Revolutionizing livestock sustainability: Pioneering breeding strategies for superior forage biomass and quality
DOI:
https://doi.org/10.14719/pst.4094Keywords:
Forage biomass, Quality improvement, QTL mapping, Genomics, MASAbstract
Livestock primarily rely on forage crops as a source of feed and nutrition. The milk productivity of a cow or meat production in goat/sheep could directly be associated with the availability of a sufficient quantity of quality green fodders with essential nutrients in a balanced ratio. Feeding the cereal/grass: legume fodders in the required proportion will not only improve productivity but also the reproductive capacity of animals. However, many countries of the world experience a huge gap between demand and availability of green fodder. In this context, emphasis should be placed on developing efficient forage genotypes with increased biomass and quality as per the requirements of animals, duly considering their digestibility. Breeding approaches encompassing required classical approaches, including wide hybridization to exploit natural genetic variability, biotechnological tools such as transgenic technology, marker-assisted selection, genomic selection, and various omics techniques alongside high-throughput phenotyping using multispectral cameras, would help to sustain livestock productivity by meeting out the present and future fodder requirements coupled with enhanced nutrients
Downloads
References
FAO. Milk production [Internet]. [cited 2024 Jun 7]. Available from: https://www.fao.org/dairy-production-products/production/en/
Vision I. 2050: Indian Grassland and Fodder Research Institute. Jhansi (UP). :40.
Sampath KT, Ramachandra KS, Anandan S. Livestock feed and fodder resources of India and strategies for their judicious utilization: A review. Indian J Anim Sci. 2005;75(12).
Mehra UR, Khan MY, Lal M, Hasan QZ, Das A, Bhar R, et al. Effect of sources of supplementary protein on intake, digestion and efficiency of energy utilization in buffaloes fed wheat straw based diets. Asian-Australas J Anim Sci. 2006;19(5):638–44. https://doi.org/10.5713/ajas.2006.638
Mor P, Bals B, Tyagi AK, Teymouri F, Tyagi N, Kumar S, et al. Effect of ammonia fiber expansion on the available energy content of wheat straw fed to lactating cattle and buffalo in India. J Dairy Sci. 2018 Sep;101(9):7990–8003. https://doi.org/10.3168/jds.2018-14584
Wang B, Sun H, Wang D, Liu H, Liu J. Constraints on the utilization of cereal straw in lactating dairy cows: A review from the perspective of systems biology. Animal Nutrition. 2022 Jun;9:240–8. https://doi.org/10.1016/j.aninu.2022.01.002
Singh DN, Bohra JS, Tyagi V, Singh T, Banjara TR, Gupta G. A review of India’s fodder production status and opportunities. Grass and Forage Science. 2022 Mar 11;77(1):1–10. https://doi.org/10.1111/gfs.12561
Chand S, Indu, Singhal RK, Govindasamy P. Agronomical and breeding approaches to improve the nutritional status of forage crops for better livestock productivity. Grass and Forage Science [Internet]. 2022 Mar 18;77(1):11–32. https://doi.org/10.1111/gfs.12557
Capstaff NM, Miller AJ. Improving the Yield and Nutritional Quality of Forage Crops. Front Plant Sci [Internet]. 2018 Apr 24;9. https://doi.org/10.3389/fpls.2018.00535
Hatfield RD, Kalscheur KF. Carbohydrate and Protein Nutritional Chemistry of Forages. In: Forages [Internet]. Wiley; 2020. p. 595–607. https://doi.org/10.1002/9781119436669.ch33
Dryden GM. Animal nutrition science. Cabi; 2008. https://doi.org/10.1079/9781845934125.0000
Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev. 1990;70(2):567–90. https://doi.org/10.1152/physrev.1990.70.2.567
Jung HG. Forage Lignins and Their Effects on Fiber Digestibility. Agron J [Internet]. 1989 Jan [cited 2024 Jun 10];81(1):33–8. https://doi.org/10.2134/agronj1989.00021962008100010006x
