This is an outdated version published on 15-11-2024. Read the most recent version.
Forthcoming

Vegetables grafting: Green surgical fusion to combat biotic and abiotic stresses

Authors

DOI:

https://doi.org/10.14719/pst.4065

Keywords:

Cucurbits, mechanism, rootstock, solanaceous, stress

Abstract

Vegetables are considered protective foods with high nutritional value and play an important role in subsistence farming, generating more income. Vegetable crops are highly sensitive to weather fluctuations, which impact their growth, flowering and fruit development and ultimately reduce yield. Grafting has become a viable green surgical option to decelerate conventional breeding approaches to enhance resilience to biotic and abiotic stresses. It is the technique of uniting 2 plants with different genetic backgrounds to create a new one, allowing genetic differences to transfer to the scion. This process offers a better alternative to chemical sterilants in mitigating certain soil-borne diseases in vegetable crops. Solanaceous and Cucurbitaceous vegetable grafting is commercially practiced and has a greater impact in farmers’ fields. Grafting is suggested to mitigate environmental changes' negative impact on vegetable quantity and quality by enhancing physiological activities in plants grafted onto rootstocks with potential traits. This method offers insights into stress response mechanisms, improves stress tolerance and enhances vegetable yield and quality. Recent research on vegetable grafting aims to promote sustainable agriculture by offering resilient, high-yielding crop varieties, such as dual-grafted Brimato, suitable for urban and suburban areas. Research is necessary to comprehend the genetic mechanism and physiological process of grafting technology, with a focus on identifying key physiological processes associated with the characteristic features of rootstock.

Downloads

Download data is not yet available.

References

Gayan A, Borah P, Nath D, Kataki R. Soil microbial diversity, soil health and agricultural sustainability. In: Sustainable Agriculture and the Environment. Academic Press; 2023. p. 107-26. https://doi.org/10.1016/B978-0-323-90500-8.00006-3

Bahadur A, Kumar R, Krishna H, Behera TK. Abiotic stress in vegetable crops: Challenges and strategies. Journal of Biotechnology and Bioresearch. 2023;5(1).

Merrick LF, Burke AB, Chen X, Carter AH. Breeding with major and minor genes: genomic selection for quantitative disease resistance. Frontiers in Plant Science. 2021 Aug 6;12:713667. https://doi.org/10.3389/fpls.2021.713667

Kawaide T. Utilization of rootstocks in cucurbits production in Japan. Jarq. 1985;18:284-89.

Ashita E. Grafting of watermelons. Korea (Chosun) Agricultural Newsletter. 1927;1:9. (in Japanese)

Yamakawa B. Grafting. Vegetable Handbook, Nishi (Ed.). Yokendo Book Company, Tokyo, Japan, (in Japanese). 1983;pp. 141-53.

Ally NM, Neetoo H, Ranghoo-Sanmukhiya VM, Coutinho TA. Greenhouse-grown tomatoes: microbial diseases and their control methods: a review. International Journal of Phytopathology. 2023;12(1):99-127. https://doi.org/10.33687/phytopath.012.01.4273

Ayd?n A, Yeti?ir H, Ba?ak H, Gungor R, ?engoz S, Çetin AN. Investigation of appropriate grafting method and plant applications to increase grafting success in cucumber. International Journal of Agriculture Environment and Food Sciences. 2022;6(2):275-84. https://doi.org/10.31015/jaefs.2022.2.11

Opoku-Agyemang F, Amissah JN, Owusu-Nketia S, Ofori PA, Notaguchi M. Optimization of cassava (Manihot esculenta Crantz) grafting technique to enhance its adoption in cassava cultivation. MethodsX. 2024;102904. https://doi.org/10.1016/j.mex.2024.102904

Noor RS, Wang Z, Umair M, Yaseen M, Ameen M, Rehman S-U, et al. Interactive effects of grafting techniques and scion-rootstocks combinations on vegetative growth, yield and quality of cucumber (Cucumis sativus L.). Agronomy. 2019;9(6):288. https://doi.org/10.3390/agronomy9060288

Oda M. New grafting method for fruit bearing vegetables in Japan. Japan Agricultural Research Quarterly. 1999;29:187-94.

