Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Microfluidic devices to monitor water pollution

DOI
https://doi.org/10.14719/pst.4092
Submitted
12 June 2024
Published
04-08-2024
Versions

Abstract

Microfluidic devices offer a promising future for monitoring water pollution caused by heavy metals, especially as the world continues to develop and the dangers of pollutants increases. This highlights the importance of developing these devices. These devices operate within the dynamics of fluids and quantify pollutants with numerous advantages, such as high sensitivity and specificity. They can also be integrated with mini sensors alongside analytical techniques. This study provides a brief overview of the types of microfluidic devices, such as polydimethylsiloxane (PDMS) and microfluidic paper-based (µPADs), and their application in pollutant detection. Microfluidic devices are associated with analytical methods such as spectrometric, colorimetric, and electrochemical techniques. Their importance lies in their simple manufacturing, rapid detection capabilities, and portability. Additionally, these devices can be updated to meet current needs in water pollution detection by integrating various analytical methods and enhancing these methods with programs that provide on-site results. There for microfluidics are currently of great importance due to their ease of manufacturing and applicability to various analytical methods, particularly for detecting pollutants in water. Many studies highlight the extraordinary potential of paper-based devices, which are the easiest to manufacture among all microfluidic devices and are not subject to stringent engineering and physical constraints. Most importantly, they can utilize colorimetric detection methods, providing instant results visible to the naked eye. This study demonstrates these advantages and suggests the potential for expanding their applications in medical, environmental, and biological fields.

References

  1. Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 2020;6(9). https://doi.org/10.1016/j.heliyon.2020.e04691
  2. Ma J, Ding Z, Wei G, Zhao H, Huang T. Sources of water pollution and evolution of water quality in the Wuwei basin of Shiyang river, Northwest China. Journal of environmental management. 2009;90(2):1168-77. https://doi.org/10.1016/j.jenvman.2008.05.007
  3. Sousa JC, Ribeiro AR, Barbosa MO, Pereira MFR, Silva AM. A review on environmental monitoring of water organic pollutants identified by EU guidelines. Journal of hazardous materials. 2018;344:146-62. https://doi.org/10.1016/j.jhazmat.2017.09.058
  4. Issakhov A, Alimbek A, Zhandaulet Y. The assessment of water pollution by chemical reaction products from the activities of industrial facilities: Numerical study. Journal of Cleaner Production. 2021;282:125239. https://doi.org/10.1016/j.jclepro.2020.125239
  5. Nazal M, Zhao H. Heavy Metals: Their Environmental Impacts and Mitigation: BoD–Books on Demand; 2021.
  6. Saeed SM, Shaker IM, editors. Assessment of heavy metals pollution in water and sediments and their effect on Oreochromis niloticus in the northern delta lakes, Egypt. 8th international symposium on Tilapia in Aquaculture; 2008: Central Laboratory for Aquaculture Research, Agricultural Research Center .
