Review Articles
Vol. 11 No. 3 (2024)
Microfluidic devices to monitor water pollution
Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
Forensic DNA Center for Research and Training, College of Science, Al-Nahrain University, Baghdad, Iraq
Pathological analyses Department, College of Science, Al-Nahrain University, Baghdad, Iraq
Abstract
Microfluidic devices offer a promising future for monitoring water pollution caused by heavy metals, especially as the world continues to develop and the dangers of pollutants increases. This highlights the importance of developing these devices. These devices operate within the dynamics of fluids and quantify pollutants with numerous advantages, such as high sensitivity and specificity. They can also be integrated with mini sensors alongside analytical techniques. This study provides a brief overview of the types of microfluidic devices, such as polydimethylsiloxane (PDMS) and microfluidic paper-based (µPADs), and their application in pollutant detection. Microfluidic devices are associated with analytical methods such as spectrometric, colorimetric, and electrochemical techniques. Their importance lies in their simple manufacturing, rapid detection capabilities, and portability. Additionally, these devices can be updated to meet current needs in water pollution detection by integrating various analytical methods and enhancing these methods with programs that provide on-site results. There for microfluidics are currently of great importance due to their ease of manufacturing and applicability to various analytical methods, particularly for detecting pollutants in water. Many studies highlight the extraordinary potential of paper-based devices, which are the easiest to manufacture among all microfluidic devices and are not subject to stringent engineering and physical constraints. Most importantly, they can utilize colorimetric detection methods, providing instant results visible to the naked eye. This study demonstrates these advantages and suggests the potential for expanding their applications in medical, environmental, and biological fields.
References
- Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 2020;6(9). https://doi.org/10.1016/j.heliyon.2020.e04691
- Ma J, Ding Z, Wei G, Zhao H, Huang T. Sources of water pollution and evolution of water quality in the Wuwei basin of Shiyang river, Northwest China. Journal of environmental management. 2009;90(2):1168-77. https://doi.org/10.1016/j.jenvman.2008.05.007
- Sousa JC, Ribeiro AR, Barbosa MO, Pereira MFR, Silva AM. A review on environmental monitoring of water organic pollutants identified by EU guidelines. Journal of hazardous materials. 2018;344:146-62. https://doi.org/10.1016/j.jhazmat.2017.09.058
- Issakhov A, Alimbek A, Zhandaulet Y. The assessment of water pollution by chemical reaction products from the activities of industrial facilities: Numerical study. Journal of Cleaner Production. 2021;282:125239. https://doi.org/10.1016/j.jclepro.2020.125239
- Nazal M, Zhao H. Heavy Metals: Their Environmental Impacts and Mitigation: BoD–Books on Demand; 2021.
- Saeed SM, Shaker IM, editors. Assessment of heavy metals pollution in water and sediments and their effect on Oreochromis niloticus in the northern delta lakes, Egypt. 8th international symposium on Tilapia in Aquaculture; 2008: Central Laboratory for Aquaculture Research, Agricultural Research Center .
- Zamora-Ledezma C, Negrete-Bolagay D, Figueroa F, Zamora-Ledezma E, Ni M, Alexis F, Guerrero VH. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environmental Technology & Innovation. 2021;22:101504. https://doi.org/10.1016/j.eti.2021.101504
- Ayangbenro AS, Babalola OO. A new strategy for heavy metal polluted environments: a review of microbial biosorbents. International journal of environmental research and public health. 2017;14(1):94. https://doi.org/10.3390/ijerph14010094
