Small millets: A multifunctional crop for achieving sustainable food security under climate change
DOI:
https://doi.org/10.14719/pst.4113Keywords:
Millets; , Climate resilience; , Nutritional benefits; , C4 photosynthesis; , Biofortification; , Advanced breeding techniquesAbstract
Millets, a varied collection of small-seeded crops from the Poaceae family, are re-emerging as a viable alternative for sustainable food and nutritional security in the context of climate change. Historically a staple in India, millet consumption declined during the Green Revolution due to emphasis on rice and wheat. However, their nutritional enrichment and climate resilience are rekindling interest. Over ten millet species, including sorghum, pearl, and finger millet, are cultivated globally and thrive in marginal lands with minimal water and low nutrients. Their C4 photosynthetic pathway enhances water-use efficiency, making them suitable for hot, dry climates. Despite their benefits, millets face challenges, such as consumer preferences for rice and wheat and vulnerabilities to extreme weather events. Nevertheless, they offer significant nutritional advantages, including high levels of dietary fiber, essential amino acids, vitamins, and minerals. India is a leading millet producer, cultivating various types and experiencing a recent production surge. Investigations into the resilience of millets underscore their capacity to endure environmental stresses. Strategies for improving millet crops include conventional breeding, mutation breeding, and advanced techniques like CRISPR-Cas9. Bio-fortification efforts aim to address micronutrient deficiencies, with promising results in finger millet varieties. Advancements in genetic engineering and genome editing tools are revolutionizing millet improvement. The pangenome concept, which explores genetic diversity within species, offers a framework for developing enhanced cultivars. Integrating wild millet varieties into breeding programs can further unlock their potential. Comprehensive policy initiatives supporting millet cultivation, research, and public awareness are crucial for promoting these nutrient-rich grains, enhancing food security, and fostering sustainable agriculture.
Downloads
References
Arya C, Bisht A. Small millets: Path to food and nutrition security. In: Small Millet Grains: The Superfoods in Human Diet. Singapore: Springer Nature Singapore; 2022. p. 161-90. http://dx.doi.org/10.1007/978-981-16-9306-9_8
Srinivas A. Millet milling technologies. In: Handbook of Millets-Processing, Quality and Nutrition Status. Singapore: Springer Nature Singapore; 2022. p. 173-203. https://doi.org/10.1007/978-981-16-7224-8
Abubakar A, Ishak MY, Uddin MK, Sulaiman ZA, Ahmad MH, Shehu DS. Impact of climate change and adaptations for cultivation of millets in Central Sahel. Environ Sustain. 2023;6(4):441-54. http://dx.doi.org/10.1007/s42398-023-00291-8
Dwivedi N, Rathore V, Sharma K. A review of millet crops for agricultural sustainability in India. Asian J Agric Ext Econ Socio. 2023;41(10):216-24. https://doi.org/10.9734/ajaees/2023/v41i102162
Jobe TO, Rahimzadeh Karvansara P, Zenzen I, Kopriva S. Ensuring nutritious food under elevated CO2 conditions: a case for improved C4 crops. Front Plant Sci. 2020;11:1267. https://doi.org/10.3389/fpls.2020.01267
Cui H. Challenges and approaches to crop improvement through C3 to C4 engineering. Front Plant Sci. 2021;12:715391. https://doi.org/10.3389/fpls.2021.715391
Raut D, Sudeepthi B, Gawande KN, Reddy G, Vamsi S, Padhan SR, Panigrahi CK. Millet's role as a climate resilient staple for future food security: A review. Int J Environ Clim Chang. 2023;13(11):4542-52. https://doi.org/10.9734/ijecc/2023/v13i113634
Singh SB, Kumar P, Kasana RK, Choudhary M, Kumar S, Kumar R, et al. Unveiling combining ability and heterotic grouping of newly developed winter maize (Zea mays L.) inbred lines. Indian J Agric Sci. 2021;91(11):1586-91. https://krishi.icar.gov.in/jspui/bitstream/123456789/68643/1/RP-60-ijas_paper_2021.pdf
Hossain F, Muthusamy V, Bhat JS, Zunjare RU, Kumar S, Prakash NR, Mehta BK. Maize breeding. In: Fundamentals of Field Crop Breeding. Singapore: Springer Nature Singapore; 2022. p. 221-58. http://dx.doi.org/10.1007/978-981-16-9257-4_4
Pramitha L, Choudhary P, Das P, Sharma S, Karthi V, Vemuri H, Muthamilarasan M. Integrating genomics and phenomics tools to dissect climate resilience traits in small millets. In: Omics of Climate Resilient Small Millets. Singapore: Springer Nature Singapore; 2022. p. 275-98. https://doi.org/10.1007/978-981-19-3907-5_14
Kumar S, Babu C, Revathi S, Sumathi P. Estimation of genetic variability, heritability and association of green fodder yield with contributing traits in fodder pearl millet (Pennisetum glaucum). Int J Adv Bio Res. 2017;7(1):119-26.
