In vitro assessment of Bionectria ochroleuca metabolites: A promising approach for controlling root-knot nematode, Meloidogyne incognita
DOI:
https://doi.org/10.14719/pst.5863Keywords:
Bionectria ochroleuca, docking studies, GC-MS, Meloidogyne incognita, nematicidal activity, secondary metabolitesAbstract
Meloidogyne incognita, a highly destructive root-knot nematode, causes substantial crop losses worldwide by infesting plant roots, which disrupts nutrient and water uptake. This pest is notoriously challenging to manage due to its broad host range and growing resistance to many chemical nematicides, emphasizing the urgent need for sustainable, eco-friendly alternatives. In this context, the current study investigated the nematicidal potential of secondary metabolites derived from the entomopathogenic fungus, Bionectria ochroleuca against M. incognita. The in vitro assays demonstrated a dose- and time-dependent inhibition of egg hatching and juvenile survival. At a crude metabolite concentration of 100%, egg hatching was reduced to 5.64% and juvenile mortality increased to 95.4% after 72 h. Gas Chromatography-Mass Spectrometry (GC-MS) analysis identified key metabolites, including palmitic acid, butanedioic acid, lactic acid, and oleic acid, which appear to inhibit nematode growth through mechanisms that impair cell membrane integrity, disrupt energy metabolism, and interfere with essential metabolic pathways. Further, metabolite enrichment analysis revealed their involvement in the biosynthetic pathways, such as unsaturated fatty acids, galactose metabolism, and phenylalanine metabolism. Molecular docking studies supported these findings by showing high binding affinities of these metabolites to virulent nematode proteins, including Cytochrome c oxidase subunit 1 and NAD(H) oxidase, suggesting interference with essential biological processes within the nematode. Overall, these findings position the metabolites of B. ochroleuca as promising candidates for managing nematode infestations, offering a potent alternative to chemical nematicides and thereby contributing to sustainable agricultural practices.
Downloads
References
Sikora RA, Helder J, Molendijk LP, Desaeger J, Eves-van den Akker S, Mahlein AK. Integrated nematode management in a world in transition: constraints, policy, processes and technologies for the future. Annu Rev Phytopathol. 2023;61(1):209-30. https://doi.org/10.1146/annurev-phyto-021622-113058
Jones JT, Haegeman A, Danchin EG, Gaur HS, Helder J, Jones MG, et al. Top 10 plant?parasitic nematodes in molecular plant pathology. Mol Plant Pathol. 2013;14(9):946-61. https://doi.org/10.1111/mpp.12057
Siddique S, Grundler FM. Parasitic nematodes manipulate plant development to establish feeding sites. Curr Opin Microbiol. 2018;46:102-08. https://doi.org/10.1016/j.mib.2018.09.004
Subedi S, Thapa B, Shrestha J. Root-knot nematode (Meloidogyne incognita) and its management: a review. J Agric Nat Res. 2020;3:21-31. http://dx.doi.org/10.3126/janr.v3i2.32298
Dhanapal R, Charitha K, Sonaniya P, Divya C. Entomopathogenic fungal metabolites useful in agriculture and healthcare. In: Deshmukh SK, Sridhar KR. (eds) Entomopathogenic Fungi. Singapore: Springer; 2024. p.433-51. https://doi.org/10.1007/978-981-97-5991-0_17
Vega FE, Posada F, Aime MC, Pava-Ripoll M, Infante F, Rehner SA. Entomopathogenic fungal endophytes. Biol Control. 2008;46(1):72-82. http://dx.doi.org/10.1016/j.biocontrol.2008.01.008