- Bharti R, Sharma R. Effect of heavy metals: An overview. Materials Today: Proceedings. 2022;51:880-5. https://doi.org/10.1016/j.matpr.2021.06.278
- López-Botella A, Velasco I, Acién M, Sáez-Espinosa P, Todolí-Torró J-L, Sánchez-Romero R, Gómez-Torres MJ. Impact of heavy metals on human male fertility—An overview. Antioxidants. 2021;10(9):1473. https://doi.org/10.3390/antiox10091473
- Mitra S, Chakraborty AJ, Tareq AM, Emran TB, Nainu F, Khusro A, et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University-Science. 2022;34(3):101865. https://doi.org/10.1016/j.jksus.2022.101865
- Nkwunonwo UC, Odika PO, Onyia NI. A review of the health implications of heavy metals in food chain in Nigeria. The Scientific World Journal. 2020;2020(1):6594109. https://doi.org/10.1155/2020/6594109
- Mo Z, Qin J, Li Q, Wei Y, Ma S, Xiong Y, et al. Change of water sources reduces health risks from heavy metals via ingestion of water, soil, and rice in a riverine area, South China. Science of the Total Environment. 2015;530:163-70. https://doi.org/10.1016/j.scitotenv.2015.05.100
- Farkhondeh T, Naseri K, Esform A, Aramjoo H, Naghizadeh A. Drinking water heavy metal toxicity and chronic kidney diseases: a systematic review. Reviews on Environmental Health. 2021;36(3):359-66. https://doi.org/10.1515/reveh-2020-0110
- Hu G, Bakhtavar E, Hewage K, Mohseni M, Sadiq R. Heavy metals risk assessment in drinking water: An integrated probabilistic-fuzzy approach. Journal of environmental management. 2019;250:109514. https://doi.org/10.1016/j.jenvman.2019.109514
- Ohiagu FO, Chikezie P, Ahaneku C, Chikezie C. Human exposure to heavy metals: toxicity mechanisms and health implications. Material Sci Eng. 2022;6(2):78-87. https://doi.org/10.15406/mseij.2022.06.00183
- Moon MK, Lee I, Lee A, Park H, Kim MJ, Kim S, et al. Lead, mercury, and cadmium exposures are associated with obesity but not with diabetes mellitus: Korean National Environmental Health Survey (KoNEHS) 2015–2017. Environmental research. 2022;204:111888. https://doi.org/10.1016/j.envres.2021.111888
- Senanu LD, Kranjac-Berisavljevic G, Cobbina SJ. The use of local materials to remove heavy metals for household-scale drinking water treatment: A review. Environmental Technology & Innovation. 2023;29:103005. https://doi.org/10.1016/j.eti.2023.103005
- De La Riva BSV, Costa-Fernández J, Pereiro R, Sanz-Medel A. Spectrafluorimetric method for the rapid screening of toxic heavy metals in water samples. Analytica chimica acta. 2002;451(2):203-10. https://doi.org/10.1016/S0003-2670(01)01411-8
- Lace A, Cleary J. A review of microfluidic detection strategies for heavy metals in water. Chemosensors. 2021;9(4):60. https://doi.org/10.3390/chemosensors9040060
- Saez J, Catalan-Carrio R, Owens RM, Basabe-Desmonts L, Benito-Lopez F. Microfluidics and materials for smart water monitoring: A review. Analytica Chimica Acta. 2021;1186:338392. https://doi.org/10.1016/j.aca.2021.338392
- Ottino JM, Wiggins S. Introduction: mixing in microfluidics. The Royal Society; 2004. p. 923-35. https://doi.org/10.1098/rsta.2003.1355
- Jaywant SA, Arif KM. A comprehensive review of microfluidic water quality monitoring sensors. Sensors. 2019;19(21):4781. https://doi.org/10.3390/s19214781
- Ward K, Fan ZH. Mixing in microfluidic devices and enhancement methods. Journal of Micromechanics and Microengineering. 2015;25(9):094001. https://doi.org/10.1088/0960-1317/25/9/094001
- Li Z, Venkataraman A, Rosenbaum MA, Angenent LT. A Laminar?Flow Microfluidic Device for Quantitative Analysis of Microbial Electrochemical Activity. ChemSusChem. 2012;5(6):1119-23. https://doi.org/10.1002/cssc.201100736
- Castano-Alvarez M, Ayuso DFP, Granda MG, Fernández-Abedul MT, García JR, Costa-García A. Critical points in the fabrication of microfluidic devices on glass substrates. Sensors and Actuators B: Chemical. 2008;130(1):436-48. https://doi.org/10.1016/j.snb.2007.09.043
- Love JC, Anderson JR, Whitesides GM. Fabrication of three-dimensional microfluidic systems by soft lithography. Mrs Bulletin. 2001;26(7):523-8. https://doi.org/10.1557/mrs2001.124
