Forthcoming

Unveiling the nutraceutical properties and functional attributes of sorghum-Comprehensive review

Authors

DOI:

https://doi.org/10.14719/pst.4115

Keywords:

kafirin, nutritional profile, phenolic substances, phytochemical constituents, sorghum, therapeutic advantages

Abstract

Sorghum (Sorghum bicolor L.) is one of the most significant yet underutilized staple crops in the world. It contains high levels of dietary fiber, resistant starch and essential health-beneficial bioactive compounds, including phenolics, vitamins and minerals, making it a valuable component of a balanced diet. The bioactive profiles of sorghum are exceptionally unique, more abundant and more diverse than those of other common cereal grains. Sorghum contains phenolic acids, condensed tannins and 3-deoxyanthocyanidins as its primary phenolic constituents. Consumption of sorghum whole grain may enhance gut health and lower the risk of chronic illnesses, as studies have demonstrated the strong antioxidant activity of sorghum’s phenolic components in vitro. Additionally, condensed tannins, 3-deoxyanthocyanidins and phenolic compounds are essential contributors to its health benefits. Recently, sorghum grain has been increasingly used to develop functional foods and beverages, as well as an ingredient in other food products. The objective of this review is to provide a comprehensive understanding of the nutritional composition and functional properties of sorghum, along with its related health benefits, to improve health outcomes and overall well-being.

Downloads

References

Soni J, Sheikh FS, Saha S, Wanjari MB, Saxena D. Nutritional indicators for Gujarat, its determinants and recommendations: A comparative study of national family health survey-4 and national family health survey-5. Cureus. 2023;15:5. https://doi.org/10.7759%2Fcureus.39175

World Health Organization. Fact sheets-malnutrition. World Health Organization [Internet]. 2021. https://www.who.int/news-room/factsheets/detail/malnutrition

World Health Organization. The State of Food Security and Nutrition in the World 2023: Urbanization, agrifood systems transformation and healthy diets across the rural–urban continuum. Food and Agriculture Org.; 2023. https://doi.org/10.4060/cc3017en

Anglani C. Sorghum for human food–A review. Plant Foods Human Nutri. 1998;52:85-95. https://doi.org/10.1023/A:1008065519820

FAO stat. Available online: http://www.fao.org/faostat/en/#data. QC. 2017.

Awika JM, Rooney LW. Sorghum phytochemicals and their potential impact on human health. Phytochem. 2004;65(9):1199221. https://doi.org/10.1016/j.phytochem.2004.04.001

Lee SH, Lee J, Herald T, Cox S, Noronha L, Perumal R, et al. Anticancer activity of a novel high phenolic sorghum bran in human colon cancer cells. Oxidative Med Cellular Longev. 2020;2020(1):2890536. https://doi.org/10.1155/2020/2890536

Miafo AP, Koubala BB, Kansci G, Muralikrishna G. Antioxidant properties of free and bound phenolic acids from bran, spent grain and sorghum seeds. Cereal Chem. 2020;97(6):1236-43. https://doi.org/10.1002/cche.10348

Shen S, Huang R, Li C, Wu W, Chen H, Shi J, et al. Phenolic compositions and antioxidant activities differ significantly among sorghum grains with different applications. Molecules. 2018;23(5):1203. https://doi.org/10.3390/molecules23051203

Ghonaim MM, Mohamed HI, Omran AA. Evaluation of wheat (Triticum aestivum L.) salt stress tolerance using physiological parameters and retrotransposon-based markers. Genet Resour Crop Evol. 2021;68(1):227-42. https://doi.org/10.1007/s10722-020-00981-w

Mohamed HI, Ashry NA, Ghonaim MM. Physiological and biochemical effects of heat shock stress and determination of molecular markers related to heat tolerance in maize hybrids. Gesunde Pflanzen. 2019;71(3):213. https://doi.org/10.1007/s10722-020-00981-w

Lee SH, Lee HS, Lee J, Amarakoon D, Lou Z, Noronha LE, et al. Polyphenol containing sorghum brans exhibit an anti-cancer effect in Apc Min/+ mice treated with dextran sodium sulfate. Int J Mol Sci. 2021;22(15):8286. https://doi.org/10.3390/ijms22158286