  7. Zamora-Ledezma C, Negrete-Bolagay D, Figueroa F, Zamora-Ledezma E, Ni M, Alexis F, Guerrero VH. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environmental Technology & Innovation. 2021;22:101504. https://doi.org/10.1016/j.eti.2021.101504
  8. Ayangbenro AS, Babalola OO. A new strategy for heavy metal polluted environments: a review of microbial biosorbents. International journal of environmental research and public health. 2017;14(1):94. https://doi.org/10.3390/ijerph14010094
  9. Bharti R, Sharma R. Effect of heavy metals: An overview. Materials Today: Proceedings. 2022;51:880-5. https://doi.org/10.1016/j.matpr.2021.06.278
  10. López-Botella A, Velasco I, Acién M, Sáez-Espinosa P, Todolí-Torró J-L, Sánchez-Romero R, Gómez-Torres MJ. Impact of heavy metals on human male fertility—An overview. Antioxidants. 2021;10(9):1473. https://doi.org/10.3390/antiox10091473
  11. Mitra S, Chakraborty AJ, Tareq AM, Emran TB, Nainu F, Khusro A, et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University-Science. 2022;34(3):101865. https://doi.org/10.1016/j.jksus.2022.101865
  12. Nkwunonwo UC, Odika PO, Onyia NI. A review of the health implications of heavy metals in food chain in Nigeria. The Scientific World Journal. 2020;2020(1):6594109. https://doi.org/10.1155/2020/6594109
  13. Mo Z, Qin J, Li Q, Wei Y, Ma S, Xiong Y, et al. Change of water sources reduces health risks from heavy metals via ingestion of water, soil, and rice in a riverine area, South China. Science of the Total Environment. 2015;530:163-70. https://doi.org/10.1016/j.scitotenv.2015.05.100
  14. Farkhondeh T, Naseri K, Esform A, Aramjoo H, Naghizadeh A. Drinking water heavy metal toxicity and chronic kidney diseases: a systematic review. Reviews on Environmental Health. 2021;36(3):359-66. https://doi.org/10.1515/reveh-2020-0110
  15. Hu G, Bakhtavar E, Hewage K, Mohseni M, Sadiq R. Heavy metals risk assessment in drinking water: An integrated probabilistic-fuzzy approach. Journal of environmental management. 2019;250:109514. https://doi.org/10.1016/j.jenvman.2019.109514
  16. Ohiagu FO, Chikezie P, Ahaneku C, Chikezie C. Human exposure to heavy metals: toxicity mechanisms and health implications. Material Sci Eng. 2022;6(2):78-87. https://doi.org/10.15406/mseij.2022.06.00183
  17. Moon MK, Lee I, Lee A, Park H, Kim MJ, Kim S, et al. Lead, mercury, and cadmium exposures are associated with obesity but not with diabetes mellitus: Korean National Environmental Health Survey (KoNEHS) 2015–2017. Environmental research. 2022;204:111888. https://doi.org/10.1016/j.envres.2021.111888
  18. Senanu LD, Kranjac-Berisavljevic G, Cobbina SJ. The use of local materials to remove heavy metals for household-scale drinking water treatment: A review. Environmental Technology & Innovation. 2023;29:103005. https://doi.org/10.1016/j.eti.2023.103005
  19. De La Riva BSV, Costa-Fernández J, Pereiro R, Sanz-Medel A. Spectrafluorimetric method for the rapid screening of toxic heavy metals in water samples. Analytica chimica acta. 2002;451(2):203-10. https://doi.org/10.1016/S0003-2670(01)01411-8
  20. Lace A, Cleary J. A review of microfluidic detection strategies for heavy metals in water. Chemosensors. 2021;9(4):60. https://doi.org/10.3390/chemosensors9040060
  21. Saez J, Catalan-Carrio R, Owens RM, Basabe-Desmonts L, Benito-Lopez F. Microfluidics and materials for smart water monitoring: A review. Analytica Chimica Acta. 2021;1186:338392. https://doi.org/10.1016/j.aca.2021.338392
