Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Multivariate analysis and multi-trait index-based selection of maize (Zea mays L.) inbreds for agromorphological and yield components

DOI
https://doi.org/10.14719/pst.4206
Submitted
29 June 2024
Published
22-07-2025 — Updated on 29-07-2025
Versions

Abstract

Germplasm is pivotal in breeding, significantly impacting targeted efforts through genetic diversity. Assessing genetic parameters aids researchers in precise germplasm selection for enhanced gains. Ideotype-based breeding refines this by tailoring plant types to specific goals. The Multi Trait Genotype Ideotype Distance Index (MGIDI) defines ideotype parameters and aids in selecting genotypes closely aligned with desired traits. A study conducted at Tamil Nadu Agricultural University during 2022-23 utilized 55 maize germplasm lines in a Randomized Block Design, evaluating nine biometrical traits. Analysis of Variance revealed significant genotype differences for all traits, with grain yield positively associated with plant height, cob length, cob diameter, kernel row number and kernels per row. The principal component analysis identified three PC with eigenvalue >1 explaining 74.44 % cumulative variance, associating the first component with yield and cob traits, the second with flowering traits and the third PC with shelling percentage and plant height. Two ideotypes based on maturity i.e. medium and late maturity were defined and MGIDI was calculated. Selection gains were positive for all the traits and the genotype B. NO 1265-6-2 (G8) was ranked as the closest to the medium maturing ideotype. Similarly, the genotype UMI 1003-2-3 (G10) was closest in resemblance to the late maturing ideotype and the selection gains were positive for all the traits except plant height. This study emphasizes the critical role of germplasm selection and ideotype-based breeding in enhancing genetic gains in maize breeding programs.

