Host infectivity of Pyricularia pathogen of finger millet (Eleusine coracana (L.) Gaertn.) on Poaceae weeds

Authors

DOI:

https://doi.org/10.14719/pst.4331

Keywords:

correlation determination , Finger millet, infectivity , Poaceae weeds, Pyricularia

Abstract

Blast disease of finger millet is a serious disease all over the world and causes significant yield loss. Pyricularia populations consist of various pathotypes with different host ranges within the Poaceae family and express host specificities mediated by Avr and R genes. So, identification of the host range of Pyricularia on weeds within the poaceae family will give an idea for further research on understanding of genes responsible for host specificity reaction of Pyricularia among various host ranges. Pyricularia isolated from finger millet was tested on different weed host plants to study the infectivity of Pyricularia on weed species. The Pyricularia pathogen isolated from the infected leaf of finger millet plants having spindle-shaped lesions. The Poaceae weeds viz., Chloris barbeta, Cynodon dactylon, Cyperus rotundus, Dactylacterium aegyptium, and Echinochloa colonum are observed regularly in the field of finger millet. Among the weed species, spindle shaped lesion was observed in C. barbeta, C. dactylon, C. rotundus and D. aegyptium in leaf detachment assay with Pyricularia at Centre of Excellence in Millets, Athiyandal, Tiruvannamalai, India. Whereas E. colonum did not express any lesion. The incidence of Pyricularia in finger millet was studied under various weed infestation levels under field conditions during 2022-23 and 2023- 24 growing seasons. It was found that the experimental plot of finger millet with all Poaceae weeds recorded the highest incidence of leaf blast and the largest number of Pyricularia colonies in both years. This was followed by the plot with finger millet + D. aegyptium alone and finger millet + C. rotundus alone. The leaf blast symptoms were noticed in finger millet after one week of sowing in the case of the crop with all weed species during 2022-23 and 2023-24. A significant correlation was obtained between the incidence of the leaf blast and colonies of Pyricularia from 28 days after sowing till the maturity of the crop in both years. Hence, the incidence, as well as colonies of Pyricularia, were higher in plots with finger millet + all weeds, followed by plots with finger millet + D. aegyptium alone and plots with finger millet + Cyp. rotundus alone.

Downloads

References

Odeny DA, Niazi A, Tesfaye K, Lule D, Wanyonyi S, Kunguni JS. Genomic designing for climate smart finger millet. In: Kole C, editor. Genomic designing of climate-smart cereal crops. Springer. Cham. 2020;287-301 https://doi.org/10.1007/978-3-319-93381-87.

Dida MM, Srinivasachary, Ramakrishnan S, Bennetzen JL, Gale MD, Devos KM. The genetic map of finger millet, Eleusine coracana. Theor Appl Genet. 2007;114(2):321-32. https://doi.org/10.1007/s00122-006-0435-7.

Yogeesh LN, Naryanareddy AB, Nanjareddy YA, Gowda MVC. High temperature tolerant genotypes of finger millet (Eleusine coracana L.). Nature Environment and Pollution Technology. 2016;15:1293-96.

Lenné JM, Takan JP, Mgonja MA, Manyasa EO, Kaloki P, Wanyera N, et al. Finger millet blast management: a key entry point for fighting malnutrition and poverty in East Africa. Outlook on Agriculture. 2007;36(2):101-08. https://doi.org/10.5367/000000007781159994.

Ramakrishnan M, Ceasar SA, Duraipandiyan V, Vinod KK, Kalpana K, Al-Dhabi NA, Ignacimuthu S. Tracing QTLs for leaf blast resistance and agronomic performance of finger millet (Eleusine coracana (L.) Gaertn.) genotypes through association mapping and in silico comparative genomics analyses. PLoS One. 2016;11:e0159264. https://doi.org/10.1371/journal.pone.0159264.

Wanyera NMW. Finger Millet (Eleusine coracana) (L.) Gaertn) in Uganda. In: Mgonja MA, Lenne JM, Manyasa E, Sreenivasaprasad ES, editors. Finger millet blast management in East Africa. Creating opportunities for improving production and utilization of finger millet, international crops research institute for the semi-arid tropics, SAARI, Kenya and UK. 2007. P. 1-9

Senthil R, Shanmugapackiam S, Raguchander T. Evaluation of biocontrol agents and fungicides for the management of blast disease of finger millet. J Mycol Plant Pathol. 2012;42:454-58.