  22. Ottino JM, Wiggins S. Introduction: mixing in microfluidics. The Royal Society; 2004. p. 923-35. https://doi.org/10.1098/rsta.2003.1355
  23. Jaywant SA, Arif KM. A comprehensive review of microfluidic water quality monitoring sensors. Sensors. 2019;19(21):4781. https://doi.org/10.3390/s19214781
  24. Ward K, Fan ZH. Mixing in microfluidic devices and enhancement methods. Journal of Micromechanics and Microengineering. 2015;25(9):094001. https://doi.org/10.1088/0960-1317/25/9/094001
  25. Li Z, Venkataraman A, Rosenbaum MA, Angenent LT. A Laminar?Flow Microfluidic Device for Quantitative Analysis of Microbial Electrochemical Activity. ChemSusChem. 2012;5(6):1119-23. https://doi.org/10.1002/cssc.201100736
  26. Castano-Alvarez M, Ayuso DFP, Granda MG, Fernández-Abedul MT, García JR, Costa-García A. Critical points in the fabrication of microfluidic devices on glass substrates. Sensors and Actuators B: Chemical. 2008;130(1):436-48. https://doi.org/10.1016/j.snb.2007.09.043
  27. Love JC, Anderson JR, Whitesides GM. Fabrication of three-dimensional microfluidic systems by soft lithography. Mrs Bulletin. 2001;26(7):523-8. https://doi.org/10.1557/mrs2001.124
  28. Lin Y, Gao C, Gritsenko D, Zhou R, Xu J. Soft lithography based on photolithography and two-photon polymerization. Microfluidics and Nanofluidics. 2018;22:1-11. https://doi.org/10.1007/s10404-018-2118-5
  29. Rogers JA, Nuzzo RG. Recent progress in soft lithography. Materials today. 2005;8(2):50-6. https://doi.org/10.1016/S1369-7021(05)00702-9
  30. Bhattacharjee N, Urrios A, Kang S, Folch A. The upcoming 3D-printing revolution in microfluidics. Lab on a Chip. 2016;16(10):1720-42. https://doi.org/10.1039/C6LC00163G
  31. Rupal BS, Garcia EA, Ayranci C, Qureshi AJ. 3D printed 3d-microfluidics: Recent developments and design challenges. Journal of Integrated Design and Process Science. 2018;22(1):5-20. https://doi.org/10.3233/jid-2018-0001
  32. Kang K, Oh S, Yi H, Han S, Hwang Y. Fabrication of truly 3D microfluidic channel using 3D-printed soluble mold. Biomicrofluidics. 2018;12(1). https://doi.org/10.1063/1.5012548
  33. Faisal N, Zindani D, Kumar K, Bhowmik S. Laser micromachining of engineering materials-a review. Micro and nano machining of engineering materials: recent developments. 2019:121-36. https://doi.org/10.1007/978-3-319-99900-5_6
  34. Rizvi NH, Milne DK, Rumsby PT, Gower MC, editors. Laser micromachining: new developments and applications. Laser Applications in Microelectronic and Optoelectronic Manufacturing V; 2000: SPIE. https://doi.org/10.1117/12.387562
  35. Hsieh Y-K, Chen S-C, Huang W-L, Hsu K-P, Gorday KAV, Wang T, Wang J. Direct micromachining of microfluidic channels on biodegradable materials using laser ablation. Polymers. 2017;9(7):242. https://doi.org/10.3390/polym9070242
  36. He Y, Wu W, Zhang T, Fu J. Micro structure fabrication with a simplified hot embossing method. Rsc Advances. 2015;5(49):39138-44. https://doi.org/10.1039/C5RA01410G
  37. Jeon JS, Chung S, Kamm RD, Charest JL. Hot embossing for fabrication of a microfluidic 3D cell culture platform. Biomedical microdevices. 2011;13:325-33. https://doi.org/10.1007/s10544-010-9496-0
  38. Kim M, Moon B-U, Hidrovo CH. Enhancement of the thermo-mechanical properties of PDMS molds for the hot embossing of PMMA microfluidic devices. Journal of Micromechanics and Microengineering. 2013;23(9):095024. https://doi.org/10.1088/0960-1317/23/9/095024