Chandra AK, Chandora R, Sood S, Malhotra N. Global production, demand and supply. In: Millets and Pseudo Cereals. Woodhead Publishing; 2021. p. 7-18.https://doi.org/10.1016/B978-0-12-820089-6.00002-1
Kumar S, Babu C, Sumathi P, Revathi S. Estimation of per se performance of yield traits in fodder pearl millet (Pennisetum glaucum (L.) R. Br.). Env and Ecol. 2017;35(3C):2316-21. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20173297373
Kumar A, Tomer V, Kumar M, Chawla P. Millets: Cultivation, processing and utilization. CRC Press; 2024. https://doi.org/10.1201/9781003159902
Chandra AK, Pandey D, Sood S, Joshi DC, Tiwari A, Sharma D, Kumar A. Uncovering the genomic regions underlying grain iron and zinc content using genome-wide association mapping in finger millet. 3 Biotech. 2024;14(2):47. https://doi.org/10.1007/s13205-023-03889-1
Chandra AK, Pandey D, Tiwari A, Sharma D, Agarwal A, Sood S, Kumar A. An omics study of iron and zinc homeostasis in finger millet: biofortified foods for micronutrient deficiency in an era of climate change? OMICS J Integr Biol. 2020;24(12):688-705. https://doi.org/10.1089/omi.2020.0095
Dey S, Raichaudhuri A. Abiotic stress in plants. In: Advances in Plant Defense Mechanisms. IntechOpen; 2022. p. 1-10 https://doi.org/10.5772/intechopen.105944.
Yadav S, Modi P, Dave A, Vijapura A, Patel D, Patel M. Effect of abiotic stress on crops. In: Mirza H, Marcelo CMTF, Masayuki F, Thiago ARN, editors. Sustainable Crop Production. Intechopen. 2020; p. 5-21. https://doi.org/10.5772/intechopen.88434
Taylor S. Anxiety disorders, climate change and the challenges ahead: Introduction to the special issue. J Anxiety Disord. 2020;76:102313. https://doi.org/10.1016/j.janxdis.2020.102313
Luo W, Chen M, Kang Y, Li W, Li D, Cui Y, Luo Y. Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall. Agric Water Manag. 2022;260:107285.https://doi.org/10.1016/j.agwat.2021.107285
Kumar A, Tomer V, Kaur A, Kumar V, Gupta K. Millets: a solution to agrarian and nutritional challenges. Agric Food Secur. 2018;7(1):1-15. https://doi.org/10.1186/s40066-018-0183-3
Dhanda S, Yadav A, Yadav DB, Chauhan BS. Emerging issues and potential opportunities in the rice–wheat cropping system of North-Western India. Front Plant Sci. 2022;13:832683. https://doi.org/10.3389/fpls.2022.832683
Paschapur AU, Joshi D, Mishra KK, Kant L, Kumar V, Kumar A. Millets for life: a brief introduction. In: Kumar A, Tripathi MK, Joshi D, Kumar V, editors. Millets and Millet Technology. Springer. 2021. p. 1-32. https://doi.org/10.1007/978-981-16-0676-2_1
Sage RF, Zhu XG. Exploiting the engine of C4 photosynthesis. J Exp Bot. 2011;62(9):2989-3000. https://doi.org/10.1093/jxb/err179
Meena RP, Joshi D, Bisht JK, Kant L. Global scenario of millets cultivation. Millets and Millet Technology. 2021:33-50. https://doi.org/10.1007/978-981-16-0676-2_2
Singh SB, Kumar S, Kumar R, Kumar P, Yathish KR, Jat BS, Chikkappa GK, Kumar B, Jat SL, Dagla MC, Kumar B. Stability analysis of promising winter maize (Zea mays L.) hybrids tested across Bihar using GGE biplot and AMMI model approach. Ind J Gen Pl Br. 2024;84(01):73-80. https://doi.org/10.31742/ISGPB.84.1.6
Mohod NB, Ashoka P, Borah A, Goswami P, Koshariya AK, Sahoo S, Prabhavathi N. The international year of millet 2023: A global initiative for sustainable food security and nutrition. Int J Pl Soil Sci. 2023;35(19):1204-11.https://doi.org/10.9734/ijpss/2023/v35i193659.