Liu C, Lin W, Feng C, Wu X, Fu X, Xiong M, et al. A new grafting method for watermelon to inhibit rootstock re-growth and enhance scion growth. Agriculture. 2021;11(9):812. https://doi.org/10.20944/preprints202107.0693.v1

Wu K, Lou J, Li C, Li J. Experimental evaluation of rootstock clamping device for inclined inserted grafting of melons. Agriculture. 2021;11(8):736. https://doi.org/10.3390/agriculture11080736

Bahadur A, Singh AK, Krishna H, Kumar R, Singh J, Behera TK. Brimato: One plant, dual benefits. Indian Horticulture. 2023;68(4):10-11.

Hang SD, Zhao YP, Wang GY, Song GY. Vegetable grafting. China Agriculture Press, Beijing, China. 2005.

Dash R, Jena C, Pramanik K, Mohapatra PP. Vegetable grafting: A noble way to enhance production and quality. Pharma Innovation. 2021;10(8):1580-84.

Hartmann HT, Kester DE. Plant propagation: principles and practices. Prentice-Hall, New Jersey. 2002;pp 880. https://doi.org/10.2307/2422951

Oda M, Maruyama M, Mori G. Water transfer at graft union of tomato plants grafted onto Solanum rootstocks. Journal of the Japanese Society for Horticultural Science. 2005;74:458-63. https://doi.org/10.2503/jjshs.74.458

Johkan M, Mitukuri K, Yamasaki S, Mori G, Oda M. Causes of defolation and low survival rate of grafted sweet pepper plants. Scientia Horticulturae. 2009;119:103-07. https://doi.org/10.1016/j.scienta.2008.07.015

Goldschmidt EE. Plant grafting: new mechanisms, evolutionary implications. Frontiers in Plant Science. 2014;5. https://doi.org/10.3389/fpls.2014.00727

Dogra K, Kour K, Kumar R, Bakshi P, Kumar V. Graft-incompatibility in horticultural crops. International Journal of Current Microbiology and Applied Sciences. 2018;7:1805-20. https://doi.org/10.20546/ijcmas.2018.702.218

Wei SY, Wu Z, Huang J. Effects of rootstocks on growth and photosynthetic properties of grafted plants of netted melon. Acta Agriculturae Shanghai. 2006;22:114-17.

Panth M, Hassler SC, Baysal-Gurel F. Methods for management of soil borne diseases in crop production. Agriculture. 2020;10(1):16. https://doi.org/10.3390/agriculture10010016

Cohen R, Dombrovsky A, Louws FJ. Grafting as agrotechnology for reducing disease damage. Vegetable Grafting: Principles and Practices. Colla G, Pérez-Alfocea F and Schwarz D (Eds), CAB International, Oxfordshire, UK. 2017; pp. 155-70. https://doi.org/10.1079/9781780648972.0155

Liu N, Zhou B, Zhao, Lu B, Li Y, Hao J. Grafting eggplant onto tomato rootstock to suppress Verticilium dahlia infection: the effect of root exudates. HortScience. 2009;44:2058-62. https://doi.org/10.21273/hortsci.44.7.2058

Guan W, Zhao X, Hassel R, Thies J. Defense mechanisms involved in disease resistance of grafted vegetables. HortScience. 2012;47:164-70. https://doi.org/10.21273/hortsci.47.2.164

Gowda M, Sellaperumal C, Rai A, Singh B. Root knot nematodes menace in vegetable crops and their management in India: A review. Vegetable Science. 2019;46:1-16. https://doi.org/10.61180/aszcm525

Silva EHC, Soares RS, Diniz GM, Franco CA, Marin MV, Candido WS, et al. Grafting as a management tool to control Meloidogyne incognita in okra: Identifying rootstocks candidates. Scientia Horticulturae. 2019;246:354-59. https://doi.org/10.1016/j.scienta.2018.11.004

Louws FJ, Rivard CL, Kubota C. Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Scientia Horticulturae. 2010;127:127-46. https://doi.org/10.1016/j.scienta.2010.09.023

Oka Y, Offenbach R, Pivonia S. Pepper rootstock graft compatibility and response to Meloidogyne javanica and M. incognita. Journal of Nematology. 2004;36:137-41.