Li S, Cheng CS, Zhang C, Tang GY, Tan HY, Chen HY, et al. Edible and herbal plants for the prevention and management of COVID-19. Front Pharmac. 2021;12:656103. https://doi.org/10.3389/fphar.2021.656103

Swaminathan S, Dehghan M, Raj JM, Thomas T, Rangarajan S, Jenkins D, et al. Associations of cereal grains intake with cardiovascular disease and mortality across 21 countries in prospective urban and rural epidemiology study: Prospective cohort study. Bmj. 2021;372. https://doi.org/10.1136/bmj.m4948

Verma DK, Srivastav PP. Bioactive compounds of rice (Oryza sativa L.): Review on paradigm and its potential benefit in human health. Trends Food Sci Tech. 2020;97:355-65. https://doi.org/10.1016/j.tifs.2020.01.007

Earp CF, McDonough CM, Awika J, Rooney LW. Testa development in the caryopsis of Sorghum bicolor (L.) Moench. J Cereal Sci. 2004;39(2):303-11. https://doi.org/10.1016/j.jcs.2003.11.005

Chandrashekar A, Kirleis AW. Influence of protein on starch gelatinization in sorghum. Cereal Chem. 1988;65(6):457-62. http://ir.cftri.res.in/id/eprint/4440

Adams CA, Novellie L, Liebenberg NV. Biochemical properties and ultrastructure of protein bodies isolated from selected cereals. Cereal Chem. 1976;53(1):1-12.

Chandrashekar A, Desikachar HS. Sorghum quality studies. II. Suitability for making dumpling (mudde). J Food Sci Tech. 1986;23(1):7-10. http://ir.cftri.res.in/id/eprint/6456

Rooney LW. Sorghum and pearl millet lipids. Cereal Chem. 1978;55(5):584-90.

Udachan IS, Sahoo AK, Hend GM. Extraction and characterization of sorghum (Sorghum bicolor L. Moench) starch. Int Food Res J. 2012;19(1):315.

Dicko MH, Gruppen H, Zouzouho OC, Traoré AS, Van Berkel WJ, Voragen AG. Effects of germination on the activities of amylases and phenolic enzymes in sorghum varieties grouped according to food end-use properties. J Sci Food Agric. 2006;86(6):953-63. https://doi.org/10.1002/jsfa.2443

Barros F, Awika J, Rooney LW. Effect of molecular weight profile of sorghum proanthocyanidins on resistant starch formation. J Sci Food Agric. 2014;94(6):1212-17. https://doi.org/10.1002/jsfa.6400

Martino HS, Tomaz PA, Moraes EA, Conceição LD, Oliveira DD, Queiroz VA, et al. Chemical characterization and size distribution of sorghum genotypes for human consumption. Rev Inst Adolfo Lutz. 2012;71(2):337-44. https://doi.org/10.53393/rial.2012.v71.32433

Verbruggen MA, Spronk BA, Schols HA, Beldman G, Voragen AG, Thomas JR, et al. Structures of enzymically derived oligosaccharides from sorghum glucuronoarabinoxylan. Carbohydr Res. 1998;306(1-2):265-274. https://doi.org/10.1016/S0008-6215(97)10064-7

Li H, Li Z, Peng P, She D, Xu Q, Zhang X. Characteristics of hemicelluloses obtained from sweet sorghum based on successive extractions. J Appl Polymer Sci. 2015;132(46). https://doi.org/10.1002/app.42790

Mishra A, Malhotra AV. Tamarind xyloglucan: A polysaccharide with versatile application potential. J Mater Chem. 2009;19(45):8528-36. https://doi.org/10.1039/B911150F

Belton PS, Delgadillo I, Halford NG, Shewry PR. Kafirin structure and functionality. J Cereal Sci. 2006;44(3):272-86. https://doi.org/10.1016/j.jcs.2006.05.004

Hoseney RC, Faubion JM. A mechanism for the oxidative gelation of wheat flour water-soluble pentosans. Cereal Chem. 1981;58(5):421-24.

