polymorphism (SNP) markers. Scientific Reports. 2023;13(1):17851.https://doi.org/10.1038/s41598-023-44961-3
Ranatunga M, Meenakshisundaram P, Arumugachamy S, Maheswaran M. Genetic diversity analysis of maize (Zea mays L.) inbreds determined with morphometric traits and simple sequence repeat markers. Maydica. 2009;54(1):113.
Leal A, Mangolin C, do Amaral Júnior A, Gonçalves L, Scapim C, Mott A, et al. Efficiency of RAPD versus SSR markers for determining genetic diversity among popcorn lines. Genet Mol Res. 2010;9(1):9-18.https://doi.org/10.4238/vol9-1gmr692
Nashath M, Mubarak A, Kumara A. Nashath MN, Mubarak AN, Kumara AD. Exploring genetic diversity of maize (ZEA MAYS l.) accessions in Sri Lanka by employing SSR markers on photosynthetic, canopy architectural and grain yield traits.2023;19(1): 188-203. https://doi.org/10.4038/jas.v19i1.10195
Singh D, Nitesh Kushwaha S, Parveen R, Mohanty TA, Suman SK, Kumar R, et al. Assessment of quality protein maize (QPM) inbreds for genetic diversity using morphological characters and simple sequence repeats markers. Electronic Journal of Plant Breeding. 2023;14(3):1276-84. https://doi.org/10.37992/2023.1403.145
Oliveira LSD, Schuster I, Novaes E, Pereira WA. SNP genotyping for fast and consistent clustering of maize inbred lines into heterotic groups. Crop Breed Appl Biotechnol [Internet]. 2021 [cited 2024 May 14];21(1):e367121110. https://doi.org/10.1590/1984-70332021v21n1a10
Zebire DA. Applications of molecular markers in genetic diversity studies of maize. Nig J Biotechnol [Internet]. 2020 Aug 28 [cited 2024 Feb 8];37(1):101-08. https://doi.org/10.4314/njb.v37i1.11
Guo Z, Wang H, Tao J, Ren Y, Xu C, Wu K, et al. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Mol Breeding [Internet]. 2019 Mar [cited 2024 May 14];39(3):37. https://doi.org/10.1007/s11032-019-0940-4
Badu-Apraku B, Garcia-Oliveira AL, Petroli CD, Hearne S, Adewale SA, Gedil M. Genetic diversity and population structure of early and extra-early maturing maize germplasm adapted to sub-Saharan Africa. BMC Plant Biol [Internet]. 2021 Feb 17 [cited 2024 Sep 12];21(1):96. Available from: https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-021-02829-6 https://doi.org/10.1186/s12870-021-02829-6
Wang N, Yuan Y, Wang H, Yu D, Liu Y, Zhang A, et al. Applications of genotyping-by-sequencing (GBS) in maize genetics and breeding. Sci Rep [Internet]. 2020 Oct 1 [cited 2024 May 10];10(1):16308. https://doi.org/10.1038/s41598-020-73321-8
Ott A, Liu S, Schnable JC, Yeh CT 'Eddy,' Wang KS, Schnable PS. tGBS® genotyping-by-sequencing enables reliable genotyping of heterozygous loci. Nucleic Acids Research [Internet]. 2017 Dec 1 [cited 2024 May 10];45(21):e178-e178. https://doi.org/10.1093/nar/gkx853
Rabieyan E, Bihamta MR, Moghaddam ME, Alipour H, Mohammadi V, Azizyan K, et al. Analysis of genetic diversity and genome-wide association study for drought tolerance related traits in Iranian bread wheat. BMC Plant Biol [Internet]. 2023 Sep 15 [cited 2024 Sep 12];23(1):431. Available from: https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-023-04416-3. https://doi.org/10.1186/s12870-023-04416-3
Shikha K, Madhumal Thayil V, Shahi J, Zaidi P, Seetharam K, Nair SK, et al. Genomic-regions associated with cold stress tolerance in Asia-adapted tropical maize germplasm. Scientific Reports. 2023;13(1):6297. https://doi.org/10.1038/s41598-023-33250-8
Beló A, Zheng P, Luck S, Shen B, Meyer DJ, Li B, et al. Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics [Internet]. 2008 Jan [cited 2024 May 10];279(1):1-10. https://doi.org/10.1007/s00438-007-0289-y
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: Complexity, diversity and dynamics. Science [Internet]. 2009 Nov 20 [cited 2024 May 10];326(5956):1112-15. Available from: The B73 Maize Genome: Complexity, Diversity, and Dynamics | Science. https://doi.org/10.1126/science.1178534