Piluzza G, Sulas L, Bullitta S. Tannins in forage plants and their role in animal husbandry and environmental sustainability: a review. Grass and Forage Science. 2014;69(1):32–48. https://doi.org/10.1111/gfs.12053
RA D. Proanthocyanidins-a final frontier in flavonoid research? New Phytol. 2005;165:9–28. https://doi.org/10.1111/j.1469-8137.2004.01217.x
Eickler B, Gierus M, Kleen J, Taube F. Specific polyphenol oxidase activity of red clover (Trifolium pratense) and its relation with forage quality in field experiments. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science. 2011;61(1):39–49. https://doi.org/10.1080/09064710903463626
Dewhurst RJ, Scollan ND, Lee MRF, Ougham HJ, Humphreys MO. Forage breeding and management to increase the beneficial fatty acid content of ruminant products. Proceedings of the Nutrition society. 2003;62(2):329–36. https://doi.org/10.1079/PNS2003241
Hawke JC, Butler GW, Bailey RW. Chemistry and biochemistry of herbage. Lipids. 1973;213–63. https://doi.org/10.1071/AN14833
Barrett BA, Faville MJ, Nichols SN, Simpson WR, Bryan GT, Conner AJ. Breaking through the feed barrier: options for improving forage genetics. Anim Prod Sci. 2015;55(7):883–92. https://doi.org/10.1071/AN14833
Wood JD, Enser M, Fisher A V., Nute GR, Richardson RI, Sheard PR. Manipulating meat quality and composition. Proceedings of the Nutrition Society. 1999 May 28;58(2):363–70. https://doi.org/10.1017/S0029665199000488
Thomson NA, Poel W van der. Seasonal variation of the fatty acid composition of milkfat from Friesian cows grazing pasture. In: Proceedings of the New Zealand Society of Animal Production. 2000. p. 314–7.
Moore JE. Forage crops. Crop quality, storage, and utilization. 1980;61–91. https://doi.org/10.2135/1980.cropquality.c3
Nolan J. Nutrient requirements of domesticated ruminants [Internet]. CSIRO publishing; 2007 [cited 2024 Jun 11]. Available from: https://books.google.com/books?hl=en&lr=&id=sJonfxmtq6EC&oi=fnd&pg=PR3&dq=Nolan+J.+Nutrient+requirements+of+domesticated+ruminants.+CSIRO+publishing%3B+2007.&ots=YUnlyr3bhZ&sig=3Ve0SLjUpz7XvU7zc8Z6sJvJbUs
Ballet N, Robert JC, Williams PE V. Vitamins in forages. 2000; https://doi.org/10.1079/9780851993447.0399
Rauf S, Sienkiewicz-Paderewska D, Malinowski DP, Hussain MM, Niazi IAK, Kausar M. Forages: Ecology, Breeding Objectives and Procedures. In: Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits [Internet]. Cham: Springer International Publishing; 2016. p. 149–201. https://doi.org/10.1007/978-3-319-22518-0_5
HUMPHREYS MO. Genetic improvement of forage crops – past, present and future. J Agric Sci. 2005 Dec 20;143(6):441–8. https://doi.org/10.1017/S0021859605005599
Lashley MA, Chitwood MC, Harper CA, Moorman CE, DePerno CS. Collection, Handling and Analysis of Forages for Concentrate Selectors. Wildlife Biology in Practice. 2014 May 13;10(1). https://doi.org/10.2461/wbp.2014.10.2
Niazi IAK, Rafique A, Rauf S, Teixeira da Silva JA, Afzal M. Simultaneous selection for stem borer resistance and forage related traits in maize (Zea mays ssp. mays L.) × teosinte (Zea mays ssp. mexicana L.) derived populations. Crop Protection. 2014 Mar;57:27–34. https://doi.org/10.1016/j.cropro.2013.10.026
Chheda HR, Aken’Ova ME, Crowder L V. Pennisetum Typhoides S. & H. and P. Purpureum Schum. Hybrids for Forage in the Low?Altitude Humid Tropics 1. Crop Sci. 1973 Jan;13(1):122–3. https://doi.org/10.2135/cropsci1973.0011183X001300010041x
Fang YongYu FY, Yu XiaoXia YX, Yu Zhuo YZ, Ma YanHong MY, Li XiaoYu LX, Li ZaoZhe LZ. Analysis of agronomic characteristics and chromosome configuration of new strains of sorghum-sudangrass of low hydrocyanic acid content. 2012;
Gardner RK, Kingston-Smith AH, Harper JA, Jenkins GM. Improving forage protein through the use of Festulolium introgressions. In: 7th British Grassland Society Research Conference. 2003.
Vindhiyavarman P, Mothilal A, Ganesan KN, Mohammed SEN. A perennial forage groundnut of interspecific origin. International Arachis Newsletter. 2000;(20).