Wrigley CW, Corke H, Walker CE. Encyclopedia of grain science. Vol. 2. Academic Press.; 2004. p. 500.

Jiang SY, Ma A, Xie L, Ramachandran S. Improving protein content and quality by over-expressing artificially synthetic fusion proteins with high lysine and threonine constituent in rice plants. Sci Rep. 2016;6(1):34427. https://doi.org/10.1038/srep34427

Khan A, Khan NA, Bean SR, Chen J, Xin Z, Jiao Y. Variations in total protein and amino acids in the sequenced sorghum mutant library. Plants. 2023;12(8):1662. https://doi.org/10.3390/plants12081662

Pedersen B, Eggum BO. The influence of milling on the nutritive value of flour from cereal grains. 6. Sorghum. Plant Foods for Human Nutri. 1983;33:313-26. https://doi.org/10.1007/BF01094756

Mbofung CM, Ndjouenkeu R. Influence of milling method and peanut extract on in vitro iron availability from maize and sorghum flour gruels. J Food Sci. 1990;55(6):1657-59. https://doi.org/10.1111/j.1365-2621.1990.tb03593.x

Gillooly M, Bothwell TH, Charlton RW, Torrance JD, Bezwoda WR, MacPhail AP, et al. Factors affecting the absorption of iron from cereals. Br J Nutri. 1984;51(1):37-46. https://doi.org/10.1079/BJN19840007

Radhakrishnan MR, Sivaprasad J. Tannin content of sorghum varieties and their role in iron bioavailability. J Agric Food Chem. 1980;28(1):55-57. https://doi.org/10.1021/jf60227a038

Elhassan MS, Emmambux MN, Hays DB, Peterson GC, Taylor JR. Novel biofortified sorghum lines with combined waxy (high amylopectin) starch and high protein digestibility traits: Effects on endosperm and flour properties. J Cereal Sci. 2015;65:132-39. https://doi.org/10.1016/j.jcs.2015.06.017

Ferreira SM, de Mello AP, dos Anjos MD, Krüger CC, Azoubel PM, de Oliveira Alves MA. Utilization of sorghum, rice, corn flours with potato starch for the preparation of gluten-free pasta. Food Chem. 2016;191:147-51. https://doi.org/10.1016/j.foodchem.2015.04.085

Afandi FA, Wijaya CH, Faridah DN, Suyatma NE, Jayanegara A. Evaluation of various starchy foods: A systematic review and meta-analysis on chemical properties affecting the glycemic index values based on in vitro and in vivo experiments. Foods. 2021;10(2):364. https://doi.org/10.3390/foods10020364

Dykes L, Rooney WL, Rooney LW. Evaluation of phenolics and antioxidant activity of black sorghum hybrids. J Cereal Sci. 2013;58(2):278-83. https://doi.org/10.1016/j.jcs.2013.06.006

Awika JM, Yang L, Browning JD, Faraj A. Comparative antioxidant, antiproliferative and phase II enzyme inducing potential of sorghum (Sorghum bicolor) varieties. LWT-Food Sci and Techno. 2009;42(6):1041-46. https://doi.org/10.1016/j.lwt.2009.02.003

Awika JM, Rooney LW, Waniska RD. Anthocyanins from black sorghum and their antioxidant properties. Food Chem. 2005;90(1-2):293-301. https://doi.org/10.1016/j.foodchem.2004.03.058

Shim TJ, Kim TM, Jang KC, Ko JY, Kim DJ. Toxicological evaluation and anti-inflammatory activity of a golden gelatinous sorghum bran extract. Biosci Biotech Biochem. 2013;77(4):697-05. https://doi.org/10.1271/bbb.120731

Kayodé AP, Hounhouigan DJ, Nout MJ, Niehof A. Household production of sorghum beer in Benin: Technological and socio-economic aspects. Int J Consumer Std. 2007;31(3):258-64. https://doi.org/10.1111/j.1470-6431.2006.00546.x