Farooqi MQU, Nawaz G, Wani SH, Choudhary JR, Rana M, Sah RP, et al. Recent developments in multi-omics and breeding strategies for abiotic stress tolerance in maize (Zea mays L.). Front Plant Sci [Internet]. 2022 Sep 23 [cited 2024 Feb 29];13:965878. https://doi.org/10.3389/fpls.2022.965878
Liu S, Wang X, Wang H, Xin H, Yang X, Yan J, et al. Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L. Springer NM, editor. PLoS Genet [Internet]. 2013 Sep 26 [cited 2024 Feb 29];9(9):e1003790. https://doi.org/10.1371/journal.pgen.1003790
Song X, Zhang Y, Wu F, Zhang L. Genome-wide analysis of the maize (Zea mays L.) CPP-like gene family and expression profiling under abiotic stress. Genet Mol Res. 2016;15(3). https://doi.org/10.4238/gmr.15038023
Wen W, Li D, Li X, Gao Y, Li W, Li H, et al. Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nature Communications [Internet]. 2014 Mar 17;5(1):3438. https://doi.org/10.1038/ncomms4438
Heslot N, Yang HP, Sorrells ME, Jannink JL. Genomic selection in plant breeding: a comparison of models. Crop Science. 2012;52(1):146-60. https://doi.org/10.2135/cropsci2011.06.0297
Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, De Los Campos G, et al. Genomic selection in plant breeding: Methods, models and perspectives. Trends in Plant Science [Internet]. 2017 Nov [cited 2024 May 13];22(11):961-75.https://doi.org/10.1016/j.tplants.2017.08.011
Marinho CD, Coelho IF, Peixoto MA, Carvalho Junior GAD, Resende Junior MFRD. Genomic selection as a tool for maize cultivars development. RBMS [Internet]. 2022 Apr 29 [cited 2024 May 13];21.https://doi.org/10.18512/rbms2022v21e1285
Diaw Y, Tollon-Cordet C, Charcosset A, Nicolas SD, Madur D, Ronfort J, et al. Genetic diversity of maize landraces from the South-West of France. PLoS One. 2021; 16(2):e0238334. https://doi.org/10.1371/journal.pone.0238334
Roy PR, Haque MA, Ferdausi A, Al Bari MA. Genetic variability, correlation and path co-efficients analyses of selected maize (Zea mays L.) genotypes. Fundamental and Applied Agriculture. 2018;3(1):382-89. https://doi.org/10.5455/faa.284502
Pritchard JK, Wen X, Falush D. Documentation for structure software: Version 2.3. University of Chicago, Chicago, IL. 2010;1-37.
Porras-Hurtado L, Ruiz Y, Santos C, Phillips C, Carracedo Á, Lareu M. An overview of STRUCTURE: applications, parameter settings and supporting software. Frontiers in Genetics [Internet]. 2013;4. https://doi.org/10.3389/fgene.2013.00098
Tools: Flapjack - high-throughput genotype visualizer?» Seeds of Discovery [Internet]. Available from: Tools: Flapjack – high-throughput genotype visualizer » Seeds of Discovery
Zinn KE, Tunc-Ozdemir M, Harper JF. Temperature stress and plant sexual reproduction: uncovering the weakest links. Journal of Experimental Botany; 2010;61(7):1959-68. https://doi.org/10.1093/jxb/erq053
Wang Q, Liao Z, Zhu C, Gou X, Liu Y, Xie W, et al. Teosinte confers specific alleles and yield potential to maize improvement. Theor Appl Genet [Internet]. 2022 Oct [cited 2024 Feb 14];135(10):3545-62. https://doi.org/10.1007/s00122-022-04199-5
Patil N, Shanthakumar G, Biradar B. Genetic diversity analysis of Maize (Zea mays L.) inbred lines under drought stress using grain yield and yield related traits. Journal of Crop and Weed. 2021;17(3):192-98. https://doi.org/10.22271/09746315.2021.v17.i3.1509
SathyaSheela KRV, Selvakumar T, Narayanan SL, Radhajeyalakshmi R. Analyzing the variability in maize (Zea mays L.) genotypes using principal component analysis under varied ecosystems. IJECC [Internet]. 2023 Nov 3 [cited 2024 Jun 3];13(11):2172-80. Available from: https://doi.org/10.9734/ijecc/2023/v13i113379
Dubey L, Prasanna B, Ramesh B. Analysis of drought tolerant and susceptible maize genotypes using SSR markers tagging candidate genes and consensus QTLs for drought tolerance. Indian Journal of Genetics and Plant Breeding. 2009;69(04):344-51.