- Lin Y, Gao C, Gritsenko D, Zhou R, Xu J. Soft lithography based on photolithography and two-photon polymerization. Microfluidics and Nanofluidics. 2018;22:1-11. https://doi.org/10.1007/s10404-018-2118-5
- Rogers JA, Nuzzo RG. Recent progress in soft lithography. Materials today. 2005;8(2):50-6. https://doi.org/10.1016/S1369-7021(05)00702-9
- Bhattacharjee N, Urrios A, Kang S, Folch A. The upcoming 3D-printing revolution in microfluidics. Lab on a Chip. 2016;16(10):1720-42. https://doi.org/10.1039/C6LC00163G
- Rupal BS, Garcia EA, Ayranci C, Qureshi AJ. 3D printed 3d-microfluidics: Recent developments and design challenges. Journal of Integrated Design and Process Science. 2018;22(1):5-20. https://doi.org/10.3233/jid-2018-0001
- Kang K, Oh S, Yi H, Han S, Hwang Y. Fabrication of truly 3D microfluidic channel using 3D-printed soluble mold. Biomicrofluidics. 2018;12(1). https://doi.org/10.1063/1.5012548
- Faisal N, Zindani D, Kumar K, Bhowmik S. Laser micromachining of engineering materials-a review. Micro and nano machining of engineering materials: recent developments. 2019:121-36. https://doi.org/10.1007/978-3-319-99900-5_6
- Rizvi NH, Milne DK, Rumsby PT, Gower MC, editors. Laser micromachining: new developments and applications. Laser Applications in Microelectronic and Optoelectronic Manufacturing V; 2000: SPIE. https://doi.org/10.1117/12.387562
- Hsieh Y-K, Chen S-C, Huang W-L, Hsu K-P, Gorday KAV, Wang T, Wang J. Direct micromachining of microfluidic channels on biodegradable materials using laser ablation. Polymers. 2017;9(7):242. https://doi.org/10.3390/polym9070242
- He Y, Wu W, Zhang T, Fu J. Micro structure fabrication with a simplified hot embossing method. Rsc Advances. 2015;5(49):39138-44. https://doi.org/10.1039/C5RA01410G
- Jeon JS, Chung S, Kamm RD, Charest JL. Hot embossing for fabrication of a microfluidic 3D cell culture platform. Biomedical microdevices. 2011;13:325-33. https://doi.org/10.1007/s10544-010-9496-0
- Kim M, Moon B-U, Hidrovo CH. Enhancement of the thermo-mechanical properties of PDMS molds for the hot embossing of PMMA microfluidic devices. Journal of Micromechanics and Microengineering. 2013;23(9):095024. https://doi.org/10.1088/0960-1317/23/9/095024
- Strong EB, Knutsen C, Wells JT, Jangid AR, Mitchell ML, Martinez NW, Martinez AW. Wax-printed fluidic time delays for automating multi-step assays in paper-based microfluidic devices (MicroPADs). Inventions. 2019;4(1):20. https://doi.org/10.3390/inventions4010020
- Selvakumar B, Kathiravan A. Sensory materials for microfluidic paper based analytical devices-A review. Talanta. 2021;235:122733. https://doi.org/10.1016/j.talanta.2021.122733
- Dungchai W, Chailapakul O, Henry CS. A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst. 2011;136(1):77-82. https://doi.org/10.1039/C0AN00406E
- Zhou J, Khodakov DA, Ellis AV, Voelcker NH. Surface modification for PDMS?based microfluidic devices. Electrophoresis. 2012;33(1):89-104. https://doi.org/10.1002/elps.201100482
- Pol R, Céspedes F, Gabriel D, Baeza M. Microfluidic lab-on-a-chip platforms for environmental monitoring. TrAC Trends in Analytical Chemistry. 2017;95:62-8. https://doi.org/10.1016/j.trac.2017.08.001
- Gao B, Li X, Yang Y, Chu J, He B. Emerging paper microfluidic devices. Analyst. 2019;144(22):6497-511. https://doi.org/10.1039/C9AN01275C
- Cardoso TM, de Souza FR, Garcia PT, Rabelo D, Henry CS, Coltro WK. Versatile fabrication of paper-based microfluidic devices with high chemical resistance using scholar glue and magnetic masks. Analytica chimica acta. 2017;974:63-8. https://doi.org/10.1016/j.aca.2017.03.043
- Thuo MM, Martinez RV, Lan W-J, Liu X, Barber J, Atkinson MB, et al. Fabrication of low-cost paper-based microfluidic devices by embossing or cut-and-stack methods. Chemistry of Materials. 2014;26(14):4230-7. https://doi.org/10.1021/cm501596s