Xiong Y, Zhang P, Warner RD, Fang Z. Sorghum grain: From genotype, nutrition and phenolic profile to its health benefits and food applications. Comp Rev Food Sci Food Safety. 2019;18(6):2025-46. https://doi.org/10.1111/1541-4337.12506

Khan I, Yousif AM, Johnson SK, Gamlath S. Acute effect of sorghum flour-containing pasta on plasma total polyphenols, antioxidant capacity and oxidative stress markers in healthy subjects: A randomised controlled trial. Clin Nutri. 2015;34(3):415-21. https://doi.org/10.1016/j.clnu.2014.08.005

Wierzbicka D, Gromadzka G. Ceruloplasmin, hephaestin and zyklopen: The three multicopper oxidases important for human iron metabolism. Adv Hyg Exp Med. 2014;68:912-24. https://doi.org/10.5604/17322693.1111136

Helman SL, Zhou J, Fuqua BK, Lu Y, Collins JF. The biology of mammalian multi-copper ferroxidases. Biometals. 2023;36(2):263-81. https://doi.org/10.1007/s10534-022-00370-z

Sharma P, Reichert M, Lu Y, Markello TC, Adams DR, Steinbach PJ, et al. Biallelic HEPHL1 variants impair ferroxidase activity and cause an abnormal hair phenotype. PLoS Genet. 2019;15(5):e1008143. https://doi.org/10.1371/journal.pgen.1008143

Li R, Wang Q, Zhao G, Peng H, Zhang D, Li Z. Effects of germination time on phenolics, antioxidant capacity, in vitro phenolic bioaccessibility and starch digestibility in sorghum. Int J Food Sci Tech. 2022;57(8):5175-85. https://doi.org/10.1111/ijfs.15827

Apea-Bah FB, Li X, Beta T. Phenolic composition and antioxidant properties of cooked rice dyed with sorghum-leaf bio-colorants. Foods. 2021;10(9):2058. https://doi.org/10.3390/foods10092058

Awika JM. Sorghum phenols as antioxidants. Doctoral [Thesis], Texas A and M University; 2000. https://hdl.handle.net/1969.1/ETD-TAMU-2000-THESIS-A96

Francis FJ, Markakis PC. Food colorants: Anthocyanins. Crit Rev Food Sci Nutri. 1989;28(4):273-314. https://doi.org/10.1080/10408398909527503

Yasumatsu K, Nakayama TO, Chichester CO. Flavonoids of sorghum. J Food Sci. 1965;30(4):663-67. https://doi.org/10.1111/j.1365-2621.1965.tb01821.x

Clifford MN. Anthocyanins–nature, occurrence and dietary burden. J Sci Food Agric. 2000;80(7):1063-72. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7%3C1063::AID-JSFA605%3E3.0.CO;2-Q

Devi PS, Kumar MS, Das SM. Evaluation of antiproliferative activity of red sorghum bran anthocyanin on a human breast cancer cell line (MCF-7). Int J Breast Cancer. 2011;2011(1):891481. https://doi.org/10.4061/2011/891481

Pouget C, Lauthier F, Simon A, Fagnere C, Basly JP, Delage C, et al. Flavonoids: Structural requirements for antiproliferative activity on breast cancer cells. Bioorg Med Chem Lett. 2001;11(24):3095-97. https://doi.org/10.1016/S0960-894X(01)00617-5

Khan I, Yousif A, Johnson SK, Gamlath S. Effect of sorghum flour addition on resistant starch content, phenolic profile and antioxidant capacity of durum wheat pasta. Food Res Int. 2013;54(1):578-86. https://doi.org/10.1016/j.foodres.2013.07.059

Khan I, Yousif AM, Johnson SK, Gamlath S. Effect of sorghum flour addition on in vitro starch digestibility, cooking quality and consumer acceptability of durum wheat pasta. J Food Sci. 2014;79(8):S1560-67. https://doi.org/10.1111/1750-3841.12542