Natesan S, Singh TS, Duraisamy T, Chandrasekharan N, Chandran S, Adhimoolam K, et al. Characterization of crtRB1 Gene Polymorphism and ?-Carotene Content in Maize Landraces Originated From North Eastern Himalayan Region (NEHR) of India. Front Sustain Food Syst. 2020 Jun 12;4. https://doi.org/10.3389/fsufs.2020.00078
Packialakshmi M, Palani Divya M, Baranidharan K, Geetha S, Nalliappan Ganesan K, Vijayabhama M, et al. Exploring the Nutritional Potential of Wild Grass Fodder for Mega Herbivore (Elephas maximus) in the Foothills of Western Ghats. Animals. 2022 Oct 4;12(19):2668. https://doi.org/10.3390/ani12192668
Hooper DU. The role of complementarity and competition in ecosystem responses to variation in plant diversity. Ecology. 1998;79(2):704–19. https://doi.org/10.1890/0012-9658(1998)079[0704:TROCAC]2.0.CO;2
Lüscher A, Mueller?Harvey I, Soussana JF, Rees RM, Peyraud JL. Potential of legume?based grassland–livestock systems in Europe: a review. Grass and forage science. 2014;69(2):206–28. https://doi.org/10.1111/gfs.12124
Hoekstra NJ, Finn JA, Hofer D, Lüscher A. The effect of drought and interspecific interactions on depth of water uptake in deep- and shallow-rooting grassland species as determined by ?<sup>18</sup>O natural abundance. Biogeosciences. 2014 Aug 25;11(16):4493–506. https://doi.org/10.5194/bg-11-4493-2014
Mangwe M, Bryant R, Gregorini P. Rumen fermentation and fatty acid composition of milk of mid lactating dairy cows grazing chicory and ryegrass. Animals. 2020;10(1):169. https://doi.org/10.3390/ani10010169
Minneé EMK, Waghorn GC, Lee JM, Clark CEF. Including chicory or plantain in a perennial ryegrass/white clover-based diet of dairy cattle in late lactation: Feed intake, milk production and rumen digestion. Anim Feed Sci Technol. 2017 May;227:52–61. https://doi.org/10.1016/j.anifeedsci.2017.03.008
Li G, Kemp PD. Forage Chicory (Cichorium intybus L.): A Review of Its Agronomy and Animal Production. In 2005. p. 187–222. https://doi.org/10.1016/S0065-2113(05)88005-8
Heshmati S, Tonn B, Isselstein J. White clover population effects on the productivity and yield stability of mixtures with perennial ryegrass and chicory. Field Crops Res. 2020 Jul;252:107802. https://doi.org/10.1016/j.fcr.2020.107802
Nölke I, Komainda M, Tonn B, Feuerstein U, Isselstein J. Including chicory and selecting white clover varieties as strategies to improve temporal stability of forage yield and quality in white-clover-based temporary grassland. European Journal of Agronomy. 2021 Oct;130:126362. https://doi.org/10.1016/j.eja.2021.126362
Kaila V, Sood VK, Chaudhary HK, Bhandari JC, Sood A, Mittal RK. Morphological and RAPD markers - mediated assessment of genetic diversity amongst various Trifolium species and identification of potential ideotypes for genetic upgradation of berseem under changed climate in mid-hills of north-west Himalayas. INDIAN JOURNAL OF GENETICS AND PLANT BREEDING [Internet]. 2009 Nov 25;69(04):361–6. Available from: https://www.isgpb.org/journal/index.php/IJGPB/article/view/1164
Boppenmaier J, Melchinger AE, Brunklaus?Jung E, Geiger HH, Herrmann RG. Genetic Diversity for RFLPs in European Maize Inbreds: I. Relation to Performance of Flint? Dent Crosses for Forage Traits. Crop Sci. 1992;32(4):895–902. https://doi:10.2135/cropsci1992.0011183X003200040012x
Mavlyutov Y, Kostenko S, Shamustakimova A, Klimenko I. Genetic variability analysis of Russian cultivars of ryegrass (Lolium) based on SCoT markers. Journal of Genetic Engineering and Biotechnology. 2022 Dec;20(1):163. https://doi.org/10.1186/s43141-022-00446-w
Zeng B, Zhang XQ, Lan Y, Yang WY. Evaluation of genetic diversity and relationshipsin orchardgrass (Dactylis glomerata L.) germplasm based on SRAP markers. Canadian Journal of Plant Science. 2008;88(1):53–60. https://doi.org/10.4141/CJPS07017