Kumar R, Karmakar S, Minz A, Singh J, Kumar A, Kumar A. Assessment of greenhouse gases emission in maize-wheat cropping system under varied N fertilizer application using cool farm tool. Front Environ Sci. 2021;9:710108. https://doi.org/10.3389/fenvs.2021.710108
Salgotra RK, Chauhan BS. Genetic diversity, conservation and utilization of plant genetic resources. Genes. 2023;14(1):174. https://doi.org/10.3390/genes14010174
El-Hashash EF, Al-Habeeb A, Bakri H, Majjami AY. A comprehensive review of pearl and small millets: Taxonomy, production, breeding and future prospects in Saudi Arabia. Asian J Res Crop Sci. 2023;8(4):151-66. https://doi.org/10.9734/ajrcs/2023/v8i4196
Choudhary P, Shukla P, Muthamilarasan M. Genetic enhancement of climate-resilient traits in small millets: A review. Heliyon. 2023. https://doi.org/10.1016/j.heliyon.2023.e14502
Vetriventhan M, Azevedo VC, Upadhyaya HD, Nirmalakumari A, Kane-Potaka J, Anitha S, Tonapi VA. Genetic and genomic resources and breeding for accelerating improvement of small millets: current status and future interventions. The Nucleus. 2020;63:217-39. https://doi.org/10.1007/s13237-020-00322-3
Joshi DC, Meena RP, Chandora R. Genetic resources: Collection, characterization, conservation and documentation. In: Millets and Pseudo Cereals. Woodhead Publishing; 2021. p. 19-31.https://doi.org/10.1016/B978-0-12-820089-6.00003-3
Rajasekaran R, Francis N. Genetic and genomic resources for improving proso millet (Panicum miliaceum L.): a potential crop for food and nutritional security. The Nucleus. 2021;64(1):21-32. http://dx.doi.org/10.1007/s13237-020-00331-2
Narciso JO, Nyström L. The genetic diversity and nutritional quality of proso millet (Panicum miliaceum) and its Philippine ecotype, the ancient grain “kabog millet”: a review. J Agric Food Res. 2023;11:100499. https://doi.org/10.1016/j.jafr.2023.100499
Ravikesavan R, Jeeva G, Jency JP, Muthamilarasan M, Francis N. Kodo millet (Paspalum scorbiculatum L.). In: Neglected and Underutilized Crops. Academic Press; 2023. p. 279-304.https://doi.org/10.1016/B978-0-323-90537-4.00019-3
Renganathan VG, Vanniarajan C, Karthikeyan A, Ramalingam J. Barnyard millet for food and nutritional security: Current status and future research direction. Front Genet. 2020;11:497319. https://doi.org/10.3389/fgene.2020.00500
Vetriventhan M, Upadhyaya HD, Azevedo VC, Allan V, Anitha S. Variability and trait-specific accessions for grain yield and nutritional traits in germplasm of little millet (Panicum sumatrense Roth. Ex. Roem. & Schult.). Crop Sci. 2021;61(4):2658-79. http://dx.doi.org/10.1002/csc2.20527
Elangovan M, Venkatesh K. Small millets genetic resources management. In: Genetic Improvement of Small Millets. Singapore: Springer Nature Singapore; 2024. p. 1-16. https://doi.org/10.1007/978-981-99-7232-6
Navyashree N, Sengar AS, Sunil CK, Venkatachalapathy N. White finger millet (KMR-340): A comparative study to determine the effect of processing and their characterization. Food Chem. 2022;374:131665. http://dx.doi.org/10.1016/j.foodchem.2021.131665
Verma KC, Joshi N, Rana AS, Bhatt D. Quality parameters and medicinal uses of foxtail millet (Setaria italica L.): A review. J Pharmacogn Phytochem. 2020;9(4):1036-38.