Takan JP, Chipili J, Muthumeenakshi S, Talbot NJ, Manyasa EO, Bandyopadhyay R, et al. Magnaporthe oryzae populations adapted to finger millet and rice exhibit distinctive patterns of genetic diversity, sexuality and host interaction. Mol Biotechnol. 2012;50(2):145-58. https://doi.org/10.1007/s12033-011-9429-z.

Dida MM, Oduori CA, Manthi SJ, Avosa MO, Mikwa EO, Ojulong HF, Odeny DA. Novel sources of resistance to blast disease in finger millet. Crop Science. 2021;61(1):250-62. https://doi.org/10.1002/csc2.20378.

Bhatta A, Sharma A, Gautam P, Subedi B, Paudel M, Mishra KP. Resistant and susceptible response of finger millet to seedling. Inter J Info Res Review. 2017;4(12):4804-09.

Hunsigi G, Krishna KR. Science of field crop production; finger millet. New Delhi: Oxford and IBH publishing Co Pvt. Ltd; 1998. P. 132.

Gupta SM, Arora S, Mirza N, Pande A, Lata C, Puranik S, et al. Finger millet: a “certain” crop for an “uncertain” future and a solution to food insecurity and hidden hunger under stressful environments. Front Plant Sci. 2017;8:643. https://doi.org/10.3389/fpls.2017.00643.

Singh SK, Solanki RK, Kakani RK. Pearl millet blast disease caused by Pyricularia pennisetigena in western arid Rajasthan, India. Current Science. 2020;119(10):1690-94. https://doi.org/10.18520/cs/v119/i10/1690-1694.

Klaubauf S, Tharreau D, Fournier E, Groenewald JZ, Crous PW, de Vries RP, Lebrun MH. Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae). Stud Mycol. 2014;79:85-120. https://doi.org/10.1016/j.simyco.2014.09.004.

Farr DF, Rossman AY. “Fungal databases,” systematic mycology and microbiology laboratory, ARS, USDA; 2013. http://nt.ars-grin.gov/fungaldatabases/

Kato H, Yamamoto M, Yamaguchi OT, Kadouchi H, Iwamoto Y, Nakayashiki H, et al. Pathogenicity, mating ability and DNA Restriction Fragment Length Polymorphisms of Pyricularia populations isolated from Gramineae, Bambusideae and Zingiberaceae plants. J Gen Plant Pathol. 2000;66:30-47. https://doi.org/10.1007/PL00012919

Couch BC, Fudal I, Lebrun MH, Tharreau D, Valent B, Pham VK, et al. Origins of host-specific populations of the blast pathogen Magnaporthe oryzae in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice. Genetics. 2005;170(2):613-30. https://doi.org/10.1534/genetics.105.041780

Hirata K, Kusaba M, Chuma I, Osue J. Speciation in Pyricularia inferred from multilocus phylogenetic analysis. Mycol Res. 2007;111:799-808. https://doi.org/10.1016/j.mycres.2007.05.014

Yoshida K, Saunders DGO, Mitsuoka C, Natsume S, Kosugi S, Saitoch H, et al. Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements. BMC Genomics. 2016;17:370. https://doi.org/10.1186/s12864-016-2690-6

Murakami J, Tosa Y, Kataoka T. Analysis of host species specificity of Magnaporthe grisea toward wheat using a genetic cross between isolates from wheat and foxtail millet. Phytopathology. 2000;90:1060-67. https://doi.org/doi: 10.1094/PHYTO.2000.90.10.1060.

Tosa Y, Tamba H, Tanaka K, Mayama S. Genetic analysis of host species specificity of Magnaporthe oryzae isolates from rice and wheat. Phytopathology. 2006;96:480-84. https://doi.org/10.1094/PHYTO-96-0480

Gladieux P, Condon B, Ravel S, Soanes D, Leodato NMJ, Nhani J, et al. Gene flow between divergent cereal and grass-specific lineages of the rice blast fungus Magnaporthe oryzae. MBio. 2017;e01219-01217. https://doi.org/10.1128/mBio.01219-01217.