Habte E, Muktar MS, Abdena A, Hanson J, Sartie AM, Negawo AT, et al. Forage performance and detection of marker trait associations with potential for Napier grass (Cenchrus purpureus) improvement. Agronomy. 2020;10(4):542. https://doi.org/10.3390/agronomy10040542
Takawale PS, Jade SS, Bahulikar RA, Desale JS. Diversity in Lucerne (Medicago sativa L.) germplasm for morphology, yield and molecular markers and their correlations. Indian Journal of Genetics and Plant Breeding (The). 2019 Oct 7;79(02). https://doi.org/10.31742/IJGPB.79.2.9
Pereira JF, Zhang J, Jessup R, Jones CS. Editorial: Forage crop improvement for improved livestock production and nutrition. Front Plant Sci. 2022 Dec 5;13. https://doi.org/10.3389/fpls.2022.1082873
Chen S. Advances in Molecular Breeding of Forage Crops: Technologies, Applications and Prospects. Agriculture. 2024 Feb 8;14(2):279. https://doi.org/10.3390/agriculture14020279
Kingston-Smith AH, Marshall AH, Moorby JM. Breeding for genetic improvement of forage plants in relation to increasing animal production with reduced environmental footprint. Animal. 2013;7(s1):79–88. https://doi.org/10.1017/S1751731112000961
Chalmers J, Lidgett A, Cummings N, Cao Y, Forster J, Spangenberg G. Molecular genetics of fructan metabolism in perennial ryegrass. Plant Biotechnol J. 2005 Sep 15;3(5):459–74. https://doi.org/10.1111/j.1467-7652.2005.00148.x
Badenhorst PE, Panter S, Palanisamy R, Georges S, Smith KF, Mouradov A, et al. Molecular breeding of transgenic perennial ryegrass (Lolium perenne L.) with altered fructan biosynthesis through the expression of fructosyltransferases. Molecular Breeding. 2018 Feb 1;38(2):21. https://doi.org/10.1007/s11032-018-0776-3
Piquemal J, Chamayou S, Nadaud I, Beckert M, Barrie?re Y, Mila I, et al. Down-Regulation of Caffeic Acid O -Methyltransferase in Maize Revisited Using a Transgenic Approach. Plant Physiol. 2002 Dec 1;130(4):1675–85. https://doi.org/10.1104/pp.012237
He X, Hall MB, Gallo?Meagher M, Smith RL. Improvement of Forage Quality by Downregulation of Maize O ?Methyltransferase. Crop Sci. 2003 Nov;43(6):2240–51. https://doi.org/10.2135/cropsci2003.2240
Ma XF, Tudor S, Butler T, Ge Y, Xi Y, Bouton J, et al. Transgenic expression of phytase and acid phosphatase genes in alfalfa (Medicago sativa) leads to improved phosphate uptake in natural soils. Molecular Breeding. 2012 Jun 13;30(1):377–91. https://doi.org/10.1007/s11032-011-9628-0
Kang P, Bao AK, Kumar T, Pan YQ, Bao Z, Wang F, et al. Assessment of Stress Tolerance, Productivity, and Forage Quality in T1 Transgenic Alfalfa Co-overexpressing ZxNHX and ZxVP1-1 from Zygophyllum xanthoxylum. Front Plant Sci. 2016 Oct 27;7. https://doi.org/10.3389/fpls.2016.01598
Tong Z, Xie C, Ma L, Liu L, Jin Y, Dong J, et al. Co-Expression of Bacterial Aspartate Kinase and Adenylylsulfate Reductase Genes Substantially Increases Sulfur Amino Acid Levels in Transgenic Alfalfa (Medicago sativa L.). PLoS One. 2014 Feb 10;9(2):e88310. https://doi.org/10.1371/journal.pone.0088310
Zhou C, Han L, Pislariu C, Nakashima J, Fu C, Jiang Q, et al. From Model to Crop: Functional Analysis of a STAY-GREEN Gene in the Model Legume Medicago truncatula and Effective Use of the Gene for Alfalfa Improvement . Plant Physiol. 2011 Nov 3;157(3):1483–96. https://doi.org/10.1104/pp.111.185140
Gatford KL, Simpson RJ, Siever-Kelly C, Leury BJ, Dove H, Ciavarella TA. Spray-topping annual grass pasture with glyphosate to delay loss of feeding value during summer. I. Effects on pasture yield and nutritive value. Crop Pasture Sci [Internet]. 1999;50:453–64. https://doi.org/10.1071/A98128
Singh BD, Shekhawat NS. Molecular plant breeding. Scientific Publishers; 2017.
Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica. 2005 Jan;142(1–2):169–96. https://doi.org/10.1007/s10681-005-1681-5
Kassie FC, Nguepjop JR, Ngalle HB, Assaha DVM, Gessese MK, Abtew WG, et al. An Overview of Mapping Quantitative Trait Loci in Peanut (Arachis hypogaea L.). Genes (Basel). 2023 May 28;14(6):1176. https://doi.org/10.3390/genes14061176
Casler MD. Breeding forage crops for increased nutritional value. In 2001. p. 51–107. https://doi.org/10.1016/S0065-2113(01)71012-7
Asekova S, Kulkarni KP, Kim M, Kim J, Song JT, Shannon JG, et al. Novel Quantitative Trait Loci for Forage Quality Traits in a Cross between PI 483463 and ‘Hutcheson’ in Soybean. Crop Sci. 2016 Sep;56(5):2600–11. https://doi.org/10.2135/cropsci2016.02.0125
Li K, Wang H, Hu X, Ma F, Wu Y, Wang Q, et al. Genetic and Quantitative Trait Locus Analysis of Cell Wall Components and Forage Digestibility in the Zheng58 × HD568 Maize RIL Population at Anthesis Stage. Front Plant Sci. 2017 Aug 24;8. https://doi.org/10.3389/fpls.2017.01472
Zhan QW, Zhang TZ, Wang BH, Li JQ. Diversity comparison and phylogenetic relationships of S. bicolor and S. sudanense as revealed by SSR markers. Plant Science. 2008 Jan;174(1):9–16. https://doi.org/10.1016/j.plantsci.2007.09.007
Zheng J, Wang L, Zhao W, Jin P, Liu Y, Meng R, et al. QTL mapping of five forage quality traits in sorghum × sudangrass. Pak J Bot. 2021 Dec 15;53(6). https://doi.org/10.30848/PJB2021-6(29)
Krakowsky MD, Lee M, Coors JG. Quantitative trait loci for cell-wall components in recombinant inbred lines of maize (Zea mays L.) I: stalk tissue. Theoretical and Applied Genetics. 2005 Jul 19;111(2):337–46. https://doi.org/10.1007/s00122-005-2026-4
Wang Q, Li K, Hu X, Shi H, Liu Z, Wu Y, et al. Genetic analysis and QTL mapping of stalk cell wall components and digestibility in maize recombinant inbred lines from B73 × By804. Crop J. 2020 Feb;8(1):132–9. https://doi.org/10.1016/j.cj.2019.06.009
BAI QL, CHEN WL. Identification and evaluation of stalk quality traits in maize inbred lines. Journal of Plant Genetic Resources. 2012;13(1):29–34.
Gupta M, Kaur Y, Kumar H, Kumar P, Choudhary J, Kumar P, et al. Molecular Markers in Maize Improvement: A Review. Acta Scientific Agriculture. 2022 Sep 1;55–70. https://doi.org/10.31080/ASAG.2022.06.1180
Hospital F. Size of donor chromosome segments around introgressed loci and reduction of linkage drag in marker-assisted backcross programs. Genetics. 2001;158(3):1363–79. https://doi.org/10.1093/genetics/158.3.1363
Frisch M, Bohn M, Melchinger AE. Comparison of selection strategies for marker?assisted backcrossing of a gene. Crop Sci. 1999;39(5):1295–301. https://doi.org/10.2135/cropsci1999.3951295x
Allard RW. Principles of Plant Breeding. John Wiley & Sons; 1999.