Poquette NM, Gu X, Lee SO. Grain sorghum muffin reduces glucose and insulin responses in men. Food and Funct. 2014;5(5):894-99. https://doi.org/10.1039/C3FO60432B

Wu G, Shen Y, Qi Y, Zhang H, Wang LI, Qian H, et al. Improvement of in vitro and cellular antioxidant properties of Chinese steamed bread through sorghum addition. Lwt. 2018;91:77-83. https://doi.org/10.1016/j.lwt.2017.12.074

Di Donfrancesco B, Koppel K, Aldrich CG. Pet and owner acceptance of dry dog foods manufactured with sorghum and sorghum fractions. J Cereal Sci. 2018;83:42-48. https://doi.org/10.1016/j.jcs.2018.07.011

Moustafa-Farag M, Mohamed HI, Mahmoud A, Elkelish A, Misra AN, Guy KM, et al. Salicylic acid stimulates antioxidant defense and osmolyte metabolism to alleviate oxidative stress in watermelons under excess boron. Plants. 2020;9(6):724. https://doi.org/10.3390/plants9060724

Nagy R, Szollosi E, Molnár PB, Murányi E, Czimbalmos R, Sipos P. Condensed tannin content and antioxidant activity of Hungarian sorghum varieties grown at Research Institute in Karcag. Acta Agraria Debreceniensis. 2021;1(1):155-60. https://doi.org/10.34101/actaagrar/1/8467

Hong S, Pangloli P, Perumal R, Cox S, Noronha LE, Dia VP, et al. A comparative study on phenolic content, antioxidant activity and anti-inflammatory capacity of aqueous and ethanolic extracts of sorghum in lipopolysaccharide-induced RAW 264.7 macrophages. Antioxidants. 2020;9(12):1297. https://doi.org/10.3390/antiox9121297

Ezeogu LI, Duodu KG, Emmambux MN, Taylor JR. Influence of cooking conditions on the protein matrix of sorghum and maize endosperm flours. Cereal Chem. 2008;85(3):397-402. https://doi.org/10.1094/CCHEM-85-3-0397

Barros F, Awika JM, Rooney LW. Interaction of tannins and other sorghum phenolic compounds with starch and effects on in vitro starch digestibility. J Agric Food Chem. 2012;60(46):11609-17. https://doi.org/10.1021/jf3034539

Mohamed HI, Elsherbiny EA, Abdelhamid MT. Das physiologische und biochemische Ansprechen von Vicia faba auf die Blattbehandlung mit Zink und Eisen. Gesunde Pflanzen. 2016;68:201-12. https://doi.org/10.1007/s10343-016-0378-0

Stefoska-Needham A, Beck EJ, Johnson SK, Chu J, Tapsell LC. Flaked sorghum biscuits increase postprandial GLP-1 and GIP levels and extend subjective satiety in healthy subjects. Mol Nutri Food Res. 2016;60(5):1118-28. https://doi.org/10.1002/mnfr.201500672

Awika JM, Rose DJ, Simsek S. Complementary effects of cereal and pulse polyphenols and dietary fiber on chronic inflammation and gut health. Food Funct. 2018;9(3):1389-409. https://doi.org/10.1039/C7FO02011B

Kim J, Park Y. Anti-diabetic effect of sorghum extract on hepatic gluconeogenesis of streptozotocin-induced diabetic rats. Nutri Metabol. 2012;9:1-7. https://doi.org/10.1186/1743-7075-9-106

Links MR, Taylor J, Kruger MC, Taylor JR. Sorghum condensed tannins encapsulated in kafirin microparticles as a nutraceutical for inhibition of amylases during digestion to attenuate hyperglycaemia. J Funct Foods. 2015;12:55-63. https://doi.org/10.1016/j.jff.2014.11.003

Mukai Y, Kataoka S, Sato S. Sorghum (Sorghum bicolor) extract affects plasma lipid metabolism and hepatic macrophage infiltration in diabetic rats. Current Nutri Food Sci. 2020;16(5):824-32. https://doi.org/10.2174/1573401315666190114153933

