Identification of false smut – resistant donors in Rice (Oryza sativa L.) and analysis of their morpho-molecular diversity for resistance breeding

Authors

  • Mangudi Sowmiya Department of Rice, Centre for Plant Breeding and Genetics (CPBG), Tamil Nadu Agricultural University, Coimbatore , Tamil Nadu - 641 003, India https://orcid.org/0009-0008-1961-5482
  • Swaminathan Manonmani Department of Rice, Centre for Plant Breeding and Genetics (CPBG), Tamil Nadu Agricultural University, Coimbatore , Tamil Nadu - 641 003, India https://orcid.org/0000-0003-3532-3363
  • Nallamuthu Ramya Selvi Department of Rice, Centre for Plant Breeding and Genetics (CPBG), Tamil Nadu Agricultural University, Coimbatore , Tamil Nadu - 641 003, India https://orcid.org/0000-0002-4195-1342
  • Ramasamy Saraswathi Department of Plant Genetic Resources, Centre for Plant Breeding and Genetics (CPBG), Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu -641 003, India https://orcid.org/0000-0002-0107-5712
  • Ramalingam Suresh Department of Rice, Centre for Plant Breeding and Genetics (CPBG), Tamil Nadu Agricultural University, Coimbatore , Tamil Nadu - 641 003, India https://orcid.org/0000-0002-0107-5712
  • Chellappan Gopalakrishnan Department of Rice, Centre for Plant Protection studies (CPPS), Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu -641 003, India https://orcid.org/0000-0002-0107-5712
  • Muthurajan Raveendran Director of Research, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu -641 003, India https://orcid.org/0000-0002-8803-7662
  • Palanisamy Dhamotharan Department of Genetics and Plant Breeding, Tamil Nadu Agricultural University, Coimbatore - 641 003, Tamil Nadu, India https://orcid.org/0000-0002-1533-6338

DOI:

https://doi.org/10.14719/pst.4242

Keywords:

False smut, phenotyping, genetic diversity, marker profiling, SSR markers

Abstract

False smut disease of rice caused by the pathogen Ustilaginoidea virens is a growing threat to the rice farmers as it affects both quality and quantity. Development of resistant variety becomes difficult, since very few resistant donors were available for false smut resistant breeding programme. Therefore, to identify potential donors for resistance breeding a total of 60 genotypes were screened at hotspot location (Gudalur) during kharif 2023 which led to identification of 12 highly resistant genotypes and the notable ones are Koolavalai, Periya chandikar, Kapikar selection and Earapalli. Genetic variability studies indicated the presence of additive gene action for all the agronomic and disease related traits. Principal component analysis revealed the first 5 principal components collectively contributing 78.79 % of the total variance with disease-related traits contributing significantly to divergence. Ten clusters were delineated using Mahalanobis D2 statistics with clusters IX and V showing higher inter cluster distance (3453.64). Forty-one polymorphic markers were used to analyse the genotypes and The Unweighted Pair Group method with Arithmetic Mean (UPGMA) clustering by Jaccard distance formed 6 clusters. The Bayesian clustering classified the entire population into 2 subpopulations. False smut linked marker RM336 and RM218 were found to be the most informative marker with high Polymorphism Information Content (0.71, 0.69) and Heterozygosity Index (0.76, 0.73). The resistant genotypes such as IG71, Thulasi vasanai sambha, Arupatham vellai, Kaltikar and Chinna aduku nel can be used in the future breeding programmes to develop the resistant cultivar and to identify the candidate genes governing resistance.

Downloads

Download data is not yet available.

References

Savary S, Willocquet L, Elazegui FA, Castilla NP, Teng PS. Rice pest constraints in tropical Asia: quantification of yield losses due to rice pests in a range of production situations. Plant Disease. 2000;84(3):357-69. https://doi.org/10.1094/PDIS.2000.84.3.357

Ladhalakshmi D, Laha GS, Singh R, Karthikeyan A, Mangrauthia SK, Sundaram RM, et al. Isolation and characterization of Ustilaginoidea virens and survey of false smut disease of rice in India. Phytoparasitica. 2012;40:171-76.https://doi.org/10.1007/s12600-011-0214-0

Singh AK, Pophaly DJ. An unusual rice false smut epidemic reported in Raigarh district, Chhattisgarh. International Rice Research Notes. 2010;35:1-3.