Patil RB, Vijayalakshmi KG, Vijayalakshmi D. Physical, functional, nutritional, phytochemical and antioxidant properties of kodo millet (Paspalum scrobiculatum). J Pharmacogn Phytochem. 2020;9(5):2390-93.
Dey S, Saxena A, Kumar Y, Maity T, Tarafdar A. Understanding the antinutritional factors and bioactive compounds of kodo millet (Paspalum scrobiculatum) and little millet (Panicum sumatrense). J Food Qual. 2022;2022:1-19. https://doi.org/10.1155/2022/1578448
Hymavathi TV, Roberts TP, Jyothsna E, Sri VT. Proximate and mineral content of ready to use minor millets. Int J Chem Stud. 2020;8(2):2120-23. http://dx.doi.org/10.22271/chemi.2020.v8.i2af.9065
Bisht K, Bisht K, Gudadhe NN, Raut AA, Dobhal N. Nutritional composition, health benefits, production, processing and marketing of finger millet. Indian J of Fert. 2023;19(10):1036-46.
Yankah N, Intiful FD, Tette EM. Comparative study of the nutritional composition of local brown rice, maize and millet—A baseline research for varietal complementary feeding. Food Sci and Nutr. 2020;8(6):2692-98. https://doi.org/10.1002/fsn3.1556
Rodiansah A, Puspita MI, Irawati. In vitro polyploidy induction of foxtail millet (Setaria italica (L) beauv) cv. buru hotong using colchicine treatment. In: IOP Conference Series: Earth and Env Sci. IOP Publishing; 2020. p. 012031.
Gao H, Gadlage MJ, Lafitte HR, Lenderts B, Yang M, Schroder M, Meeley RB. Superior field performance of waxy corn engineered using CRISPR–Cas9. Nat Biotechnol. 2020; 38(5):579-81. https://doi.org/10.1038/s41587-020-0444-0
Cheng Z, Sun Y, Yang S, Zhi H, Yin T, Ma X, Sui Y. Establishing in planta haploid inducer line by edited SiMTL in foxtail millet (Setaria italica). Plant Biotechnol J. 2021; 19(6):1089. https://doi.org/10.1111%2Fpbi.13584
Pillay M. Genome editing technologies for crop improvement. In: Quantitative Genetics, Genomics and Plant Breeding. 2nd ed. CABI: Boston, MA, USA; 2020. p. 33-44. https://doi.org/10.1079/9781789240214.0033
Numan M, Serba DD, Ligaba-Osena A. Alternative strategies for multi-stress tolerance and yield improvement in millets. Genes. 2021;12(5):739. https://doi.org/10.3390/genes12050739
Latha AM, Rao KV, Reddy VD. Production of transgenic plants resistant to leaf blast disease in finger millet (Eleusine coracana (L.) Gaertn.). Plant Sci. 2005;169(4):657-67. http://dx.doi.org/10.1016/j.plantsci.2005.05.009
Ignacimuthu S, Ceasar SA. Development of transgenic finger millet (Eleusine coracana (L.) Gaertn.) resistant to leaf blast disease. J Biosci. 2012;37:135-47. https://doi.org/10.1007/s12038-011-9178-y
Hema R, Vemanna RS, Sreeramulu S, Reddy CP, Senthil-Kumar M, Udayakumar M. Stable expression of mtlD gene imparts multiple stress tolerance in finger millet. PLoS one. 2014;9(6):e99110. https://doi.org/10.1371/journal.pone.0099110
Ramegowda Y, Venkategowda R, Jagadish P, Govind G, Hanumanthareddy RR, Makarla U, Guligowda SA. Expression of a rice Zn transporter, OsZIP1, increases Zn concentration in tobacco and finger millet transgenic plants. Plant Biotechnol Rep. 2013;7:309-19. https://doi.org/10.1007/s11816-012-0264-x
Bhatt R, Asopa PP, Jain R, Kothari-Chajer A, Kothari SL, Kachhwaha S. Optimization of Agrobacterium mediated genetic transformation in Paspalum scrobiculatum L.(Kodo Millet). Agronomy. 2021;11(6):1104. https://doi.org/10.3390/agronomy11061104
Kadapa S, Gunturi A, Gundreddy R, Kalwala SR, Mogallapu UB. Agronomicbiofortification of millets: New way to alleviate malnutrition. In: Yadav L, Upasna, editors. Millets-Rediscover Ancient gains. Intechopen; 2023. p. 1-21. https://doi.org/10.5772/intechopen.110805
Sherman RM, Salzberg SL. Pan-genomics in the human genome era. Nat Rev Genet. 2020;21(4):243-54. https://doi.org/10.1038/s41576-020-0210-7
Kumar S, Babu C, Revathi S, Sumathi P. Genetic variation delineation among fodder pearl millet accessions and Napier grass germplasm using SSR markers. Indian J Ecol. 2017;44:186-89.