Thies JA, Levi A, Ariss JJ, Hassell RL. RKVL-318, a root-knot nematode-resistant watermelon line as rootstock for grafted watermelon. HortScience. 2015;50(1):141-42. https://doi.org/10.21273/hortsci.50.1.141

Liu B, Ren J, Zhang Y, An J, Chen M, Chen H, et al. A new grafted rootstock against root-knot nematode for cucumber, melon and watermelon. Agronomy for Sustainable Development. 2015;35(1):251-59. https://doi.org/10.1007/s13593-014-0234-5

Tamilselvi NA, Pugalendhi L, Sivakumar M. Defence response of cucurbitaceous rootstocks and bitter gourd scions to root knot nematode Meloidogyne incognita Kofoid and White. Vegetos. 2016;29(4):122-29. https://doi.org/10.5958/2229-4473.2016.00111.7

Zhang M, Yang XP, Liu G, Xu JH, Zhu LL, Gao CZ, et al. Histological differences between water melon grafted onto bottle gourd rootstock and self-rooted seedlings inoculated with Fusarium oxysporum f.sp. niveum. Cucurbitaceae. Proceedings of the Xth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae. 15-18 October 2012;299-305. https://doi.org/10.17660/actahortic.2015.1086.12

Shibuya T, Itagaki K, Wang Y, Endo R. Grafting transiently suppresses development of powdery mildew colonies, probably through a quantitative change in water relations of the host cucumber scions during graft healing. Scientia Horticulturae. 2015;192:197-99. https://doi.org/10.1016/j.scienta.2015.06.010

Ingel B, Caldwell D, Duong F, Parkinson D, McCulloh K, Iyer-Pascuzzi AS, et al. Revisiting the source of wilt symptoms: X-ray microcomputed tomography provides direct evidence that Ralstonia biomass clogs xylem vessels. Phyto Frontiers. 2021;2(1):41-51. https://doi.org/10.1094/phytofr-06-21-0041-r

Nakaho K, Hibino H, Miyagawa H. Possible mechanisms limiting movement of Ralstonia solanacearum in resistant tomato tissues. Journal of Phytopathology. 2000;148:181-90. https://doi.org/10.1046/j.1439-0434.2000.00476.x

Rotino GL, Sala T, Toppino L. Eggplant. Alien Gene Transfer in Crop Plants. Pratap, A., Kumar, J (Eds), Springer, New York. 2014;pp- 381-401. https://doi.org/10.1007/978-1-4614-8585-8_1

Kumbar S, Narayanankutty C, Kurian S, Unniampurath S, Barik S. Evaluation of eggplant rootstocks for grafting eggplant to improve fruit yield and control bacterial wilt disease. European Journal of Plant Pathology. 2021. https://doi.org/10.1007/s10658-021-02305-9

Lee JM, Oda M. Grafting of herbaceous vegetable and ornamental crops. Horticultural Reviews. 2003;28:61-124. https://doi.org/10.1002/9780470650851.ch2

Gousset C, Collonnier C, Mulya K, Mariska I, Rotino GL, Besse P, et al. Solanum torvum, as a useful source of resistance against bacterial and fungal diseases for improvement of eggplant (S. melongena L.). Plant Science. 2005;168(2):319-27. https://doi.org/10.1016/j.plantsci.2004.07.034

King SR, Davis AR, Zhang X, Crosby K. Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Scientia Horticulturae. 2010;127:106-11. https://doi.org/10.1016/j.scienta.2010.08.001

Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E. Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnology Journal. 2011;9:747-58. https://doi.org/10.1111/j.1467-7652.2010.00584.x

Striker GG. Flooding stress on plants: Anatomical, morphological and physiological responses. Botany, Mworia J (Ed), InTech, London. 2012; p.1-28.