- Tian T, Bi Y, Xu X, Zhu Z, Yang C. Integrated paper-based microfluidic devices for point-of-care testing. Analytical methods. 2018;10(29):3567-81. https://doi.org/10.1039/C8AY00864G
- Qin X, Liu J, Zhang Z, Li J, Yuan L, Zhang Z, Chen L. Microfluidic paper-based chips in rapid detection: Current status, challenges, and perspectives. TrAC Trends in Analytical Chemistry. 2021;143:116371. https://doi.org/10.1016/j.trac.2021.116371
- Campbell JM, Balhoff JB, Landwehr GM, Rahman SM, Vaithiyanathan M, Melvin AT. Microfluidic and paper-based devices for disease detection and diagnostic research. International journal of molecular sciences. 2018;19(9):2731. https://doi.org/10.3390/ijms19092731
- Almeida MIG, Jayawardane BM, Kolev SD, McKelvie ID. Developments of microfluidic paper-based analytical devices (?PADs) for water analysis: A review. Talanta. 2018;177:176-90. https://doi.org/10.1016/j.talanta.2017.08.072
- Nishat S, Jafry AT, Martinez AW, Awan FR. based microfluidics: Simplified fabrication and assay methods. Sensors and Actuators B: Chemical. 2021;336:129681. https://doi.org/10.1016/j.snb.2021.129681
- Gai H, Li Y, Yeung ES. Optical detection systems on microfluidic chips. Microfluidics: Technologies and Applications. 2011:171-201. https://doi.org/10.1007/128_2011_144
- Anushka, Bandopadhyay A, Das PK. Paper based microfluidic devices: a review of fabrication techniques and applications. The European Physical Journal Special Topics. 2023;232(6):781-815. https://doi.org/10.1140/epjs/s11734-022-00727-y
- Malekghasemi S, Kahveci E, Duman M. Rapid and alternative fabrication method for microfluidic paper based analytical devices. Talanta. 2016;159:401-11. https://doi.org/10.1016/j.talanta.2016.06.040
- Placer L, Lavilla I, Pena-Pereira F, Bendicho C. A 3D microfluidic paper-based analytical device with smartphone-assisted colorimetric detection for iodine speciation in seaweed samples. Sensors and Actuators B: Chemical. 2023;377:133109. https://doi.org/10.1016/j.snb.2022.133109
- Potrich C, Lunelli L, Cocuzza M, Marasso S, Pirri C, Pederzolli C. Simple PDMS microdevice for biomedical applications. Talanta. 2019;193:44-50. https://doi.org/10.1016/j.talanta.2018.09.080
- Faustino V, Catarino SO, Lima R, Minas G. Biomedical microfluidic devices by using low-cost fabrication techniques: A review. Journal of biomechanics. 2016;49(11):2280-92. https://doi.org/10.1016/j.jbiomech.2015.11.031
- Pouyanfar N, Harofte SZ, Soltani M, Siavashy S, Asadian E, Ghorbani-Bidkorbeh F, et al. Artificial intelligence-based microfluidic platforms for the sensitive detection of environmental pollutants: Recent advances and prospects. Trends in Environmental Analytical Chemistry. 2022;34:e00160. https://doi.org/10.1016/j.teac.2022.e00160
- Akther F, Yakob SB, Nguyen N-T, Ta HT. Surface modification techniques for endothelial cell seeding in PDMS microfluidic devices. Biosensors. 2020;10(11):182. https://doi.org/10.3390/bios10110182
- Karakuzu B, Gulmez Y, Tekin HC. Absorbance-based detection of arsenic in a microfluidic system with push-and-pull pumping. Microelectronic engineering. 2021;247:111583. https://doi.org/10.1016/j.mee.2021.111583
- Luo C, Meng F, Francis A. Fabrication and application of silicon-reinforced PDMS masters. Microelectronics journal. 2006;37(10):1036-46. https://doi.org/10.1016/j.mejo.2006.04.010
- Scott SM, Ali Z. Fabrication methods for microfluidic devices: An overview. Micromachines. 2021;12(3):319. https://doi.org/10.3390/mi12030319
- Shakeri A, Khan S, Didar TF. Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices. Lab on a Chip. 2021;21(16):3053-75. https://doi.org/10.1039/D1LC00288K
- Vlachopoulou ME, Kokkoris G, Cardinaud C, Gogolides E, Tserepi A. Plasma etching of poly (dimethylsiloxane): Roughness formation, mechanism, control, and application in the fabrication of microfluidic structures. Plasma Processes and Polymers. 2013;10(1):29-40. https://doi.org/10.1002/ppap.201200008