Anunciação PC, Cardoso LD, Queiroz VA, de Menezes CB, de Carvalho CW, Pinheiro-Sant’Ana HM, et al. Consumption of a drink containing extruded sorghum reduces glycaemic response of the subsequent meal. Europ J Nutri. 2018;57:251-57. https://doi.org/10.1007/s00394-016-1314-x

Amarakoon D, Lou Z, Lee WJ, Smolensky D, Lee SH. A mechanistic review: Potential chronic disease-preventive properties of sorghum. J Sci Food Agric. 2021;101(7):2641-49. https://doi.org/10.1002/jsfa.10933

Cox S, Noronha L, Herald T, Bean S, Lee SH, Perumal R, et al. Evaluation of ethanol-based extraction conditions of sorghum bran bioactive compounds with downstream anti-proliferative properties in human cancer cells. Heliyon. 2019;5(5):e01589. https://doi.org/10.1016/j.heliyon.2019.e01589

Ryu JM, Jang GY, Woo KS, Kim TM, Jeong HS, Kim DJ. Effects of sorghum ethyl-acetate extract on PC3M prostate cancer cell tumorigenicity. J Funct Foods. 2017;37:449-59. https://doi.org/10.1016/j.jff.2017.07.063

Hargrove JL, Greenspan P, Hartle DK, Dowd C. Inhibition of aromatase and alpha-amylase by flavonoids and proanthocyanidins from Sorghum bicolor bran extracts. J Med Food. 2011;14(7-8):799-807. https://doi.org/10.1089/jmf.2010.0143

Awika JM. Sorghum flavonoids: Unusual compounds with promising implications for health. In: Advances in cereal science: Implications to food processing and health promotion; 2011. 9:171-200. https://doi.org/10.1021/bk-2011-1089.ch009

Lee S, Choi YM, Shin MJ, Yoon H, Wang X, Lee Y, et al. Exploring the potentials of sorghum genotypes: A comprehensive study on nutritional qualities, functional metabolites and antioxidant capacities. Front Nutri. 2023;10:1238729. https://doi.org/10.3389/fnut.2023.1238729

Makanjuola SB, Ogundaini AO, Ajonuma LC, Dosunmu A. Apigenin and apigeninidin isolates from the Sorghum bicolor leaf targets inflammation via cyclo-oxygenase-2 and prostaglandin-E2 blockade. Int J Rheumatic Dis. 2018;21(8):1487-95. https://doi.org/10.1111/1756-185X.13355

Agah S, Kim H, Mertens-Talcott SU, Awika JM. Complementary cereals and legumes for health: Synergistic interaction of sorghum flavones and cowpea flavonols against LPS-induced inflammation in colonic myofibroblasts. Mol Nutri Food Res. 2017;61(7):1600625. https://doi.org/10.1002/mnfr.201600625

Ravisankar S, Agah S, Kim H, Talcott S, Wu C, Awika J. Combined cereal and pulse flavonoids show enhanced bioavailability by downregulating phase II metabolism and ABC membrane transporter function in Caco-2 model. Food Chem. 2019;279:88-97. https://doi.org/10.1016/j.foodchem.2018.12.006

Salawu SO, Salimon YA. Evaluation of the effect of Sorghum bicolor aqueous extract on the haematological, renal and hepatic parameters in rats fed with low and high iron diet. Europ J Med Plants. 2014;4(7):783-93. https://doi.org/10.9734/EJMP/2014/7847

Espitia-Hernández P, Chavez Gonzalez ML, Ascacio-Valdés JA, Dávila-Medina D, Flores-Naveda A, Silva T, et al. Sorghum (Sorghum bicolor L.) as a potential source of bioactive substances and their biological properties. Crit Rev Food Sci Nutri. 2022;62(8):2269-80. https://doi.org/10.1080/10408398.2020.1852389

Haikerwal M, Mathieson AR. The protein content and amino acid composition of sorghum grain. Cereal Chem. 1971;48:690-99.

WHO. Protein and amino acid requirements in human nutrition. World Health Organization Technical Report Series. 2007;(935):1.