Quesada-Moraga E, Munoz-Ledesma FJ, Santiago-Alvarez C. Systemic protection of Papaver somniferum L. against Iraella luteipes (Hymenoptera: Cynipidae) by an endophytic strain of Beauveria bassiana (Ascomycota: Hypocreales). Environ Entomol. 2009;38:723-30. https://doi.org/10.1603/022.038.0324
Schroers HJ, Samuels GJ, Seifert KA, Gams W. Classification of the mycoparasite Gliocladium roseum in Clonostachys as C. rosea, its relationship to Bionectria ochroleuca, and notes on other Gliocladium-like fungi. Mycologia. 1999;91(2):365-85. https://doi.org/10.2307/3761383
Ebrahim W, Kjer J, El Amrani M, Wray V, Lin W, Ebel R, et al. Pullularins E and F, two new peptides from the endophytic fungus Bionectria ochroleuca isolated from the mangrove plant Sonneratia caseolaris. Mar. Drugs. 2012;10(5):1081-91. https://doi.org/10.3390%2Fmd10051081
Zakaria L, Jamil MI, Anuar IS. Molecular characterisation of endophytic fungi from roots of wild banana (Musa acuminata). Trop Life Sci Res. 2016;27(1):153. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4807960/
Samaga PV, Rai VR, Rai KM. Bionectria ochroleuca NOTL33—an endophytic fungus from Nothapodytes foetida producing antimicrobial and free radical scavenging metabolites. Ann Microbiol. 2014;64:275-85. https://doi.org/10.1007/s13213-013-0661-6
Guesmi-Jouini J, Garrido-Jurado I, López-Díaz C, Halima-Kamel MB, Quesada-Moraga E. Establishment of fungal entomopathogens Beauveria bassiana and Bionectria ochroleuca (Ascomycota: Hypocreales) as endophytes on artichoke Cynara scolymus. J Invertebr Pathol. 2014;119:1-4. https://doi.org/10.1016/j.jip.2014.03.004
Han P, Zhang X, Xu D, Zhang B, Lai D, Zhou L. Metabolites from Clonostachys fungi and their biological activities. J Fungi. 2020;6(4):229. https://doi.org/10.3390%2Fjof6040229
Figueroa M, Raja H, Falkinham III JO, Adcock AF, Kroll DJ, Wani MC, et al. Peptaibols, tetramic acid derivatives, isocoumarins and sesquiterpenes from a Bionectria sp. (MSX 47401). J Nat Prod. 2013;76(6):1007-15. https://doi.org/10.1021%2Fnp3008842
Yang YH, Yang DS, Li GH, Pu XJ, Mo MH, Zhao PJ. Antibacterial diketopiperazines from an endophytic fungus Bionectria sp. Y1085. J Antibiot. 2019;72(10):752-58. https://doi.org/10.1038/s41429-019-0209-5
Liu QinYing LQ, Jiang DongHua JD, Qi YuPing QY, Chen Can CC, Xie Xiang Cong XX, Sun Lei SL. Isolation, identification and activity analysis of antimicrobial compound from Bionectria ochroleuca strain Bo-1. Acta Phytophyl Sin. 2014;41(1):41-44.
Wang B, You J, King JB, Cai S, Park E, Powell DR, Cichewicz RH. Polyketide glycosides from Bionectria ochroleuca inhibit Candida albicans biofilm formation. J Nat Prod. 2014;77(10):2273-79. https://doi.org/10.1021/np500531j
de Melo IS, Valente AM, Kavamura VN, Vilela ES, Faull JL. Mycoparasitic nature of Bionectria sp. strain 6.212014. J Plant Prot Res. 2014;54(4):327-33. http://dx.doi.org/10.2478/jppr-2014-0049
Sharma KS, Prasad L. Bioactivity of Trichoderma asperellum against Colletotrichum asianum and Sclerotinia sclerotiorum. Pestic Res J. 2018;30(2):251-55. http://dx.doi.org/10.5958/2249-524X.2018.00040.7
Abbott WS. A method of computing the effectiveness of an insecticide. J Econ Entomol. 1925;18(2):265-67. http://dx.doi.org/10.1093/jee/18.2.265a
Gogoi B, Chowdhury P, Goswami N, Gogoi N, Naiya T, Chetia P, et al. Identification of potential plant-based inhibitor against viral proteases of SARS-CoV-2 through molecular docking, MM-PBSA binding energy calculations and molecular dynamics simulation. Mol Divers. 2021;25(3):1963-77. https://doi.org/10.1007/s11030-021-10211-9
Abdel-Hamid MK, McCluskey A. In silico docking, molecular dynamics and binding energy insights into the bolinaquinone-clathrin terminal domain binding site. Molecules. 2014;19(5):6609-22. https://doi.org/10.3390/molecules19056609