Wu M, Liu R, Gao Y, Xiong R, Shi Y, Xiang Y. PheASR2, a novel stress-responsive transcription factor from moso bamboo (Phyllostachys edulis), enhances drought tolerance in transgenic rice via increased sensitivity to abscisic acid. Plant Physiol Biochem. 2020;154:184-94. https://doi.org/10.1016/j.plaphy.2020.06.014
Wu C, Zhang M, Liang Y, Zhang L, Diao X. Salt stress responses in foxtail millet: Physiological and molecular regulation. Crop J. 2023;11(4):1011-21. https://doi.org/10.1016/j.cj.2023.06.001
Bhinda MS, Sanadya SK, Kumari A, Kant L, Debnath A. Omics for abiotic stress tolerance in foxtail millet. In: Omics of Climate Resilient Small Millets. Singapore: Springer Nature Singapore; 2022. p. 27-52. http://dx.doi.org/10.1007/978-981-19-3907-5_2
Ratnawati S, Jannah RM, Dewi YI, Rizqullah R, Suwarno WB, Ardie SW. The genetic variability of Indonesian local foxtail millet accession based on agro-morphological traits and early salinity tolerance evaluation utilizing SiDREB2-based SNAP marker. HAYATI J Biosci. 2024;31(1):82-93. https://doi.org/10.4308/hjb.31.1.82-93
Chellapilla TS, Ambawat S, Gurjar NR. Millets: Role and responses under abiotic stresses. In: Sustainable Remedies for Abiotic Stress in Cereals. Singapore: Springer Nature Singapore; 2022. p. 171-207. http://dx.doi.org/10.1007/978-981-19-5121-3_8
Barthakur S, Bharadwaj N. Exploring genome-wide analysis of heat shock proteins (HSPs) in small millets as potential candidates for development of multistress tolerant crop plants. In: Omics of Climate Resilient Small Millets. Singapore: Springer Nature Singapore; 2022. p. 337-55. https://doi.org/10.1007/978-981-19-3907-5_17
Mahesh HB, Shirke MD, Ghodke I, Raghavendra NR. Role of inducible promoters and transcription factors in conferring abiotic stress-tolerance in small millets. In: Omics of Climate Resilient Small Millets. Singapore: Springer Nature Singapore; 2022. p. 69-86. https://doi.org/10.1007/978-981-19-3907-5_4
Ajeesh Krishna TP, Maharajan T, Ignacimuthu S, Antony Ceasar S. Genomic-assisted breeding in finger millet (Eleusine Coracana (L.) Gaertn.) for abiotic stress tolerance. In: Genomic Designing for Abiotic Stress Resistant Cereal Crops.Springer, Cham. 2021. p. 291-317. http://dx.doi.org/10.1007/978-3-030-75875-2_8
Roch GV, Maharajan T, Krishna TA, Ignacimuthu S, Ceasar SA. Expression of PHT1 family transporter genes contributes for low phosphate stress tolerance in foxtail millet (Setaria italica) genotypes. Planta. 2020;252(6):98. https://doi.org/10.1007/s00425-020-03503-1
Zhu H, Guo J, Ma T, Liu S, Zhou Y, Yang X, Sui J. The sweet potato K+ transporter IbHAK11 regulates K+ deficiency and high salinity stress tolerance by maintaining positive ion homeostasis. Plants. 2023;12(13):2422. https://doi.org/10.3390%2Fplants12132422
Wang J, Miao S, Liu Y, Wang Y. Linking autophagy to potential agronomic trait improvement in crops. Int J Mol Sci. 2022;23(9):4793. https://doi.org/10.3390%2Fijms23094793
Arun M, Vidya N, Saravanan K, Halka J, Kowsalya K, Preetha JSY. Plant regeneration and transgenic approaches for the development of abiotic stress-tolerant small millets. In: Omics of Climate Resilient Small Millets. Singapore: Springer Nature Singapore; 2022. p. 141-83. http://dx.doi.org/10.1007/978-981-19-3907-5_8