Kent NL. Kent’s Technology of cereals: An introduction for students of food science and agriculture. Elsevier; 1994.

Abd El Moneim MR, El-Beltagi H, Abd El-Salam SM, Omran AA. Biochemical changes in phenols, flavonoids, tannins, vitamin E, beta-carotene and antioxidant activity during soaking of three white sorghum varieties. Asian Pacific J Tropical Biomed. 2012;2(3):203-09. https://doi.org/10.1016/S2221-1691(12)60042-2

Przybylska-Balcerek A, Frankowski J, Stuper-Szablewska K. Bioactive compounds in sorghum. Europ Food Res Techn. 2019;245:1075-80. https://doi.org/10.1007/s00217-018-3207-0

Punia S, Kumar M, Siroha AK, Purewal SS. Rice bran oil: Emerging trends in extraction, health benefit and its industrial application. Rice Sci. 2021;28(3):217-32. https://doi.org/10.1016/j.rsci.2021.04.002

de Morais Cardoso L, Pinheiro SS, da Silva LL, de Menezes CB, de Carvalho CW, Tardin FD, et al. Tocochromanols and carotenoids in sorghum (Sorghum bicolor L.): Diversity and stability to the heat treatment. Food Chem. 2015;172:900-08. https://doi.org/10.1016/j.foodchem.2014.09.117

Paiva CL, Evangelista WP, Queiroz VA, Glória MB. Bioactive amines in sorghum: Method optimisation and influence of line, tannin and hydric stress. Food Chem. 2015;173:224-30. https://doi.org/10.1016/j.foodchem.2014.10.039

Chung IM, Yong SJ, Lee J, Kim SH. Effect of genotype and cultivation location on beta-sitosterol and alpha-, beta-, gamma- and delta-tocopherols in sorghum. Food Res Int. 2013;51(2):971-76. https://doi.org/10.1016/j.foodres.2013.02.027

Leguizamón C, Weller CL, Schlegel VL, Carr TP. Plant sterol and policosanol characterization of hexane extracts from grain sorghum, corn and their DDGS. J Am Oil Chemists' Soc. 2009;86:707-16. https://doi.org/10.1007/s11746-009-1398-z

Hithamani G, Srinivasan K. Bioaccessibility of polyphenols from wheat (Triticum aestivum), sorghum (Sorghum bicolor), green gram (Vigna radiata), and chickpea (Cicer arietinum) as influenced by domestic food processing. J Agric Food Chem. 2014;62(46):11170-79. https://doi.org/10.1021/jf503450u

N'Dri D, Mazzeo T, Zaupa M, Ferracane R, Fogliano V, Pellegrini N. Effect of cooking on the total antioxidant capacity and phenolic profile of some whole-meal African cereals. J Sci Food Agric. 2013;93(1):29-36. https://doi.org/10.1002/jsfa.5837

Li M, Xu T, Zheng W, Gao B, Zhu H, Xu R, et al. Triacylglycerols compositions, soluble and bound phenolics of red sorghums, and their radical scavenging and anti-inflammatory activities. Food Chem. 2021;340:128123. https://doi.org/10.1016/j.foodchem.2020.128123

Luo X, Cui J, Zhang H, Duan Y. Subcritical water extraction of polyphenolic compounds from sorghum (Sorghum bicolor L.) bran and their biological activities. Food Chem. 2018;262:14-20. https://doi.org/10.1016/j.foodchem.2018.04.073

Sha X, Sun H, Li Y, Wu J, Zhang H, Yang R. The prolamins, from structure, property, to the function in encapsulation and delivery of bioactive compounds. Food Hydrocolloids. 2023;9:109508. https://doi.org/10.1016/j.foodhyd.2023.109508

Published

11-02-2025

How to Cite

1.
Shanalin J, Chandirakala R, Boopathi NM, Chandrakumar K, Giridhari VVA, Sivakumar S. Unveiling the nutraceutical properties and functional attributes of sorghum-Comprehensive review. Plant Sci. Today [Internet]. 2025 Feb. 11 [cited 2025 Apr. 3];. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/4115

Issue

Section

Review Articles