- Koerner T, Brown L, Xie R, Oleschuk RD. Epoxy resins as stamps for hot embossing of microstructures and microfluidic channels. Sensors and Actuators B: Chemical. 2005;107(2):632-9. https://doi.org/10.1016/j.snb.2004.11.035
- Mitchell KR, Esene JE, Woolley AT. Advances in multiplex electrical and optical detection of biomarkers using microfluidic devices. Analytical and Bioanalytical Chemistry. 2022;414(1):167-80. https://doi.org/10.1007/s00216-021-03553-8
- Mukherji S, Mondal D. Lab-on-chip (LOC) devices for point of care (POC) applications. Medical biosensors for point of care (POC) applications: Elsevier; 2017. p. 99-131. https://doi.org/10.1016/B978-0-08-100072-4.00005-8
- Kuswandi B, Huskens J, Verboom W. Optical sensing systems for microfluidic devices: a review. Analytica chimica acta. 2007;601(2):141-55. https://doi.org/10.1016/j.aca.2007.08.046
- Wang R, Wang X. Sensing of inorganic ions in microfluidic devices. Sensors and Actuators B: Chemical. 2021;329:129171. https://doi.org/10.1016/j.snb.2020.129171
- Nishi K, Isobe S-I, Zhu Y, Kiyama R. Fluorescence-based bioassays for the detection and evaluation of food materials. Sensors. 2015;15(10):25831-67. https://doi.org/10.3390/s151025831
- Kaneta T, Alahmad W, Varanusupakul P. Microfluidic paper-based analytical devices with instrument-free detection and miniaturized portable detectors. applied spectroscopy reviews. 2019;54(2):117-41. https://doi.org/10.1080/05704928.2018.1457045
- Myers FB, Lee LP. Innovations in optical microfluidic technologies for point-of-care diagnostics. Lab on a Chip. 2008;8(12):2015-31. https://doi.org/10.1039/b812343h
- Choi J-r, Song H, Sung JH, Kim D, Kim K. Microfluidic assay-based optical measurement techniques for cell analysis: A review of recent progress. Biosensors and Bioelectronics. 2016;77:227-36. https://doi.org/10.1016/j.bios.2015.07.068
- Kee JS, Poenar DP, Neuzil P, Yobas L. Monolithic integration of poly (dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurements. Sensors and Actuators B: Chemical. 2008;134(2):532-8. https://doi.org/10.1016/j.snb.2008.05.040
- Pires NMM, Dong T, Hanke U, Hoivik N. Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications. Sensors. 2014;14(8):15458-79. https://doi.org/10.3390/s140815458
- Al Mughairy B, Al-Lawati HA. Recent analytical advancements in microfluidics using chemiluminescence detection systems for food analysis. TrAC Trends in Analytical Chemistry. 2020;124:115802. https://doi.org/10.1016/j.trac.2019.115802
- Sampaio TR, Fonseca A. Chemiluminescence detection in urethane-acrylate microfluidic devices. Sensors and Actuators B: Chemical. 2015;213:215-21. https://doi.org/10.1016/j.snb.2015.02.096
- Liu M, Lin Z, Lin J-M. A review on applications of chemiluminescence detection in food analysis. Analytica Chimica Acta. 2010;670(1-2):1-10. https://doi.org/10.1016/j.aca.2010.04.039
- Calabretta MM, Zangheri M, Calabria D, Lopreside A, Montali L, Marchegiani E, et al. based immunosensors with bio-chemiluminescence detection. Sensors. 2021;21(13):4309. https://doi.org/10.3390/s21134309
- Kim Y-T, Ko SO, Lee JH. Microfluidic device capable of sensing ultrafast chemiluminescence. Talanta. 2009;78(3):998-1003. https://doi.org/10.1016/j.talanta.2009.01.004
- Kummari S, Panicker LR, Rao Bommi J, Karingula S, Sunil Kumar V, Mahato K, Goud KY. Trends in paper-based sensing devices for clinical and environmental monitoring. Biosensors. 2023;13(4):420. https://doi.org/10.3390/bios13040420
- Li T, Díaz-Real JA, Holm T. Design of electrochemical microfluidic detectors: A review. Advanced Materials Technologies. 2021;6(12):2100569. https://doi.org/10.1002/admt.202100569
- Alhalaili B, Popescu IN, Rusanescu CO, Vidu R. Microfluidic devices and microfluidics-integrated electrochemical and optical (Bio) Sensors for pollution analysis: a review. Sustainability. 2022;14(19):12844. https://doi.org/10.3390/su141912844