Tian L, Zhang Y, Chen P, Zhang F, Li J, Yan F, et al. How does the waterlogging regime affect crop yield? A Global Meta-Analysis. 2021;12:634898. https://doi.org/10.3389/fpls.2021.634898

Bahadur A, Rai N, Kumar R, Tiwari SK, Singh AK, Rai AK, et al. Grafting tomato on eggplant as a potential tool to improve waterlogging tolerance in hybrid tomato. Vegetable Science. 2015;42(2):82-87.

Schwarz D, Rouphael Y, Colla G, Venema JH. Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Scientia Horticulturae. 2010;127(2):162-71. https://doi.org/10.1016/j.scienta.2010.09.016

Roy B, Basu A. Abiotic stresses in crop plants. Breeding and Biotechnology New India Publishing Agency, New Delhi. ISBN: 13: 978-81-89422-3. 2009.

Peng Y, Zhu J, Li W, Gao W, Shen R, Meng L . Effects of grafting on root growth, anaerobic respiration enzyme activity and aerenchyma of bitter melon under waterlogging stress. Scientia Horticulturae. 2020;261:108977. https://doi.org/10.1016/j.scienta.2019.108977

Yetisir H, Caliskan ME, Soylu S, Sakar M. Some physiological and growth responses of watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) grafted onto Lagenaria siceraria to flooding. Environmental and Experimental Botany. 2006;58(1):1-8. https://doi.org/10.1016/j.envexpbot.2005.06.010

Bhatt RM, Laxman RH, Singh TH, Divya MH, Srilakshmi, Nageswar Rao ADDVS. Response of brinjal genotypes to drought and flooding stress. Vegetable Science. 2014;41(2):116-24.

Sze H, Li X, Palmgren MG. Energization of plant cell membranes by H+-pumping ATPases. Regulation and Biosynthesis. Plant Cell. 1999;11(4):677-90. https://doi.org/10.2307/3870892

Rana M. Plant adaptations to salt and water stress. Advances in Botanical Research. 2011;57:1-32. https://doi.org/10.1016/b978-0-12-387692-8.00001-1

Fullana-Pericàs M, Ponce J, Conesa MÀ, Juan A, Ribas-Carbó M, Galmés J. Changes in yield, growth and photosynthesis in a drought-adapted Mediterranean tomato landrace (Solanum lycopersicum ‘Ramellet’) when grafted onto commercial rootstocks and Solanum pimpinellifolium. Scientia Horticulturae. 2018;233:70-77. https://doi.org/10.1016/j.scienta.2018.01.045

Liu SS, Li H, Lv XZ, Ahammed GJ, Xia XJ, Zhou J, et al. Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity. Scientific Reports. 2016;6:20212. https://doi.org/10.1038/srep20212

Bita CE, Tom Gerats T. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science. 2013;4:273. https://doi.org/10.3389/fpls.2013.00273

Li H, Wang F, Chen XJ, Shi K, Xia XJ, Considine MJ, et al. The sub/supra-optimal temperature-induced inhibition of photosynthesis and oxidative damage in cucumber leaves are alleviated by grafting onto figleaf gourd/luffa rootstocks. Physiologia Plantarum. 2014;152:571-84. https://doi.org/10.1111/ppl.12200

Palada MC, Wu DL. Evaluation of chili rootstocks for grafted sweet pepper production during the hot-wet and hot-dry seasons in Taiwan. Acta Horticulturae. 2008;767:167-74. https://doi.org/10.17660/actahortic.2008.767.14

Keatinge JDH, Lin LJ, Ebert AW, Chen WY, Hughes JdA, Luther GC, et al. Overcoming biotic and abiotic stresses in the Solanaceae through grafting: current status and future perspectives. Biological Agriculture and Horticulture. 2014;30:272-87. https://doi.org/10.1080/01448765.2014.964317