Hasan MM, Rafii MY, Ismail MR, Mahmood M, Rahim HA, Alam MdA, et al. Marker-assisted backcrossing: a useful method for rice improvement. Biotechnology & Biotechnological Equipment. 2015 Mar 4;29(2):237–54. https://doi.org/10.1080/13102818.2014.995920
Gupta HS, Raman B, Agrawal PK, Mahajan V, Hossain F, Thirunavukkarasu N. Accelerated development of quality protein maize hybrid through marker?assisted introgression of opaque?2 allele. Plant Breeding. 2013 Feb 9;132(1):77–82. https://doi.org/10.1111/pbr.12009
Muthusamy V, Hossain F, Thirunavukkarasu N, Choudhary M, Saha S, Bhat JS, et al. Development of ?-carotene rich maize hybrids through marker-assisted introgression of ?-carotene hydroxylase allele. PLoS One. 2014;9(12):e113583. https://doi.org/10.1371/journal.pone.0113583
Senthil N, Selvi DT, Vellaikumar S, Jeberson S, Nepolean T, Ganesan KN, et al. UMI1230ß+-1 (IC0637575; INGR21033), a Maize (Zea mays) Germplasm with Improved Beta Carotene (9.248 ?g/g). 2023;
Senthil N, Selvi DT, Vellaikumar S, Jeberson S, Nepolean T, Ganesan KN, et al. UMI1200ß+-2 (IC0637576; INGR21034), a Maize (Zea mays) Germplasm with Improved Beta Carotene (8.286 ?g/g). 2023;
Sureshkumar S, Tamilkumar P, Senthil N, Nagarajan P, Thangavelu AU, Raveendran M, et al. Marker assisted selection of low phytic acid trait in maize ( Zea mays L.). Hereditas. 2014 Feb;151(1):20–7. https://doi.org/10.1111/j.1601-5223.2013.00030.x
Tamilkumar P, Senthil N, Sureshkumar S, Thangavelu AU, Nagarajan P, Vellaikumar S, et al. Introgression of low phytic acid locus ('lpa2-2’) into an elite Maize (“Zea mays” L.) inbred through marker assisted backcross breeding. Aust J Crop Sci. 2014;8(8). doi:10.3316/informit.612102922437735
Chandrasekharan N, Ramanathan N, Pukalenthy B, Chandran S, Manickam D, Adhimoolam K, et al. Development of ?-carotene, lysine, and tryptophan-rich maize (Zea mays) inbreds through marker-assisted gene pyramiding. Sci Rep. 2022;12(1):8551. https://doi.org/10.1038/s41598-022-11585-y
Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, de los Campos G, et al. Genomic Selection in Plant Breeding: Methods, Models, and Perspectives. Trends Plant Sci. 2017 Nov;22(11):961–75. https://doi.org/10.1016/j.tplants.2017.08.011
Pégard M, Leuenberger J, Julier B, Barre P. Genomic prediction of lucerne forage yield and quality. 2021; https://doi.org/10.5507/vup.21.24459677.25
Kumar P, Singh J, Kaur G, Adunola PM, Biswas A, Bazzer S, et al. OMICS in Fodder Crops: Applications, Challenges, and Prospects. Curr Issues Mol Biol. 2022 Nov 3;44(11):5440–73. https://doi.org/10.3390/cimb44110369
Groen SC, ?ali? I, Joly-Lopez Z, Platts AE, Choi JY, Natividad M, et al. The strength and pattern of natural selection on gene expression in rice. Nature. 2020 Feb 27;578(7796):572–6. https://doi.org/10.1038/s41586-020-1997-2
Muthamilarasan M, Singh NK, Prasad M. Multi-omics approaches for strategic improvement of stress tolerance in underutilized crop species: A climate change perspective. In 2019. p. 1–38. https://doi.org/10.1016/bs.adgen.2019.01.001
Biazzi E, Nazzicari N, Pecetti L, Brummer EC, Palmonari A, Tava A, et al. Genome-Wide Association Mapping and Genomic Selection for Alfalfa (Medicago sativa) Forage Quality Traits. PLoS One. 2017 Jan 9;12(1):e0169234. https://doi.org/10.1371/journal.pone.0169234
Yang Y, Saand MA, Huang L, Abdelaal WB, Zhang J, Wu Y, et al. Applications of Multi-Omics Technologies for Crop Improvement. Front Plant Sci. 2021 Sep 3;12. https://doi.org/10.3389/fpls.2021.563953