- Nesakumar N, Kesavan S, Li C-Z, Alwarappan S. Microfluidic electrochemical devices for biosensing. Journal of Analysis and Testing. 2019;3:3-18. https://doi.org/10.1007/s41664-019-0083-y
- Jin J-H, Kim JH, Lee SK, Choi SJ, Park CW, Min NK. A fully integrated paper-microfluidic electrochemical device for simultaneous analysis of physiologic blood ions. Sensors. 2018;18(1):104. https://doi.org/10.3390/s18010104
- Shi J, Tang F, Xing H, Zheng H, Lianhua B, Wei W. Electrochemical detection of Pb and Cd in paper-based microfluidic devices. Journal of the Brazilian Chemical Society. 2012;23:1124-30. https://doi.org/10.1590/S0103-50532012000600018
- Wang W, Ding S, Wang Z, Lv Q, Zhang Q. Electrochemical paper-based microfluidic device for on-line isolation of proteins and direct detection of lead in urine. Biosensors and Bioelectronics. 2021;187:113310. https://doi.org/10.1016/j.bios.2021.113310
- Saem S, Zhu Y, Luu H, Moran-Mirabal J. Bench-top fabrication of an all-PDMS microfluidic electrochemical cell sensor integrating micro/nanostructured electrodes. Sensors. 2017;17(4):732. https://doi.org/10.3390/s17040732
- Chikkaveeraiah BV, Liu H, Mani V, Papadimitrakopoulos F, Rusling JF. A microfluidic electrochemical device for high sensitivity biosensing: Detection of nanomolar hydrogen peroxide. Electrochemistry Communications. 2009;11(4):819-22. https://doi.org/10.1016/j.elecom.2009.02.002
- De Oliveira RA, Nicoliche CY, Pasqualeti AM, Shimizu FM, Ribeiro IR, Melendez ME, et al. Low-cost and rapid-production microfluidic electrochemical double-layer capacitors for fast and sensitive breast cancer diagnosis. Analytical chemistry. 2018;90(21):12377-84. https://doi.org/10.1021/acs.analchem.8b02605
- ?ahin S, Ünlü C, Trabzon L. Affinity biosensors developed with quantum dots in microfluidic systems. Emergent Materials. 2021;4:187-209. https://doi.org/10.1007/s42247-021-00195-5
- Omar NAS, Fen YW, Irmawati R, Hashim HS, Ramdzan NSM, Fauzi NIM. A review on carbon dots: synthesis, characterization and its application in optical sensor for environmental monitoring. Nanomaterials. 2022;12(14):2365. https://doi.org/10.3390/nano12142365
- Chen B, Zou L, Wu Z, Sun M. The application of quantum dots in aquaculture pollution detection. Toxicological & Environmental Chemistry. 2016;98(3-4):385-94. https://doi.org/10.1080/02772248.2015.1123482
- Park M, Seo TS. An integrated microfluidic device with solid-phase extraction and graphene oxide quantum dot array for highly sensitive and multiplex detection of trace metal ions. Biosensors and Bioelectronics. 2019;126:405-11. https://doi.org/10.1016/j.bios.2018.11.010
- Ghazi M, Janfaza S, Tahmooressi H, Ravishankara A, Earl E, Tasnim N, Hoorfar M. Enhanced selectivity of microfluidic gas sensors by modifying microchannel geometry and surface chemistry with graphene quantum dots. Sensors and Actuators B: Chemical. 2021;342:130050. https://doi.org/10.1016/j.snb.2021.130050
- Boyd-Moss M, Baratchi S, Di Venere M, Khoshmanesh K. Self-contained microfluidic systems: a review. Lab on a Chip. 2016;16(17):3177-92. https://doi.org/10.1039/C6LC00712K
- Hárendar?íková L, Petr J. Smartphones & microfluidics: marriage for the future. Electrophoresis. 2018;39(11):1319-28. https://doi.org/10.1002/elps.201700389
- Hu J, Cui X, Gong Y, Xu X, Gao B, Wen T, et al. Portable microfluidic and smartphone-based devices for monitoring of cardiovascular diseases at the point of care. Biotechnology advances. 2016;34(3):305-20. https://doi.org/10.1016/j.biotechadv.2016.02.008
- Lopez-Ruiz N, Curto VF, Erenas MM, Benito-Lopez F, Diamond D, Palma AJ, Capitan-Vallvey LF. Smartphone-based simultaneous pH and nitrite colorimetric determination for paper microfluidic devices. Analytical chemistry. 2014;86(19):9554-62. https://doi.org/10.1021/ac5019205
- Barbosa AI, Gehlot P, Sidapra K, Edwards AD, Reis NM. Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device. Biosensors and Bioelectronics. 2015;70:5-14. https://doi.org/10.1016/j.bios.2015.03.006
Downloads
Download data is not yet available.