Hossain S, Sarkar B, Prottoy MN, Araf Y, Taniya MA, Ullah MA. Thrombolytic activity, drug likeness property and ADME/T analysis of isolated phytochemicals from ginger (Zingiber officinale) using in silico approaches. Mod Res Inflamm. 2019;8(3):29-43. https://doi.org/10.4236/mri.2019.83003
Yadav N, Kumar R, Sangwan S, Dhanda V, Rani R, Devi S, et al. Design, synthesis, nematicidal evaluation and molecular docking study of Pyrano [3, 2-c] pyridones against Meloidogyne incognita. J Agric Food Chem. 2024;72(28):15512-22. https://pubs.acs.org/doi/10.1021/acs.jafc.4c00103
Sikandar A, Khanum TA, Wang Y. Biodiversity and community analysis of plant-parasitic and free-living nematodes associated with maize and other rotational crops from Punjab, Pakistan. Life. 2021;11(12):1426. https://doi.org/10.3390/life11121426
Nagaraj G, Kannan R, Raguchander T, Narayanan S, Saravanakumar D. Nematicidal action of Clonostachys rosea against Meloidogyne incognita: in-vitro and in-silico analyses. J Taibah Univ Sci. 31;18(1):2288723. https://doi.org/10.1080/16583655.2023.2288723
Hagag ES. Evaluation of metabolites of Myrothecium verrucaria as biological nematicide against root-knot nematode, Meloidogyne incognita in vitro and in vivo on sugar beet plants. J Plant Prot Pathol. 2021;12(1):47-53. https://dx.doi.org/10.21608/jppp.2021.52745.1007
Khan F, Asif M, Khan A, Tariq M, Ansari T, Shariq M, Siddiqui MA. Evaluation of the nematicidal potential of some botanicals against root-knot nematode, Meloidogyne incognita infected carrot: In vitro and greenhouse study. Curr Plant Biol. 2019;20:100115. https://doi.org/10.1016/j.cpb.2019.100115
Ran Y, Zhang Y, Wang X, Li G. Nematicidal metabolites from the actinomycete Micromonospora sp. WH06. Microorganisms. 2022;10(11):2274. https://doi.org/10.3390/microorganisms10112274
Kaur T, Jasrotia S, Ohri P, Manhas RK. Evaluation of in vitro and in vivo nematicidal potential of a multifunctional streptomycete, Streptomyces hydrogenans strain DH16 against Meloidogyne incognita. Microbiol Res. 2016;192:247-52. https://doi.org/10.1016/j.micres.2016.07.009
Maulidia V, Soesanto L, Syamsuddin S, Khairan K, Hamaguchi T, Hasegawa K, Sriwati R. Secondary metabolites produced by endophytic bacteria against the Root-Knot Nematode (Meloidogyne sp.). Biodiversitas. 2020;21(11):5270-75. https://doi.org/10.13057/biodiv/d211130
Zhao D, Zhu X, Chen L, Liu W, Chen J, Wang S, et al. Toxicity of a secondary metabolite produced by Simplicillium chinense Snef5 against the root-knot nematode Meloidogyne incognita. Acta Agric Scand Sect B - Soil Plant Sci. 2020;70(7):550-55. https://doi.org/10.1080/09064710.2020.1791242
Yang ZY, Dai YC, Mo YQ, Wang JL, Ma L, Zhao PJ, et al. Exploring the nematicidal mechanisms and control efficiencies of oxalic acid producing Aspergillus tubingensis WF01 against root-knot nematodes. Front Microbiol. 2024;15:1424758. https://doi.org/10.3389/fmicb.2024.1424758
Kavitha PG, Sumathi T, Umadevi M, Kavitha S, Thirusenduraselvi D. Antinemic metabolites of Simarouba glauca against root knot nematode, Meloidogyne incognita infesting groundnut, Arachis hypogaea. Legume Res. 2023;1:8. https://doi.org/10.18805/LR-5208
Prasad L, Pervez R, Gaba S. Bio-efficacy of fungal bioagents and its crude secondary metabolites against root knot nematode Meloidogyne incognita [(kofoid and white, 1919) chitwood, 1949] infesting tomato (Solanum lycopersicum L.). Redia: Journal of Zoology. 2021;104:37-43. http://dx.doi.org/10.19263/REDIA-104.21.04