References

  1. 1. Shikha K, Shahi JP, Vinayan MT, Zaidi PH, Singh AK, Sinha B. Genome-wide association mapping in maize: status and prospects. 3 Biotech. 2021.11(5):244. https://doi.org/10.1007/s.13205-021-02799-4
  2. 2. Rabinowicz PD, Bennetzen JL. The maize genome as a model for efficient sequence analysis of large plant genomes. Curr Opin Plant Biol. 2006;9(2):149‒56. https://doi.org/10.1016/j.pbi.2006.01.015
  3. 3. Gálvez Ranilla LFM. The Application of metabolomics for the study of cereal corn (Zea mays L.). Metabolites. 2020; 10(8):300. https://doi.org/10.3390/metabo10080300.
  4. 4. United States. U.S. National Agricultural Statistics Service NASS. United States; [Web Archive] 2023 Retrieved from the Library of Congress. https://www.loc.gov/item/lcwaN0019059.
  5. 5. Ren Y, Li Q, Du X, Zhang Y, Wang H, Shi G, Wei M. Analysis of corn yield prediction potential at various growth phases using a process-based model and deep learning. Plants. 202312(3):446. https://doi.org/10.3390/plants12030446.
  6. 6. Datta MH, Yadu S, Nandedkar K, Rawte S, Saxena RR. Exploration of potential donors for machine-amenable traits in desi chickpea (Cicer arietinum L.): towards enhancing agricultural automation and efficiency. Electron J Plant Breed. 2023;14(3):1246‒54. https://doi.org/10.37992/2023.1403.130
  7. 7. Adhikari BN, Shrestha J, Dhakal B, Joshi BP, Bhatta NR. Agronomic performance and genotypic diversity for morphological traits among early maize genotypes. Int J Appl Biol. 2018;2(2):33‒43. https://doi.org/10.20956/ijab.v2i2.5633
  8. 8. Hadi BH, Hassan WA. Evaluating the performance of introduced varieties of maize (Zea mays L.) and estimating some genetic parameters. Int J Agric Stat Sci. 2021;17(1):85‒91. https://connectjournals.com/03899.2021.17.85
  9. 9. Pavlov J, Delic N, Markovic K, Crevar M, Camdzija, Stevanovic M. Path analysis for morphological traits in maize (Zea mays L.). Genetika. 2015;47(1):295‒301. https://doi.org/10.2298/GENSR1501295P
  10. 10. Guei RG, Sanni KA, Fawole AFJ. Genetic diversity of rice (Oryza sativa L.). Agron Afr. 2005;5:17‒28.
  11. 11. Das S, Das SS, Chakraborty I, Roy N, Nath MK, Sarma D. Principal component analysis in plant breeding. Biomol Rep-Int eNewsletter. 2017;BR/09/17/03.
  12. 12. Rocha JRASC, Machado JC, Carneiro CS. Multi-trait index based on factor analysis and ideotype-design: proposal and application on elephant grass breeding for bioenergy. GCB Bioenergy. 2018; 10:52‒60. https://doi.org/10.1111/gcbb.12443.
  13. 13. Céron-Rojas JJ, Crossa J. Linear selection indices in modern plant breeding. Springer Nature. 2018; p. 256. https://doi.org/10.1007/978-3-319-91223-3
  14. 14. Olivoto T, Nardino M. MGIDI: toward an effective multivariate selection in biological experiments. Bioinformatics. 2020. https://doi.org/10.1093/bioinformatics/btaa981.
  15. 15. Pour-Aboughadareh A, Sanjani S, Nikkhah-Chamanabad H, Mehrvar MR, Asadi A, Amini A. Identification of salt-tolerant barley genotypes using multiple-traits index and yield performance at the early growth and maturity stages. Bull Natl Res Cent. 2021;45(1):1‒16. https://doi.org/10.1186/s42269-021-00576-0.
  16. 16. Klein LA, Marchioro VS, Toebe M, Olivoto T, Meira D, Meier C, et al. Selection of superior black oat lines using the MGIDI index. Crop Breed Appl Biotechnol. 2023;23. https://doi.org/10.1590/1984-70332023v23n3a25
  17. 17. Ahsan AFMS, Alam Z, Ahmed F, Akter S, Khan MAH. Selection of waterlogging tolerant sesame genotypes (Sesamum indicum L.) from a dataset using the MGIDI index. Data Brief. 2024;110176. https://doi.org/10.1016/j.dib.2024.110176.
  18. 18. Singamsetti A, Zaidi PH, Seetharam K, Vinayan MT, Olivoto T, Mahato A, Shikha K. Genetic gains in tropical maize hybrids across moisture regimes with multi-trait-based index selection. Front Plant Sci. 2023;14:1147424. https://doi.org/10.3389/fpls.2023.1147424
  19. 19. Burton GW, Devane E. Quantitative inheritance in grass pea. Proc 6th Int Grassland Cong. 1953;1:277‒83.
  20. 20. Johnson HW, Robinson HF, Comstock RE. Estimates of genetic and environmental variations in Soybean. Agron J. 1955;47:314‒18. https://doi.org/10.2134/agronj1955
  21. 21. Miller PA, Williams JE, Robinson HF, Comstock RE. Estimates of variance and co-variance in upland cotton and their implications in selection. Agron J. 1958;50:126‒31. https://doi.org/10.2134/agronj1958.00021962005000030004x.
  22. 22. Massey WF. Principal components regression in exploratory statistical research. J Am Stat Assoc. 1965;60:234‒46. https://doi.org/10.1080/01621459.1965.10480787
  23. 23. Jolliffe IT. Principal component analysis. Springer Series in Statistics. 1986.. https://doi.org/10.1007/978-1-4757-
  24. 1904-8.
  25. 24. Gopinath PP, Parsad R, Joseph B, Adarsh VS. GRAPES: General Rshiny based analysis platform empowered by Statistics. Version 1.0.0. 2020. https://doi.org/10.5281/zenodo.4923220
  26. 25. Olivoto T, Lúcio ADC. Metan: An r package for multi-environment trial analysis. Methods Ecol Evol. 2020;11(6):783‒89. https://doi.org/10.1111/2041-210X.13384.