Andargie M, Li L, Feng A, Zhu X, Li J. Mapping of the quantitative trait locus (QTL) conferring resistance to rice false smut disease. Current Plant Biology. 2018;15:38-43. https://doi.org/10.1016/j.cpb.2018.11.003

Hedge YR, Anahosur KH. Effect of false smut of rice on yield components and growth parameters. Indian Phytopathology. 2000;53(2):181-84.

Ahonsi MO, Adeoti AA, Erinle ID, Alegbejo MD, Singh BN, Sy AA. Effect of variety and sowing date on false smut incidence in upland rice in Edo state, Nigeria. International Rice Research Notes. 25(1):1-14.

Zhou L, Mubeen M, Iftikhar Y, Zheng H, Zhang Z, Wen J, et al. Rice false smut pathogen: implications for mycotoxin contamination, current status and future perspectives. Frontiers in Microbiology. 2024;15:1344831. https://doi.org/10.3389/fmicb.2024.1344831

Baite MS, Raghu S, Prabhukarthikeyan SR, Mukherjee AK, Bag MK, Jena M. Yield loss assessment in rice (Oryza sativa) due to false smut infection. The Indian Journal of Agricultural Sciences. 2020;90(2):361-64. https://doi.org/10.56093/ijas.v90i2.99023

Zhou YL, Xie XW, Zhang F, Wang S, Liu XZ, Zhu LH, et al. Detection of quantitative resistance loci associated with resistance to rice false smut (Ustilaginoidea virens) using introgression lines. Plant Pathology. 2014;63(2):365-72. https://doi.org/10.1111/ppa.12091

Doddakoppalu Govindaiah M, Selvaraj R, Kadirimangalam SR, Sundararajan A, Nachimuthu VV, Swaminathan M, et al. Genetic dissection of false smut resistance in rice through genome wide association mapping. Journal of Phytopathology. 2022;170(5):282-99. https://doi.org/10.1111/jph.13069

Mahalanobis PC. On the generalized distance in statistics. Sankhya: The Indian Journal of Statistics, Series A (2008). 2018;80:S1-7. https://www.jstor.org/stable/48723335

Talekar SC, Praveena MV, Satish RG. Genetic diversity using principal component analysis and hierarchical cluster analysis in rice. Int J Plant Sci. 2022;17(2):191-96. https://doi.org/10.15740/HAS/IJPS/17.2/191-196

Jasim Aljumaili S, Rafii MY, Latif MA, Sakimin SZ, Arolu IW, Miah G. Genetic diversity of aromatic rice germplasm revealed by SSR markers. BioMed Research International. 2018;2018(1):7658032. https://doi.org/10.1155/2018/7658032

Chukwu SC, Rafii MY, Ramlee SI, Ismail SI, Oladosu Y, Muhammad II, et al. Genetic analysis of microsatellites associated with resistance against bacterial leaf blight and blast diseases of rice (Oryza sativa L.). Biotechnology and Biotechnological Equipment. 2020;34(1):898-904. https://doi.org/10.1080/13102818.2020.1809520

Ashizawa T, Takahashi M, Moriwaki J. et al. A refined inoculation method to evaluate false smut resistance in rice. J Gen Plant Pathol. 2011;77:10-16. https://doi.org/10.1007/s10327-010-0279-5

Huang S, Liu L, Wang L, Hou Y. Research on advance of rice false smut Ustilaginoidea virens (Cooke) Takah worldwide: Part I. Research status of rice false smut. Journal of Agricultural Science. 2019;11(15):240. https://doi.org/10.5539/jas.v11n15p240

Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin. 1987;19:11-15.