Black BA, Zannini E, Curtis JM, Ganzle MG. Antifungal hydroxy fatty acids produced during sourdough fermentation: microbial and enzymatic pathways and antifungal activity in bread. Appl Environ Microbiol. 2013;79(6):1866-73. https://doi.org/10.1128/aem.03784-12
Seo SM, Kim J, Kim E, Park HM, Kim YJ, Park IK. Structure? activity relationship of aliphatic compounds for nematicidal activity against pine wood nematode (Bursaphelenchus xylophilus). J Agric Food Chem. 2010;58(3):1823-27. https://doi.org/10.1021/jf902575f
Pineda-Alegría JA, Sánchez JE, González-Cortazar M, Von Son-De Fernex E, González-Garduño R, Mendoza-de Gives P, et al. In vitro nematocidal activity of commercial fatty acids and ?-sitosterol against Haemonchus contortus. J Helminthol. 2020;94:e135. https://doi.org/10.1017/S0022149X20000152
Panda SK, Das R, Mai AH, De Borggraeve WM, Luyten W. Nematicidal activity of Holigarna caustica (Dennst.) oken fruit is due to linoleic acid. Biomolecules. 2020;10(7):1043. https://doi.org/10.3390/biom10071043
Wang J, Ding Z, Bian J, Bo T, Liu Y. Chemotaxis response of Meloidogyne incognita to volatiles and organic acids from root exudates. Rhizosphere. 2021;17:100320. https://doi.org/10.1016/j.rhisph.2021.100320
Lee YS, Naning KW, Nguyen XH, Kim SB, Moon JH, Kim KY. Ovicidal activity of lactic acid produced by Lysobacter capsici YS1215 on eggs of root-knot nematode, Meloidogyne incognita. J Microbiol Biotechn. 2014;24(11):1510-15. https://doi.org/10.4014/jmb.1405.05014
Seo Y, Kim YH. Control of Meloidogyne incognita using mixtures of organic acids. Plant Pathol J. 2014;30(4):450. https://doi.org/10.5423%2FPPJ.NT.07.2014.0062
Seo HJ, Park AR, Kim S, Yeon J, Yu NH, Ha S, et al. Biological control of root-knot nematodes by organic acid-producing Lactobacillus brevis wikim0069 isolated from kimchi. Plant Pathol J. 2019;35(6):662. https://doi.org/10.5423%2FPPJ.OA.08.2019.0225
Manuja R, Sachdeva S, Jain A, Chaudhary J. A comprehensive review on biological activities of p-hydroxy benzoic acid and its derivatives. Int J Pharm Sci Rev Res. 2013;22(2):109-15.
Bogner CW, Kamdem RS, Sichtermann G, Matthäus C, Hölscher D, Popp J, et al. Bioactive secondary metabolites with multiple activities from a fungal endophyte. Microb Biotechnol. 2017;10(1):175-88. https://doi.org/10.1111%2F1751-7915.12467
Fabiyi OA, Baker MT, Olatunji GA. Application of fatty acid esters on Meloidogyne incognita infected Jew's Mallow plants. Pak J Nematol. 2022;40(2):127-37. http://dx.doi.org/10.17582/journal.pjn/2022/40.2.127.137
Zhang WP, Ruan WB, Deng YY, Gao YB. Potential antagonistic effects of nine natural fatty acids against Meloidogyne incognita. J Agric Food Chem. 2012;60(46):11631-37. https://doi.org/10.1021/jf3036885
Faria JM, Rusinque L, Vicente CS, Inácio ML. Bioactivity of monoterpene alcohols as an indicator of biopesticidal essential oils against the root knot nematode Meloidogyne ethiopica. Biol Life Sci Forum. 2022;16(1):15. https://doi.org/10.3390/IECHo2022-12485
Shukla P, Walia S, Goswami BK, Parmar BS. Synthesis and nematicidal activity of diethylene glycol dialkanoates against the juveniles of reniform nematode, Rotylenchulus reniformis inford and oliviera. Pestic Res J. 2002;14(1):131-38.
Watson SA, McStay GP. Functions of cytochrome c oxidase assembly factors. Int J Mol Sci. 2020;21(19):7254. https://doi.org/10.3390%2Fijms21197254

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 V Shravani, S Nallusamy, J Govindasamy, S Annaiyan, K Eswaran, J Iruthayasamy, P Venkatesan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).