Tesfaye K, Zaidi P, Gbegbelegbe S, Boeber C, Rahut DB, Getaneh F, et al. Climate change impacts and potential benefits of heat-tolerant maize in South Asia. Theoretical and Applied Climatology. 2017130:;959-70. https://doi.org/10.1007/s00704-016-1931-6
Heat Stress Tolerant Maize for Asia (HTMA) [Internet]. Available from: Heat Stress Tolerant Maize for Asia (HTMA) – CIMMYT
Kulkarni AP, Tripathi MP, Gautam D, Koirala KB, Kandel M, Regmi D, et al. Impact of adoption of heat-stress tolerant maize hybrid on yield and profitability: Evidence from Terai region of Nepal. Front Sustain Food Syst [Internet]. 2023 Apr 3 [cited 2024 May 26];7:1101717. https://doi.org/10.3389/fsufs.2023.1101717
Nelimor C, Badu-Apraku B, Tetteh AY, N'guetta AS. Assessment of genetic diversity for drought, heat and combined drought and heat stress tolerance in early maturing maize landraces. Plants. 2019;8(11):518. https://doi.org/10.3390/plants8110518
Cairns JE, Crossa J, Zaidi P, Grudloyma P, Sanchez C, Araus JL, et al. Identification of drought, heat and combined drought and heat tolerant donors in maize. Crop Science. 2013;53(4):1335-46. https://doi.org/10.2135/cropsci2012.09.0545
Alam MA, Seetharam K, Zaidi PH, Dinesh A, Vinayan MT, Nath UK. Dissecting heat stress tolerance in tropical maize (Zea mays L.). Field Crops Research. 2017;204:110-19. https://doi.org/10.1016/j.fcr.2017.01.006
Yi Q, Álvarez-Iglesias L, Malvar RA, Romay M, Revilla P. A worldwide maize panel revealed new genetic variation for cold tolerance. Theoretical and Applied Genetics. 2021;134:1083-94. https://doi.org/10.1007/s00122-020-03753-3
Wani SH, Samantara K, Razzaq A, Kakani G, Kumar P. Back to the wild: mining maize (Zea mays L.) disease resistance using advanced breeding tools. Molecular Biology Reports. 2022;49(6):5787-803. https://doi.org/10.1007/s11033-021-06815-x
Maxted N, Kell S. Establishment of a global network for the in situ conservation of crop wild relatives: Status and needs. Thematic Background Study [Internet]. 2009 [cited 2024]. Available from: https://www.fao.org/4/i1500e/i1500e18a.pdf
Lennon JR, Krakowsky M, Goodman M, Flint-Garcia S, Balint-Kurti PJ. Identification of alleles conferring resistance to gray leaf spot in maize derived from its wild progenitor species teosinte. Crop Science. 2016;56(1):209-18. https://doi.org/10.2135/cropsci2014.07.0468
Adhikari S, Joshi A, Kumar A, Singh NK, Jaiswal JP, Jeena AS, et al. Identification of QTL for banded leaf and sheath blight in teosinte-derived maize population. Agricultural Research. 2022;11(2):155-63. https://doi.org/10.1007/s40003-021-00567-7
de Lange ES, Balmer D, Mauch?Mani B, Turlings TC. Insect and pathogen attack and resistance in maize and its wild ancestors. The Teosintes. 2014. https://doi.org/10.1111/nph.13005
Joshi A, Adhikari S, Singh NK. Mapping genomic regions for red flour beetle (Tribolium castaneum (Herbst)) resistance in teosinte (Zea mays L. subsp. parviglumis HH Iltis & Doebley) derived maize backcross inbred line population. Genetic Resources and Crop Evolution. 2021;68:1529-44. https://doi.org/10.1007/s10722-020-01083-3
Kasoma C, Shimelis H, Laing MD, Shayanowako AI, Mathew I. Revealing the genetic diversity of maize (Zea mays L.) populations by phenotypic traits and DArTseq markers for variable resistance to fall armyworm. Genetic Resources and Crop Evolution. 2021;68:243-59. https://doi.org/10.1007/s10722-020-00982-9
Prischmann D, Dashiell K, Schneider D, Eubanks M. Evaluating Tripsacum-introgressed maize germplasm after infestation with western corn rootworms (Coleoptera: Chrysomelidae). Journal of Applied Entomology. 2009;133(1):10-20. https://doi.org/10.1111/j.1439-0418.2008.01311.x
Amusan IO, Rich PJ, Menkir A, Housley T, Ejeta G. Resistance to Striga hermonthica in a maize inbred line derived from Zea diploperennis. New Phytologist. 2008;178(1):157-66. https://doi.org/10.1111/j.1469-8137.2007.02355.x
Adewale SA, Badu-Apraku B, Akinwale RO, Paterne AA, Gedil M, Garcia-Oliveira AL. Genome-wide association study of Striga resistance in early maturing white tropical maize inbred lines. BMC Plant Biology. 2020;20:1-16. https://doi.org/10.1186/s12870-020-02360-0