Pogany M, Elstner EF, Barna B. Cytokinin gene introduction confers tobacco necrosis virus resistance and higher antioxidant levels in tobacco. Free Radical Research. 2003;37:15-16. https://doi.org/10.1016/j.pmpp.2004.10.006

Li Y, Tian XM, Wei M, Shi QH, Yang FJ, Wang XF. Mechanisms of tolerance differences in cucumber seedlings grafted on rootstocks with different tolerance to low temperature and weak light stresses. Turkish Journal of Botany. 2015;39:606-14. https://doi.org/10.3906/bot-1404-115

Colla G, Rouphael Y, Leonardi C, Bie Z. Role of grafting in vegetable crops grown under saline conditions. Scientia Horticulturae. 2010; 127(2):147-55. https://doi.org/10.1016/j.scienta.2010.08.004

Parthasarathi T, Ephrath JE, Lazarovitch N. Grafting of tomato (Solanum lycopersicum L.) onto potato (Solanum tuberosum L.) to improve salinity tolerance. Scientia Horticulturae. 2021;282:1-9. https://doi.org/10.1016/j.scienta.2021.110050

Rouphael Y, Cardarelli M, Rea E, Colla G. Improving melon and cucumber photosynthetic activity, mineral composition and growth performance under salinity stress by grafting onto Cucurbita hybrid rootstocks. Photosynthetica. 2012;50:180-88. https://doi.org/10.1007/s11099-012-0002-1

Penella C, Nebauer SG, Quiñones A, Lopéz-Galarza S, San Bautista A, Calatayud AC. Some rootstocks improve pepper tolerance to mild salinity through ionic regulation. Plant Science. 2015;230:12-22. https://doi.org/10.1016/j.plantsci.2014.10.007

Haroldsen VM, Chi-Ham CL, Bennett AB. Transgene mobilization and regulatory uncertainty for non-GE fruit products of transgenic rootstocks. Journal of Biotechnology. 2012;161:349-53. https://doi.org/10.1016/j.jbiotec.2012.06.017

Nakamura S, Hondo K, Kawara T, Okazaki Y, Saito K, Kobayashi K, et al. Conferring high-temperature tolerance to nontransgenic tomato scions using graft transmission of RNA silencing of the fatty acid desaturase gene. Plant Biotechnology Journal. 2016;14(2):783-90. https://doi.org/10.1111/pbi.12429

Danesh D, Aarons S, McGill GE, Young ND. Genetic dissection of oligogenic resistance to bacterial wilt in tomato. Molecular Plant-Microbe Interactions. 1994;7:464-71. https://doi.org/10.1094/mpmi-7-0464

Marukawa S, Takatsu I. Studies on the selection of Cucurbita spp. as cucumber stock. 1. Compatibility, ability to tolerate low-temperature conditions and yield of black prickly cucumber. Bulletin Ibaraki Horticulture Experiment Station. 1969;3:11-18.

Yaghoobi J, Kaloshian I, Wen Y, Williamson VM. Mapping a new nematode resistance locus in Lycopersicon peruvianum. Theoretical and Applied Genetics. 1995;91:457-64. https://doi.org/10.1007/bf00222973

Bagnaresi P, Sala T, Irdani T, Scotto C, Lamontarana A, Beretta M, et al. Solanum torvum responses to the root-knot nematode Meloidogyne incognita. BMC Genomics. 2013;14:540. https://doi.org/10.1186/1471-2164-14-540

Ali M, Matsuzoe N, Okubo H, Fujieda K. Resistance of non-tuberous Solanum to root-knot nematode. Journal of Japan Society of Horticultural Science. 1992;60(4):921-26. https://doi.org/10.2503/jjshs.60.921

Gisbert C, Prohens J, Nuez F. Performance of eggplant grafted onto cultivated, wild and hybrid materials of eggplant and tomato. International Journal of Plant Production. 2011;5:367-80.