Singh S, Chopperla R, Shingote P, Chhapekar SS, Deshmukh R, Khan S, Solanke AU. Overexpression of EcDREB2A transcription factor from finger millet in tobacco enhances tolerance to heat stress through ROS scavenging. J Biotech. 2021;336:10-24. https://doi.org/10.1016/j.jbiotec.2021.06.013
Taylor JR, Kruger J. Sorghum and millets: Food and beverage nutritional attributes. In: Sorghum and Millets. AACC International Press; 2019. p. 171-224.https://doi.org/10.1016/B978-0-12-811527-5.00007-1
Samtiya M, Aluko RE, Dhewa T. Plant food anti-nutritional factors and their reduction strategies: an overview. Food Prod Process and Nutr. 2020;2:1-14. https://doi.org/10.1186/s43014-020-0020-5
Tharifkhan SA, Perumal AB, Elumalai A, Moses JA, Anandharamakrishnan C. Improvement of nutrient bioavailability in millets: Emphasis on the application of enzymes. J Sci Food Agric. 2021;101(12):4869-78. https://doi.org/10.1002/jsfa.11228
Aryal JP, Sapkota TB, Khurana R, Khatri-Chhetri A, Rahut DB, Jat ML. Climate change and agriculture in South Asia: Adaptation options in smallholder production systems. Environ Dev Sustain. 2020;22(6):5045-75. https://link.springer.com/article/10.1007/s10668-019-00414-4
Nayaka SC, Hosahatti R, Prakash G, Satyavathi CT, Sharma R, editors. Blast disease of cereal crops. Springer International Publishing; 2021. https://doi.org/10.1007/978-3-030-60585-8.
Gebreyohannes A, Shimelis H, Laing M, Mathew I, Odeny DA, Ojulong H. Finger millet production in Ethiopia: Opportunities, problem diagnosis, key challenges and recommendations for breeding. Sustainability. 2021;13(23):13463. https://doi.org/10.3390/su132313463
Srivastava S, Arya C. Millets: malnutrition and nutrition security. In: Millets and Millet Technology. Springer, Singapore. 2021. p. 81-100. http://dx.doi.org/10.1007/978-981-16-0676-2_4
Patil DA. Agrobiodiversity and advances in the development of millets in changing environment. In: Sustainable Agriculture in the Era of Climate Change.Springer, Cham. 2020. p. 643-73. http://dx.doi.org/10.1007/978-3-030-45669-6_27
Raj S, Chaudhary S, Ghule NS, Baral K, Padhan SR, Gawande KN, Singh V. Sustainable farming and soil health enhancement through millet cultivation: A review. Int J Plant Soil Sci. 2024;36(3):222-33. https://doi.org/10.9734/ijpss/2024/v36i34418
Selladurai M, Pulivarthi MK, Raj AS, Iftikhar M, Prasad PV, Siliveru K. Considerations for gluten free foods-pearl and finger millet processing and market demand. Grain Oil Sci Technol. 2023;6(2):59-70. https://doi.org/10.1016/j.gaost.2022.11.003
Muthamilarasan M, Prasad M. Small millets for enduring food security amidst pandemics. Trends Plant Sci. 2021;26(1):33-40. https://doi.org/10.1016%2Fj.tplants.2020.08.008
Nadipalli SV, Bennur SV. Breeding approaches of improvement in millets. In Book: Millets: The Miracle Grains of 21st Century. Kripa-Drishti Publications; 2024. p. 15-25. https://www.kdpublications.in
Mishra S, Kumar S, Srivastava RC, editors. Genetic improvement of small millets. Springer Nature Singapore. Imprint: Springer. 2024. https://doi.org/10.1007/978-981-99-7232-6
Downloads
Published
Versions
- 10-11-2024 (2)
- 02-11-2024 (1)
How to Cite
Issue
Section
License
Copyright (c) 2024 Santosh Kumar, Ashutosh Kumar, Hritik Sen, Harmeet Singh Janeja, Souvik Maity, Sonali Banerjee, Preeti Singh, Arun M. Channapur
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).