Karaya H, Njoroge K, Mugo S, Ariga E, Kanampiu F, Nderitu J. Determination of levels of Striga germination stimulants for maize gene bank accessions and elite inbred lines. International Journal of Plant Production. 2012;6(2):209-23. https://doi.org/10.22069/IJPP.2012.776
Ejeta G. The striga scourge in africa: a growing pandemic. Integrating New Technologies for Striga Control. 2007;3-16. 10.1142/9789812771506_0001
Menkir A, Kling J, Badu-Apraku B, Ingelbrecht I. Molecular marker-based genetic diversity assessment of Striga-resistant maize inbred lines. Theoretical and Applied Genetics. 2005;110:1145-53. https://doi.org/10.1007/s00122-005-1946-3
Shaibu AS, Badu-Apraku B, Ayo-Vaughan MA. Enhancing drought tolerance and Striga hermonthica resistance in maize using newly derived inbred lines from the wild maize relative, Zea diploperennis. Agronomy. 2021;11(1):177. https://doi.org/10.3390/agronomy11010177
Akaogu I, Badu-Apraku B, Adetimirin V, Vroh-bi I, Oyekunle M, Akinwale R. Genetic diversity assessment of extra-early maturing yellow maize inbreds and hybrid performance in Striga-infested and Striga-free environments. The Journal of Agricultural Science. 2013;151(4):519-37.https://doi.org/10.1017/S0021859612000652
Pfunye A, Rwafa R, Mabasa S, Gasura E. Genome-wide association studies for Striga asiatica resistance in tropical maize. International Journal of Genomics. 2021. https://doi.org/10.1155/2021/9979146
Langyan S, Bhardwaj R, Kumari J, Jacob SR, Bisht IS, Pandravada SR, et al. Nutritional diversity in native germplasm of maize collected from three different fragile ecosystems of India. Frontiers in Nutrition. 2022.;9:812599. https://doi.org/10.3389/fnut.2022.812599
Osorno J, Carena M. Creating groups of maize genetic diversity for grain quality: Implications for breeding. Maydica. 2008;53(2):131.
Sivaranjani R, Santha I, Pandey N, Vishwakarma AK, Nepolean T, Hossain F. Microsatellite-based genetic diversity in selected exotic and indigenous maize (Zea mays L.) inbred lines differing in total kernel carotenoids. Indian Journal of Genetics and Plant Breeding. 2014;74(01):34-41. https://doi.org/10.5958/j.0975-6906.74.1.005
Tiwari A, Prasanna B, Hossain F, Guruprasad K. Analysis of genetic variability for kernel carotenoid concentration in selected maize inbred lines. Indian Journal of Genetics and Plant Breeding. 2012;72(01):1-6.
Sivaranjani R, Prasanna BM, Hossain F, Santha IM. Genetic variability for total carotenoid concentration in selected tropical maize (Zea mays) inbred lines. Indian J Agri Sci [Internet]. 2013 Apr. 9 [cited 2024];83(4). Available from: https://epubs.icar.org.in/index.php/IJAgS/article/view/28851.
Gower JC. A general coefficient of similarity and some of its properties. Biometrics. 1971;857-71. https://doi.org/10.2307/2528823
Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences. 1979;76(10):5269-73. https://doi.org/10.1073/pnas.76.10.5269
Jaccard P. Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Na. 1908;44:223-70.
Sokal RR, Michener CD. A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin [Internet]. 1958;38:1409-38. Available from: A statistical method for evaluating systematic relationships. Semantic Scholar
Wright S. Evolution and the genetics of populations, volume 4: variability within and among natural populations. Vol. 4. University of Chicago press; 1984.
Tools: CurlyWhirly - multi-dimensional data visualizer Seeds of Discovery [Internet]. Available from: https://seedsofdiscovery.org/catalogue/curlywhirly-multi-dimensional-data-visualizer
Tools: kdsmart-hand-held-data-capture-application Seeds of Discovery. [Internet]. Available from: Tools: kdsmart-hand-held-data-capture-application Seeds of Discovery
Downloads
Published
Versions
- 01-01-2025 (2)
- 05-12-2024 (1)
How to Cite
Issue
Section
License
Copyright (c) 2024 S Sneha, K R V Sathya Sheela, R Ravikesavan, T Selvakumar, V Babu Rajendera Prasad
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).