Prevost A, Wilkinson MJ. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics. 1999;98:107-12. https://doi.org/10.1007/s001220051046

Manivannan N. TNAUSTAT-Statistical package. 2014. https://sites.google.com/site/tnaustat

Allan V. PB-Perfect: a comprehensive R-based tool for plant breeding data analysis. PB -Perfect. 2023. https://allanbiotools.shinyapps.io/pbperfect/

Peakall ROD, Smouse PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006;6(1):288-95. https://doi.org/10.1111/j.1471-8286.2005.01155.x

Christina GR, Thirumurugan T, Jeyaprakash P, Rajanbabu V. Principal component analysis of yield and yield related traits in rice (Oryza sativa L.) landraces. Electronic Journal of Plant Breeding. 2021;12(3):907-11. https://doi.org/10.37992/2021.1203.125

Saraswathi R. Elucidation of gene action and identification of QTLs or genes for false smut resistance in rice Oryza sativa L. India: TamilNadu Agricultural University;2024. Available from: http://hdl.handle.net/10603/513362

Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611-20. https://doi.org/10.1111/j.1365-294X.2005.02553

Li R, Chen S, Matsumoto H, Gouda M, Gafforov Y, Wang M, Liu Y. Predicting rice diseases using advanced technologies at different scales: present status and future perspectives. Abiotech. 2023;4(4):359-71. https://doi.org/10.1007/s42994-023-00126-4

Chib HS, Tikoo ML, Kalha CS, Gupta BR, Singh SK, Raina PK. Effect of false smut on yield of rice. Indian Journal of Mycology and Plant Pathology. 1992;22(3):278-80.

Rani R, Sharma VK, Lore JS, Pannu PP, Kaur Y. Screening of rice germplasm against Ustilaginoidea virens, the incitant of false smut. Agricultural Research Journal. 2016;53(1):134-37. https://doi.org/10.5958/2395-146X.2016.00026.0

Selvi NR, Saraswathi R, Geetha S, Gopalakrishnan C. Genetic studies on false smut disease resistance and yield components in rice (Oryza sativa. L). Electronic Journal of Plant Breeding. 2023;14(1):96-106. https://doi.org/10.37992/2023.1401.013

Momotaj begum MD, Mamunur rashid MD, Hasan MS, Hasan MZ. Genetic variability and crossing among blast resistant and susceptible fine aromatic rice (Oryza sativa) land races. Res on Crops. 2000;19(3):450-57.

Nivedha R, Manonmani S, Kalaimagal T, Raveendran M, Kavitha S. Assessing the genetic diversity of parents for developing hybrids through morphological and molecular markers in rice (Oryza sativa L.). Rice. 2024;17(1):17. https://doi.org/10.1186/s12284-024-00691-2

Hosagoudar GN, Babu U, Kovi BS. Genetic variability studies of short duration fine grain paddy varieties having resistance to blast diseases. J Pharmacogn and Phytochem. 2018;7(4):935-39.

Nadarajan N, Manivannan N, Gunasekaran M. Quantitative genetics and biometrical techniques in plant breeding. Kalyani, New Delhi, India. 2016;pp 227-32.

Mohapatra C, Chand R, Singh AK, Dixit GP. Principal component analysis for quantitative traits and powdery mildew resistance in pea (Pisum sativum L.). Journal of Food Legumes. 2017;30(2):43-47.

Dinesh K, Devi MS, Sreelakshmi C, Paramasiva I. Exploring the genetic diversity for yield and quality traits in indigenous landraces of rice (Oryza sativa L.). Electronic Journal of Plant Breeding. 2023;14(2):502-10. https://doi.org/10.37992/2023.1402.055

Bhati PK, Singh SK, Sharma SD. Genetic divergence for quantitative traits in rice germplasm. Electronic Journal of Plant Breeding. 2015;6(2):528-34.

Singh A, Singh PK, Singh SP. Estimation of genetic divergence analysis for yield and bacterial leaf blight (BLB) disease resistance in rice (Oryza sativa L.). Journal of Pharmacognosy and Phytochemistry. 2019;8(2):1124-28.