Xie W, Zhang J, Zhao X, Zhang Z, Wang Y. Transcriptome profiling of Elymus sibiricus, an important forage grass in Qinghai-Tibet plateau, reveals novel insights into candidate genes that potentially connected to seed shattering. BMC Plant Biol [Internet]. 2017;17(1):78. https://doi.org/10.1186/s12870-017-1026-2
Baharum SN, Azizan KA. Metabolomics in Systems Biology. In 2018. p. 51–68. https://doi.org/10.1007/978-3-319-98758-3_4
Yang W, Feng H, Zhang X, Zhang J, Doonan JH, Batchelor WD, et al. Crop Phenomics and High-Throughput Phenotyping: Past Decades, Current Challenges, and Future Perspectives. Mol Plant. 2020 Feb;13(2):187–214. https://doi.org/10.1016/j.molp.2020.01.008
Song P, Wang J, Guo X, Yang W, Zhao C. High-throughput phenotyping: Breaking through the bottleneck in future crop breeding. Crop J. 2021 Jun;9(3):633–45. https://doi.org/10.1016/j.cj.2021.03.015
Biswas A, Andrade MHML, Acharya JP, de Souza CL, Lopez Y, de Assis G, et al. Phenomics-Assisted Selection for Herbage Accumulation in Alfalfa (Medicago sativa L.). Front Plant Sci. 2021 Dec 7;12. https://doi.org/10.3389/fpls.2021.756768
Tang Z, Parajuli A, Chen CJ, Hu Y, Revolinski S, Medina CA, et al. Validation of UAV-based alfalfa biomass predictability using photogrammetry with fully automatic plot segmentation. Sci Rep. 2021 Feb 8;11(1):3336. https://doi.org/10.1038/s41598-021-82797-x
Fulgueira CL, Amigot SL, Gaggiotti M, Romero LA, Basílico JC. Forage quality: Techniques for testing. Fresh Prod. 2007;1(2):121–31.
Batten GD. Plant analysis using near infrared reflectance spectroscopy: the potential and the limitations. Aust J Exp Agric. 1998;38(7):697–706. https://doi.org/10.1071/EA97146
Araus JL, Kefauver SC, Vergara?Díaz O, Gracia?Romero A, Rezzouk FZ, Segarra J, et al. Crop phenotyping in a context of global change: What to measure and how to do it. J Integr Plant Biol. 2022 Feb 26;64(2):592–618. https://doi.org/10.1111/jipb.13191
Noland RL, Wells MS, Coulter JA, Tiede T, Baker JM, Martinson KL, et al. Estimating alfalfa yield and nutritive value using remote sensing and air temperature. Field Crops Res. 2018 Jun;222:189–96. https://doi.org/10.1016/j.fcr.2018.01.017
Feng L, Zhang Z, Ma Y, Du Q, Williams P, Drewry J, et al. Alfalfa Yield Prediction Using UAV-Based Hyperspectral Imagery and Ensemble Learning. Remote Sens (Basel). 2020 Jun 24;12(12):2028. https://doi.org/10.3390/rs12122028
Garriga M, Ovalle C, Espinoza S, Lobos GA, del Pozo A. Use of Vis–NIR reflectance data and regression models to estimate physiological and productivity traits in lucerne (Medicago sativa). Crop Pasture Sci. 2020;71(1):90. https://doi.org/10.1071/CP19182
Tanaka T, Tamaki H, Ashikaga K, Fujii H, Yamada T. Use of molecular marker diversity to increase forage yield in timothy ( Phleum pratense L.). Plant Breeding. 2013 Apr 25;132(2):144–8. https://doi.org/10.1111/pbr.12025
Ponnaiah G, Gupta SK, Blümmel M, Marappa M, Pichaikannu S, Das RR, et al. Utilization of molecular marker based genetic diversity patterns in hybrid parents to develop better forage quality multi-cut hybrids in pearl millet. Agriculture. 2019;9(5):97. https://doi.org/10.3390/agriculture9050097
Palaniyappan S, Ganesan KN, Manivannan N, Ravichandran V, Senthil N. Genetic distance as a predictor of heterosis in single cross hybrids of fodder maize (Zea mays L.). Electronic Journal of Plant Breeding. 2023;14(2):625–32. https://doi.org/10.37992/2023.1402.076
Safawo T, Senthil N, Raveendran M, Vellaikumar S, Ganesan KN, Nallathambi G, et al. Exploitation of natural variability in maize for ?-carotene content using HPLC and gene specific markers. Electronic Journal of Plant Breeding. 2010;1(4):548–55.