Miguel A, Marsal JI, López-Galarza S, Maroto JV, Tarazona V, Bono M. Resistance to nematodes of rootstocks for watermelon. Phytoma. 2006;175:20-24.

Bletsos F, Thanassoulopoulos C, Roupakias D. Effect of grafting on growth, yield and Verticillium wilt of egg plant. Horticulture Science. 2003;38:183-86. https://doi.org/10.21273/hortsci.38.2.183

De Souza VL, Cafe-Filho AC. Resistance to Leveillula taurica in the genus Capsicum. Plant Pathology. 2003;52:613-19. https://doi.org/10.1046/j.1365-3059.2003.00920.x

Bolger A, Scossa F, Bolger ME, Lanz C, Maumus F, Tohge T, et al. The genome of the stress-tolerant wild tomato species Solanum pennellii. Nature Genetics. 2014;46(9):1034-39. https://doi.org/10.1038/ng.3046

Zamir D, Ekstein MI, Zakay Y, Navot N, Zeidan M, Sarfatti M, et al. Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty1. Theoretical and Applied Genetics. 1994;88:141-46. https://doi.org/10.1007/BF00225889

Christodoulakis NS, Lampri PN, Fasseas C. Structural and cytochemical investigaction of the silverleaf nightshade (Solanum elaeagnifolium), a drought-resistant alien weed of the Greek flora. Australian Journal of Botany. 2009;57:432-38. https://doi.org/10.1071/bt08210

Shalata A, Mittova V, Volokita M, Guy M, Tal M. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiologia Plantarum. 2001;112(4):487-94. https://doi.org/10.1034/j.1399-3054.2001.1120405.x

Rush DW, Epstein E. Genotypic responses to salinity. Differences between salt sensitive and salt tolerant genotypes of the tomato. Plant Physiology. 1976;57:162-66. https://doi.org/10.1104/pp.57.2.162

Edelstein, M, Ben-Hur M, Cohen R, Burger Y, Ravina I. Boron and salinity effects on grafted and non-grafted melon plants. Plant and Soil. 2005;269:273-84. https://doi.org/10.1007/s11104-004-0598-4

Huang Y, Li J, Hua B, Liu Z, Fan M, Bie Z. Grafting onto different rootstocks as a means to improve watermelon tolerance to low potassium stress. Scientia Horticulturae. 2013;149:80-85. https://doi.org/10.1016/j.scienta.2012.02.009

Bhatt RM, Upreti KK, Divya MH, Bhat S, Pavithra CB, Sadashiva AT. Interspecific grafting to enhance physiological resilience to flooding stress in tomato (Solanum lycopersicum L.). Scientia Horticulturae. 2015;182:8-17. https://doi.org/10.1016/j.scienta.2014.10.043

Li H, Ahammed GJ, Zhou GN, Xia XJ, Zhou J, Shi K, et al. Unraveling main limiting sites of photosynthesis under below- and above-ground heat stress in cucumber and the alleviatory role of Luffa rootstock. Frontiers in Plant Science. 2015;7:746. https://doi.org/10.3389/fpls.2016.00746

Gao QH, Xu K, Wang XF, Wu Y. Effect of grafting on cold tolerance in eggplant seedlings. Acta Horticulturae. 2008;771:167-74. https://doi.org/10.17660/actahortic.2008.771.25

Zhang SP, Gu XF, Wang Y. Effect of low temperature stress on the physiological and biochemical indexes in cucumber seedling grafted on bur cucumber (Sicyos angulatus L.). Acta Horticulturae. 2008;771:243-47. https://doi.org/10.17660/actahortic.2008.771.36

Published

15-11-2024

Versions

How to Cite

1.
Janaharshini R, Velmurugan M, Indu Rani C, Venkatachalam SR, Saravanan PA. Vegetables grafting: Green surgical fusion to combat biotic and abiotic stresses. Plant Sci. Today [Internet]. 2024 Nov. 15 [cited 2024 Dec. 22];. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/4065

Issue

Section

Review Articles

Most read articles by the same author(s)