Sai BH, Reddy BR, Priya MS, Vemireddy LR. Genetic diversity analysis for yield and yield attributing characters in rice (Oryza sativa L.). Electronic Journal of Plant Breeding. 2022;13(4):1282-87. https://doi.org/10.37992/2022.1304.161

Fu RT, Chen C, Wang J, Zhao LY, Chen XJ, Lu DH. Evaluation and screening of rice germplasm resources resistant to rice false smut. Journal of Southern Agriculture. 2022;53(1):78-87. 10.3969/j.issn.2095-1191.2022.01.009

Vabna FA, Islam MZ, Prince MF, Hoque ME. Molecular diversity analysis in Boro rice (Oryza sativa L.) landraces using SSR markers. Asian Journal of Biology. 2021;12(1):36-48. https://doi.org/10.9734/ajob/2021/v12i130156

Sarif HM, Rafii MY, Ramli A, Oladosu Y, Musa HM, Rahim HA, et al. Genetic diversity and variability among pigmented rice germplasm using molecular marker and morphological traits. Biotechnology and Biotechnological Equipment. 2020;34(1):747-62. https://doi.org/10.1080/13102818.2020.1804451

Pradhan AK, LNR Vemireddy, B Tanti. Assessment of the genetic variability and population structure in boro rice cultivars of Assam, India using candidate gene based SSR markers. Genet Resour Crop Evol. 2023;70(6):1747-65. https://doi.org/10.1007/s10722-022-01533-0

Subramani P, Kalipatty Nalliappan G, Narayana M, Veerasamy R, Natesan S. Molecular diversity, population structure analysis and assessment of parent hybrid relationships in fodder maize. Crop Breed Appl Biotechnol. 2024;24(3):e48112433. https://doi.org/10.1590/1984-70332024v24n3a28

Nath A, D Nath, T Dasgupta. Population structure and diversity analysis of Indica and Japonica rice genotypes. Bulgarian Journal of Agricultural Science. 2021;27(1):120-27.

Nithya N, Beena R, Abida PS, Sreekumar J, Stephen R, Jayalekshmi VG, et al. Genetic diversity and population structure analysis of bold type rice collection from Southern India. Cereal Res Commun. 2021;49:311-28. https://doi.org/10.1007/s42976-020-00099-w

Pandita D, Mahajan R, Zargar SM, Nehvi FA, Dhekale B, Shafi F, et al. Trait specific marker-based characterization and population structure analysis in rice (Oryza sativa L.) germplasm of Kashmir Himalayas. Mol Biol Rep. 2023;50(5):4155-63. https://doi.org/10.1007/s11033-023-08324-5

Anandan A, Anumalla M, Pradhan SK, Ali J. Population structure, diversity and trait association analysis in rice (Oryza sativa L.) germplasm for early seedling vigor (ESV) using trait linked SSR markers. PloS One. 2016;11(3):e0152406.https://doi.org/10.1371/journal.pone.0152406

Nuijten E, van Treuren R, Struik PC, Mokuwa A, Okry F, Teeken B, Richards P. Evidence for the emergence of new rice types of interspecific hybrid origin in West African farmers' fields. PLoS One. 2009;4(10):e7335. https://doi.org/10.1371/journal.pone.0007335

Pathak P, Singh SK, Korada M, Habde S, Singh DK, Khaire A, Majhi PK. Genetic characterization of local rice (Oryza sativa L.) genotypes at morphological and molecular level using SSR markers. J Exp Biol Agric Sci. 2020;8(2):148-56. https://doi.org/10.18006/2020.8(2).148.156

Published

07-10-2024 — Updated on 09-10-2024

Versions

How to Cite

1.
Mangudi Sowmiya, Swaminathan Manonmani, Nallamuthu Ramya Selvi, Ramasamy Saraswathi, Ramalingam Suresh, Chellappan Gopalakrishnan, Muthurajan Raveendran, Palanisamy Dhamotharan. Identification of false smut – resistant donors in Rice (Oryza sativa L.) and analysis of their morpho-molecular diversity for resistance breeding. Plant Sci. Today [Internet]. 2024 Oct. 9 [cited 2024 Nov. 21];11(4). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/4242

Issue

Section

Research Articles