Gladieux P, Ravel S, Rieux A, Cros-Arteil S, Adreit H, Milazzo J, et al. Coexistence of multiple endemic and pandemic lineages of the rice blast pathogen. MBio. 2018;9(2):e01806-17. https://doi.org/10.01128/mBio.01806-01817.

Liao J, Huang H, Meusnier I, Adreit H, Ducasse A, Bonnot F, et al. Pathogen effectors and plant immunity determine specialization of the blast fungus to rice subspecies. Elife. 2016;5. https://doi.org/10.7554/eLife.19377.

Zhong Z, Chen M, Lin L, Han Y, Bao J, Tang W, et al. Population genomic analysis of the rice blast fungus reveals specific events associated with expansion of three main clades. ISME J. 2018 Aug;12(8):1867-78. https://doi.org/10.1038/s41396-018-0100-6.

O'Gorman MC, Fuller HT, Dyer PS. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature. 2009;457(7228):471-74. https://doi.org/ 10.1038/nature07528

Coca M, Bortolotti C, Rufat M, Penas G, Eritja R, Tharreau D, et al. Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant Molecular Biology. 2004;54: 245-59. https://doi.org/10.1023/B:PLAN.0000028791.34706.80

Forrer HR, Pflugfelder A, Musa T, Vogelgsang S. Low-cost spore traps: an efficient tool to manage Fusarium Head Blight through improved cropping systems. Agronomy. 2021;11(5):987. https://doi.org/10.3390/agronomy11050987.

Babu TK, Thakur RP, Upadhyaya HD, Reddy PN, Sharma R, Girish AG, Sharma ND. Resistance to blast (Magnaporthe grisea) in a mini-core collection of finger millet germplasm. European J Plant Pathol. 2013;135(2):299-311. https://doi.org/10.1007/s10658-012-0086-2.

Gomez KA, Gomez AA. Statistical procedure for agricultural research. New York. 2nd Ed. John Willey and Sons;1984. p. 28-192

Tharana PT, Sai Bhavana CH, Farooqkhan, Ramesh GV, Netravati Gavayi, Prasanna SK, et al. Blast disease of millets: present status and future perspectives. In: Latika Yadav, Upsana, editors. Blast disease of millets: present status and future perspectives. Publisher: Intechopen; 2023. P. 1-19 https://doi.org/10.5772.intechopen.111392.

Ou, SH. Rice Diseases. 2nd ed. Los Banos, Philippines: International Rice Research Institute; 1987.

Nagaraja A, Das IK, Tonapi VA. Diseases of millets- a ready reckoner. Rajendranagar, Hyderabad 500030, Telangana. Indian Institute of Millets Research; 2016. p. 67. https://www.researchgate.net/publication/361231413_DISEASES_OF_MILLETS_a_ready_reckoner

Viswanath S, Seetharam A. Diseases of small millets and their management in India. In: Seetharam A, Riley KW, Harinarayana G, editors. Small millets in global agriculture. New Delhi: Oxford and IBH Publishing Co Pvt Ltd. 1989. pp. 237-53

Mackill AO, Bonman JM. New hosts of Pyricularia oryzae. Plant Disease. 1989;70(2):125-27 https://doi.org/10.1094/PD-70-125

Hamer JE, Farrall L, Orbach MJ, Valent B, Chumley FG. Host species-specific conservation of a family of repeated DNA sequences in the genome of a fungal plant pathogen. Proc Natl Acad Sci. 1989;86(24):9981-85. https://doi.org/10.1073/pnas.86.24.9981

Valent B, Crawford MS, Weaver CG, Chumley FG. Genetic studies of fertility and pathogenicity in Magnaporthe grisea (Pyricularia oryzae). Iowa State Journal of Research. 1989;60(4):569-94.

Sreenivasaprasad S, Takan JP, Mgonja MA, Manyasa EO, Kaloki P, Wanyera NM, et al. Enhancing finger millet production and utilisation in East Africa through improved blast management and stakeholder connectivity. . In: Harris D, Richards JI, Siverside P, Ward AF, Witcombe JR, editors. Pathways out of poverty, aspects of applied biology

Association of Applied Biologists, Wellesbourne, U K. 2005. P. 11-22.