  27. 26. Wickham H. ggplot2: Elegant graphics for data analysis. Springer-Verlag New York; 2016 ISBN 978-3-319-24277-4. https://ggplot2.tidyverse.org
  28. 27. Wei T, Simko V. R package 'corrplot': Visualization of a correlation matrix. Version 0.92; 2021. https://github.com/taiyun/corrplot.
  29. 28. Kassambara A, Mundt F. Factoextra: Extract and visualize the results of multivariate data analyses. R Package Version 1.0.7. 2020. https://CRAN.R-project.org/package=factoextra.
  30. 29. Venujayakanth B, Dudhat AS, Swaminathan B, Anurag ML. Assessing crop genetic diversity using principal component analysis: A review. Trends Biosci. 2017;10(2):523‒28.
  31. 30. Netaji SVSRK, Satyanarayana E, Suneetha V. Heterosis studies for yield and yield component characters in maize (Zea mays L.). Andhra Agric J. 2000;47:39‒42.
  32. 31. Nagabhushan NM, Mallikarjuna CH, Shashibhaskar MS, Prahalada GD. Genetic variability and correlation studies for yield and related characters in single cross hybrids of maize (Zea mays L.). Curr Bio. 2011;5:157‒63.
  33. 32. Kapoor R, Batra C. Genetic variability and association studies in maize (Zea mays L.) for green fodder yield and quality traits. Electron J Plant Breed. 2015;6(1):233‒40. https://www.ejplantbreeding.org/index.php/EJPB/article/view/654
  34. 33. Kandel BP, Sharma BK, Sharma S, Shrestha J. Genetic variability, heritability and genetic advance estimates in maize (Zea mays L.) genotypes in Nepal. Agricultura. 2018;107(3-4):29‒35.
  35. 34. Prakash R, Ravikesavan R, Vinodhana NK, Senthil A. Genetic variability, character association and path analysis for yield and yield component traits in maize (Zea mays L.). Electron J Plant Breed. 2019;10(2):518‒24. https://doi.org/10.
  36. 5958/0975-928X.2019.00065.6
  37. 35. Prasanna BM. Diversity in global maize germplasm: Characterization and utilization. J Biosci. 2012;37:843‒55. https://doi.org/10.1007/s12038-012-9227-1.
  38. 36. Yadav PK, Tripathi MK, Tiwari S, Chauhan S, Tripathi N, Sikarwar RS, et al. Genetic components and variability assessment for grain yield and its accrediting traits in maize (Zea mays L.). Intern J Environ and Climate Change. 2023;13(9):772‒84. https://doi.org/10.9734/ijecc/2023/v13i92298.
  39. 37. Sofi PA, Rather AG, Dar Z. Association of heterotic expression for grain yield and its component traits in maize (Zea mays L.). Int J Agric Res. 2007;2(5):500‒03. https://doi.org/10.3923/ijar.2007.500.503
  40. 38. Panwar LL, Mahawar RK, Narolia RS. Genetic variability and interrelationships among grain yield and yield components in maize. Ann Plant Soil Res. 2013;15(1):15‒18.
  41. 39. Rahman M, Hoque A, Hossain MA, Al Bari MA. Variability and trait association analyses in maize (Zea mays L.) genotypes. Agriculturist. 2017;15(2):101‒14. https://doi.org/10.3329/agric.v15i2.35473.
  42. 40. Rafiq CM, Rafique M, Hussain A, Altaf M. Studies on heritability, correlation and path analysis in maize (Zea mays L.). J Agric Res. 2010;48(1):35‒38.
  43. 41. Munawar M, Shahbaz M, Hammad G, Yasir M. Correlation and path analysis of grain yield components in exotic maize (Zea mays L.) hybrids. Int J Sci Basic Appl Res. 2013;12(1):22‒27.
  44. 42. Lakshmi MS, Jagadev PN, Das S, Lenka D, Swain D, Tripathy SK. Genetic variability and association analysis of maize hybrids under excessive soil moisture condition. Int J Curr Microbiol App Sci. 2018;7(9):2935‒41. https://doi.org/10.20546/ijcmas.2018.709.365
  45. 43. Rai R, Khanal P, Chaudhary P, Dhital R. Genetic variability, heritability and genetic advance for growth, yield and yield-related traits in maize genotypes. J Agric Appl Biol. 2021;2(2):96‒104. https://doi.org/10.11594/jaab.02.02.04
  46. 44. Okporie EO. Characterization of maize (Zea mays L.) germplasm with principal component analysis. Agro-Sci. 2008;7(1):66‒71. https://doi.org/10.4314/as.v7i1.1587
  47. 45. Iqbal J, Shinwari ZK, Rabbani MA. Maize (Zea mays L.) germplasm agro-morphological characterization based on descriptive, cluster and principal component analysis. Pak J Bot. 2015;47:255‒64.
  48. 46. Bhusal TN, Lal GM, Marker S, Synrem GJ. Discrimination of maize (Zea mays L.) inbreds for morpho-physiological and yield traits by D2 statistics and principal component analysis (PCA). Asian J Bio Sci. 2016;11(1):77‒84. https://doi.org/10.15740/HAS/AJBS/11.1/77-84
  49. 47. Shirzad A, Asghari A, Zali H, Sofalian O, Chamanabad MH. Application of the multi-trait genotype-ideotype distance index in the selection of top barley genotypes in the warm and dry region of Darab. J Crop Breed.
  50. 2022;14(44):65‒76. https://doi.org/10.52547/jcb.14.44.65;
  51. 48. Palaniyappan S, Ganesan KN, Manivannan N, Ravichandran V, Senthil N. Multi-trait genotype-ideotype distance index-A tool for the identification of elite parental inbreds for developing heterotic hybrids of fodder maize (Zea mays L.). Electron J Plant Breed. 2023;14(3):841‒49. https://doi.org/10.37992/2023.1403.098

Downloads

Download data is not yet available.