  39. Strong EB, Knutsen C, Wells JT, Jangid AR, Mitchell ML, Martinez NW, Martinez AW. Wax-printed fluidic time delays for automating multi-step assays in paper-based microfluidic devices (MicroPADs). Inventions. 2019;4(1):20. https://doi.org/10.3390/inventions4010020
  40. Selvakumar B, Kathiravan A. Sensory materials for microfluidic paper based analytical devices-A review. Talanta. 2021;235:122733. https://doi.org/10.1016/j.talanta.2021.122733
  41. Dungchai W, Chailapakul O, Henry CS. A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst. 2011;136(1):77-82. https://doi.org/10.1039/C0AN00406E
  42. Zhou J, Khodakov DA, Ellis AV, Voelcker NH. Surface modification for PDMS?based microfluidic devices. Electrophoresis. 2012;33(1):89-104. https://doi.org/10.1002/elps.201100482
  43. Pol R, Céspedes F, Gabriel D, Baeza M. Microfluidic lab-on-a-chip platforms for environmental monitoring. TrAC Trends in Analytical Chemistry. 2017;95:62-8. https://doi.org/10.1016/j.trac.2017.08.001
  44. Gao B, Li X, Yang Y, Chu J, He B. Emerging paper microfluidic devices. Analyst. 2019;144(22):6497-511. https://doi.org/10.1039/C9AN01275C
  45. Cardoso TM, de Souza FR, Garcia PT, Rabelo D, Henry CS, Coltro WK. Versatile fabrication of paper-based microfluidic devices with high chemical resistance using scholar glue and magnetic masks. Analytica chimica acta. 2017;974:63-8. https://doi.org/10.1016/j.aca.2017.03.043
  46. Thuo MM, Martinez RV, Lan W-J, Liu X, Barber J, Atkinson MB, et al. Fabrication of low-cost paper-based microfluidic devices by embossing or cut-and-stack methods. Chemistry of Materials. 2014;26(14):4230-7. https://doi.org/10.1021/cm501596s
  47. Tian T, Bi Y, Xu X, Zhu Z, Yang C. Integrated paper-based microfluidic devices for point-of-care testing. Analytical methods. 2018;10(29):3567-81. https://doi.org/10.1039/C8AY00864G
  48. Qin X, Liu J, Zhang Z, Li J, Yuan L, Zhang Z, Chen L. Microfluidic paper-based chips in rapid detection: Current status, challenges, and perspectives. TrAC Trends in Analytical Chemistry. 2021;143:116371. https://doi.org/10.1016/j.trac.2021.116371
  49. Campbell JM, Balhoff JB, Landwehr GM, Rahman SM, Vaithiyanathan M, Melvin AT. Microfluidic and paper-based devices for disease detection and diagnostic research. International journal of molecular sciences. 2018;19(9):2731. https://doi.org/10.3390/ijms19092731
  50. Almeida MIG, Jayawardane BM, Kolev SD, McKelvie ID. Developments of microfluidic paper-based analytical devices (?PADs) for water analysis: A review. Talanta. 2018;177:176-90. https://doi.org/10.1016/j.talanta.2017.08.072
  51. Nishat S, Jafry AT, Martinez AW, Awan FR. based microfluidics: Simplified fabrication and assay methods. Sensors and Actuators B: Chemical. 2021;336:129681. https://doi.org/10.1016/j.snb.2021.129681
  52. Gai H, Li Y, Yeung ES. Optical detection systems on microfluidic chips. Microfluidics: Technologies and Applications. 2011:171-201. https://doi.org/10.1007/128_2011_144
  53. Anushka, Bandopadhyay A, Das PK. Paper based microfluidic devices: a review of fabrication techniques and applications. The European Physical Journal Special Topics. 2023;232(6):781-815. https://doi.org/10.1140/epjs/s11734-022-00727-y
  54. Malekghasemi S, Kahveci E, Duman M. Rapid and alternative fabrication method for microfluidic paper based analytical devices. Talanta. 2016;159:401-11. https://doi.org/10.1016/j.talanta.2016.06.040