Gitau MM, Fan J, Xie Y, Fu J. Genetic diversity and association mapping of forage quality in diverse bermudagrass accessions. Euphytica. 2017 Oct 15;213(10):234. https://doi.org/10.1007/s10681-017-2024-z
Kumar Yadav V, Radhakrishna A, Mohan Das M, Singh T, Yadav S, Sharma P, et al. Deciphering Genetic Diversity in Grass Pea (Lathyrus sativus L.) Collections Using Agronomic and Forage Quality Traits and SSR Markers. Journal of Agricultural Science and Technology. 2022;24(6):1429–42. https://doi.org/10.52547/jast.24.6.1429
Luo F, Pei Z, Zhao X, Liu H, Jiang Y, Sun S. Genome-wide association study for plant architecture and bioenergy traits in diverse sorghum and sudangrass germplasm. Agronomy. 2020;10(10):1602. https://doi.org/10.3390/agronomy10101602
Hu G, Wang B, Gong T, Li R, Guo X, Liu W, et al. Mapping additive and epistatic QTLs for forage quality and yield in soybean [ Glycine max (L.) Merri.] in two environments. Biotechnology & Biotechnological Equipment. 2021 Jan 1;35(1):839–52. https://doi.org/10.1080/13102818.2021.1932593
Surber L, Abdel-Haleem H, Martin J, Hensleigh P, Cash D, Bowman J, et al. Mapping quantitative trait loci controlling variation in forage quality traits in barley. Molecular Breeding. 2011 Aug 22;28(2):189–200. https://doi.org/10.1007/s11032-010-9473-6
Zhao X, Luo L, Cao Y, Liu Y, Li Y, Wu W, et al. Genome-wide association analysis and QTL mapping reveal the genetic control of cadmium accumulation in maize leaf. BMC Genomics. 2018 Dec 25;19(1):91. https://doi.org/10.1186/s12864-017-4395-x
Ma S, Hu R, Ma J, Fan J, Wu F, Wang Y, et al. Integrative analysis of the metabolome and transcriptome provides insights into the mechanisms of anthocyanins and proanthocyanidins biosynthesis in Trifolium repens. Ind Crops Prod. 2022 Nov;187:115529. https://doi.org/10.1016/j.indcrop.2022.115529
Harper J, De Vega J, Swain S, Heavens D, Gasior D, Thomas A, et al. Integrating a newly developed BAC-based physical mapping resource for Lolium perenne with a genome-wide association study across a L. perenne European ecotype collection identifies genomic contexts associated with agriculturally important traits. Ann Bot. 2019 Jun 24;123(6):977–92. https://doi.org/10.1093/aob/mcy230
Li J, Tang W, Zhang YW, Chen KN, Wang C, Liu Y, et al. Genome-Wide Association Studies for Five Forage Quality-Related Traits in Sorghum (Sorghum bicolor L.). Front Plant Sci. 2018 Aug 21;9. https://doi.org/10.3389/fpls.2018.01146
Choi SC, Chung YS, Lee YG, Kang Y, Park YJ, Park SU, et al. Prediction of Dhurrin Metabolism by Transcriptome and Metabolome Analyses in Sorghum. Plants. 2020 Oct 19;9(10):1390. https://doi.org/10.3390/plants9101390
Asoro FG, Newell MA, Scott MP, Beavis WD, Jannink J. Genome?wide Association Study for Beta?glucan Concentration in Elite North American Oat. Crop Sci. 2013 Mar;53(2):542–53. https://doi.org/10.2135/cropsci2012.01.0039
Lin S, Medina CA, Norberg OS, Combs D, Wang G, Shewmaker G, et al. Genome-Wide Association Studies Identifying Multiple Loci Associated With Alfalfa Forage Quality. Front Plant Sci. 2021 Jun 18;12. https://doi.org/10.3389/fpls.2021.648192
Loskutov I, Shelenga T, Blinova E, Gnutikov A, Konarev A. Metabolomic profiling in evaluation of cultivated oat species with different ploidy level. BIO Web Conf. 2021 Oct 1;36:01026. https://doi.org/10.1051/bioconf/20213601026
Downloads
Published
Versions
- 31-10-2024 (2)
- 25-10-2024 (1)
How to Cite
Issue
Section
License
Copyright (c) 2024 Pawan Kumar Dash, K. N Ganesan, N. Manivannan, S. Vellai Kumar, , R. Pushpam
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).