Ojo OA, Ojo AB, Morayo B, Iyobhebhe M, Elebiyo TC, Evbuomwan IO, et al. Phytochemical properties and pharmacological activities of the genus Pennisetum: A review. Scientific African. 2022;16: e01132. https://doi.org/10.1016/j.sciaf.2022.e01132.

Perrott RF, Chakraborty. Pyricularia grisea causes blight of buffel grass (Cenchrus ciliaris) in Queensland, Australia. Trop Grasslands. 1999;33:201-06.

Buckley TA, Allen BF. Notes on current investigations, April to June, 1951. Cacao. Malayan Agricultural Journal. 1951;34:134-35.

Singh S, Sharma R, Chandra NS, Tara SC, Raj C. Understanding pearl millet blast caused by Magnaporthe grisea and strategies for its management. In: Nayaka SC, Hosahatti R, Prakash G, Satyavathi CT, Sharma R, editors. Blast disease of cereal crops. Fungal Biology. Springer, Cham. 2021;151-72. https://doi.org/10.1007/978-3-030-60585-8_11.

Zhang H, Zheng X, Zhang Z. Pathogen profile the Magnaporthe grisea species complex and plant pathogenesis. Molecular Plant Pathology. 2016;17(6):796-804. https://doi.org/10.1111/mpp.12342.

Talbot NJ, Kershaw MJ, Wakley GE, De Vries O, Wessels J, Hamer JE. MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea. Plant Cell. 19968(6):985-99. https://doi.org/10.1105/tpc.8.6.985.

Chiapello H, Mallet L, Gue´rin C, Aguileta G, Amselem J, Kroj T, et al. Deciphering genome content and evolutionary relationships of isolates from the fungus Magnaporthe oryzae attacking different host plants. Genome Biol Evol. 2015;7(10):2896-912. https://doi.org/10.1093/gbe/evv187.

Choi WB, Chun SJ, Lee YH. Host range of korean isolates of Magnaporthe grisea. J Plant Pathol. 1996;12(4):453-54.

Dean R, Talbot N, Ebbole D, Farman ML, Mitchell TK, Orbach MJ, et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature. 2005;434:980-86. https://doi.org/10.1038/nature03449

Inoue Y, Vy TTP, Yoshida K, Asano H, Mitsuoka C, Asuke S, et al. Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Science. 2017;357(6346):80-83. https://doi.org/10.1126/science.aam9654

Choi J, Park SY, Kim BR, Roh JH, Oh IS, Han SS, Lee YH. Comparative analysis of pathogenicity and phylogenetic relationship in Magnaporthe grisea species complex. PLoS One. 2013;8(2):e57196. https://doi.org/10.1371/journal.pone.0057196.

Urashima AS, Igarashi S, Kato H. Host range, mating type and fertility of Pyricularia grisea from wheat in Brazil. Plant Dis. 1993;77:1211-16. https://doi.org/10.1094/PD-77-1211.

Li J, Wang Q, Li C, Bi Y, Fu X, Wang R. Novel haplotypes and networks of AVR-Pik alleles in Magnaporthe oryzae. BMC Plant Biology. 2019;19:204. https://doi.org/10.1186/s12870-019-1817-8

Wang Y, Zhao J, Zhang L, Wang P, Wang S, Wang H, et al. Analysis of the diversity and function of the alleles of the rice blast resistance genes Piz-t, Pita and Pik in 24 rice cultivars. J Int Agri. 2016;15:1423-31 https://doi.org/10.1016/S2095-3119(15)61207-2

Wu Y, Xiao N, Yu L, Pan C, Li Y, Zhang X, et al. Combination patterns of major R genes determine the level of resistance to the M. oryza in rice (Oryza sativa L.) PLoS One. 2015;10:e0126130. https://doi.org/10.1371/journal.pone.0126130

Downloads

Published

17-01-2025

How to Cite

1.
Thangavelu SP, Narasimha VJ, Mallian V, Kumerasan S, Iruthayasamy J, Manickam R. Host infectivity of Pyricularia pathogen of finger millet (Eleusine coracana (L.) Gaertn.) on Poaceae weeds . Plant Sci. Today [Internet]. 2025 Jan. 17 [cited 2025 Mar. 30];12(1). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/4331

Issue

Section

Research Articles