  55. Placer L, Lavilla I, Pena-Pereira F, Bendicho C. A 3D microfluidic paper-based analytical device with smartphone-assisted colorimetric detection for iodine speciation in seaweed samples. Sensors and Actuators B: Chemical. 2023;377:133109. https://doi.org/10.1016/j.snb.2022.133109
  56. Potrich C, Lunelli L, Cocuzza M, Marasso S, Pirri C, Pederzolli C. Simple PDMS microdevice for biomedical applications. Talanta. 2019;193:44-50. https://doi.org/10.1016/j.talanta.2018.09.080
  57. Faustino V, Catarino SO, Lima R, Minas G. Biomedical microfluidic devices by using low-cost fabrication techniques: A review. Journal of biomechanics. 2016;49(11):2280-92. https://doi.org/10.1016/j.jbiomech.2015.11.031
  58. Pouyanfar N, Harofte SZ, Soltani M, Siavashy S, Asadian E, Ghorbani-Bidkorbeh F, et al. Artificial intelligence-based microfluidic platforms for the sensitive detection of environmental pollutants: Recent advances and prospects. Trends in Environmental Analytical Chemistry. 2022;34:e00160. https://doi.org/10.1016/j.teac.2022.e00160
  59. Akther F, Yakob SB, Nguyen N-T, Ta HT. Surface modification techniques for endothelial cell seeding in PDMS microfluidic devices. Biosensors. 2020;10(11):182. https://doi.org/10.3390/bios10110182
  60. Karakuzu B, Gulmez Y, Tekin HC. Absorbance-based detection of arsenic in a microfluidic system with push-and-pull pumping. Microelectronic engineering. 2021;247:111583. https://doi.org/10.1016/j.mee.2021.111583
  61. Luo C, Meng F, Francis A. Fabrication and application of silicon-reinforced PDMS masters. Microelectronics journal. 2006;37(10):1036-46. https://doi.org/10.1016/j.mejo.2006.04.010
  62. Scott SM, Ali Z. Fabrication methods for microfluidic devices: An overview. Micromachines. 2021;12(3):319. https://doi.org/10.3390/mi12030319
  63. Shakeri A, Khan S, Didar TF. Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices. Lab on a Chip. 2021;21(16):3053-75. https://doi.org/10.1039/D1LC00288K
  64. Vlachopoulou ME, Kokkoris G, Cardinaud C, Gogolides E, Tserepi A. Plasma etching of poly (dimethylsiloxane): Roughness formation, mechanism, control, and application in the fabrication of microfluidic structures. Plasma Processes and Polymers. 2013;10(1):29-40. https://doi.org/10.1002/ppap.201200008
  65. Koerner T, Brown L, Xie R, Oleschuk RD. Epoxy resins as stamps for hot embossing of microstructures and microfluidic channels. Sensors and Actuators B: Chemical. 2005;107(2):632-9. https://doi.org/10.1016/j.snb.2004.11.035
  66. Mitchell KR, Esene JE, Woolley AT. Advances in multiplex electrical and optical detection of biomarkers using microfluidic devices. Analytical and Bioanalytical Chemistry. 2022;414(1):167-80. https://doi.org/10.1007/s00216-021-03553-8
  67. Mukherji S, Mondal D. Lab-on-chip (LOC) devices for point of care (POC) applications. Medical biosensors for point of care (POC) applications: Elsevier; 2017. p. 99-131. https://doi.org/10.1016/B978-0-08-100072-4.00005-8
  68. Kuswandi B, Huskens J, Verboom W. Optical sensing systems for microfluidic devices: a review. Analytica chimica acta. 2007;601(2):141-55. https://doi.org/10.1016/j.aca.2007.08.046
  69. Wang R, Wang X. Sensing of inorganic ions in microfluidic devices. Sensors and Actuators B: Chemical. 2021;329:129171. https://doi.org/10.1016/j.snb.2020.129171
  70. Nishi K, Isobe S-I, Zhu Y, Kiyama R. Fluorescence-based bioassays for the detection and evaluation of food materials. Sensors. 2015;15(10):25831-67. https://doi.org/10.3390/s151025831
  71. Kaneta T, Alahmad W, Varanusupakul P. Microfluidic paper-based analytical devices with instrument-free detection and miniaturized portable detectors. applied spectroscopy reviews. 2019;54(2):117-41. https://doi.org/10.1080/05704928.2018.1457045
  72. Myers FB, Lee LP. Innovations in optical microfluidic technologies for point-of-care diagnostics. Lab on a Chip. 2008;8(12):2015-31. https://doi.org/10.1039/b812343h
  73. Choi J-r, Song H, Sung JH, Kim D, Kim K. Microfluidic assay-based optical measurement techniques for cell analysis: A review of recent progress. Biosensors and Bioelectronics. 2016;77:227-36. https://doi.org/10.1016/j.bios.2015.07.068
  74. Kee JS, Poenar DP, Neuzil P, Yobas L. Monolithic integration of poly (dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurements. Sensors and Actuators B: Chemical. 2008;134(2):532-8. https://doi.org/10.1016/j.snb.2008.05.040
  75. Pires NMM, Dong T, Hanke U, Hoivik N. Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications. Sensors. 2014;14(8):15458-79. https://doi.org/10.3390/s140815458
  76. Al Mughairy B, Al-Lawati HA. Recent analytical advancements in microfluidics using chemiluminescence detection systems for food analysis. TrAC Trends in Analytical Chemistry. 2020;124:115802. https://doi.org/10.1016/j.trac.2019.115802
  77. Sampaio TR, Fonseca A. Chemiluminescence detection in urethane-acrylate microfluidic devices. Sensors and Actuators B: Chemical. 2015;213:215-21. https://doi.org/10.1016/j.snb.2015.02.096
  78. Liu M, Lin Z, Lin J-M. A review on applications of chemiluminescence detection in food analysis. Analytica Chimica Acta. 2010;670(1-2):1-10. https://doi.org/10.1016/j.aca.2010.04.039
  79. Calabretta MM, Zangheri M, Calabria D, Lopreside A, Montali L, Marchegiani E, et al. based immunosensors with bio-chemiluminescence detection. Sensors. 2021;21(13):4309. https://doi.org/10.3390/s21134309
  80. Kim Y-T, Ko SO, Lee JH. Microfluidic device capable of sensing ultrafast chemiluminescence. Talanta. 2009;78(3):998-1003. https://doi.org/10.1016/j.talanta.2009.01.004
  81. Kummari S, Panicker LR, Rao Bommi J, Karingula S, Sunil Kumar V, Mahato K, Goud KY. Trends in paper-based sensing devices for clinical and environmental monitoring. Biosensors. 2023;13(4):420. https://doi.org/10.3390/bios13040420
  82. Li T, Díaz-Real JA, Holm T. Design of electrochemical microfluidic detectors: A review. Advanced Materials Technologies. 2021;6(12):2100569. https://doi.org/10.1002/admt.202100569
  83. Alhalaili B, Popescu IN, Rusanescu CO, Vidu R. Microfluidic devices and microfluidics-integrated electrochemical and optical (Bio) Sensors for pollution analysis: a review. Sustainability. 2022;14(19):12844. https://doi.org/10.3390/su141912844
  84. Nesakumar N, Kesavan S, Li C-Z, Alwarappan S. Microfluidic electrochemical devices for biosensing. Journal of Analysis and Testing. 2019;3:3-18. https://doi.org/10.1007/s41664-019-0083-y
  85. Jin J-H, Kim JH, Lee SK, Choi SJ, Park CW, Min NK. A fully integrated paper-microfluidic electrochemical device for simultaneous analysis of physiologic blood ions. Sensors. 2018;18(1):104. https://doi.org/10.3390/s18010104
  86. Shi J, Tang F, Xing H, Zheng H, Lianhua B, Wei W. Electrochemical detection of Pb and Cd in paper-based microfluidic devices. Journal of the Brazilian Chemical Society. 2012;23:1124-30. https://doi.org/10.1590/S0103-50532012000600018
  87. Wang W, Ding S, Wang Z, Lv Q, Zhang Q. Electrochemical paper-based microfluidic device for on-line isolation of proteins and direct detection of lead in urine. Biosensors and Bioelectronics. 2021;187:113310. https://doi.org/10.1016/j.bios.2021.113310
  88. Saem S, Zhu Y, Luu H, Moran-Mirabal J. Bench-top fabrication of an all-PDMS microfluidic electrochemical cell sensor integrating micro/nanostructured electrodes. Sensors. 2017;17(4):732. https://doi.org/10.3390/s17040732
  89. Chikkaveeraiah BV, Liu H, Mani V, Papadimitrakopoulos F, Rusling JF. A microfluidic electrochemical device for high sensitivity biosensing: Detection of nanomolar hydrogen peroxide. Electrochemistry Communications. 2009;11(4):819-22. https://doi.org/10.1016/j.elecom.2009.02.002
  90. De Oliveira RA, Nicoliche CY, Pasqualeti AM, Shimizu FM, Ribeiro IR, Melendez ME, et al. Low-cost and rapid-production microfluidic electrochemical double-layer capacitors for fast and sensitive breast cancer diagnosis. Analytical chemistry. 2018;90(21):12377-84. https://doi.org/10.1021/acs.analchem.8b02605
  91. ?ahin S, Ünlü C, Trabzon L. Affinity biosensors developed with quantum dots in microfluidic systems. Emergent Materials. 2021;4:187-209. https://doi.org/10.1007/s42247-021-00195-5
  92. Omar NAS, Fen YW, Irmawati R, Hashim HS, Ramdzan NSM, Fauzi NIM. A review on carbon dots: synthesis, characterization and its application in optical sensor for environmental monitoring. Nanomaterials. 2022;12(14):2365. https://doi.org/10.3390/nano12142365
  93. Chen B, Zou L, Wu Z, Sun M. The application of quantum dots in aquaculture pollution detection. Toxicological & Environmental Chemistry. 2016;98(3-4):385-94. https://doi.org/10.1080/02772248.2015.1123482
  94. Park M, Seo TS. An integrated microfluidic device with solid-phase extraction and graphene oxide quantum dot array for highly sensitive and multiplex detection of trace metal ions. Biosensors and Bioelectronics. 2019;126:405-11. https://doi.org/10.1016/j.bios.2018.11.010
  95. Ghazi M, Janfaza S, Tahmooressi H, Ravishankara A, Earl E, Tasnim N, Hoorfar M. Enhanced selectivity of microfluidic gas sensors by modifying microchannel geometry and surface chemistry with graphene quantum dots. Sensors and Actuators B: Chemical. 2021;342:130050. https://doi.org/10.1016/j.snb.2021.130050
  96. Boyd-Moss M, Baratchi S, Di Venere M, Khoshmanesh K. Self-contained microfluidic systems: a review. Lab on a Chip. 2016;16(17):3177-92. https://doi.org/10.1039/C6LC00712K
  97. Hárendar?íková L, Petr J. Smartphones & microfluidics: marriage for the future. Electrophoresis. 2018;39(11):1319-28. https://doi.org/10.1002/elps.201700389
  98. Hu J, Cui X, Gong Y, Xu X, Gao B, Wen T, et al. Portable microfluidic and smartphone-based devices for monitoring of cardiovascular diseases at the point of care. Biotechnology advances. 2016;34(3):305-20. https://doi.org/10.1016/j.biotechadv.2016.02.008
  99. Lopez-Ruiz N, Curto VF, Erenas MM, Benito-Lopez F, Diamond D, Palma AJ, Capitan-Vallvey LF. Smartphone-based simultaneous pH and nitrite colorimetric determination for paper microfluidic devices. Analytical chemistry. 2014;86(19):9554-62. https://doi.org/10.1021/ac5019205
  100. Barbosa AI, Gehlot P, Sidapra K, Edwards AD, Reis NM. Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device. Biosensors and Bioelectronics. 2015;70:5-14. https://doi.org/10.1016/j.bios.2015.03.006

Downloads

Download data is not yet available.