Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 11 No. 4 (2024)

Nutrient and energy conservation through nano-fertilizers in maize

DOI
https://doi.org/10.14719/pst.4380
Submitted
18 July 2024
Published
31-10-2024 — Updated on 31-10-2024
Versions

Abstract

In the current scenario, achieving food security while conserving resources and energy is a significant challenge. Maize is a widely cultivated but nutrient-exhaustive crop. The adoption of nanotechnology-based nano-fertilizers offers a pathway for achieving sustainable yields while reducing fertilizer requirements and conserving energy. A field experiment was conducted during the Kharif season of 2021 to explore nutrient and energy conservation through nano-fertilizers in maize at the University of Agricultural Sciences, GKVK, Bengaluru. The experiment involved nine treatments comprising various combinations of the recommended dose of fertilizers (RDF) with nano-urea and nano di-ammonium phosphate (DAP) under a randomized complete block design (RCBD). The results indicated that Treatment T5 - 75% of the recommended dose of nitrogen (RDN) + nano-N-achieved a higher yield (10.20% higher than the conventional practice, T1-RDF + farmyard manure (FYM)) and improved nutrient uptake at harvest [299.22, 55.56 and 208.26 kg of nitrogen (N), phosphorus (P), and potassium (K) per hectare, respectively]. This treatment also demonstrated greater physiological efficiency (36.11, 200.66 and 52.70 kg of maize per kg of N, P and K, respectively), higher energy output (260,851 MJ ha-1), improved energy use efficiency (16.93), enhanced energy productivity (0.627 kg MJ-1), and better energy profitability (15.93). Using 75% of RDN + nano-N increases yield while reducing fertilizer use and conserving energy.

References

  1. Rathore R, Hasan A, David AA, Thomas T, Reddy IS, David A, et al. Effect of different levels of nano urea and conventional fertilizer on soil health of maize (Zea mays L.) Var, P3544 in an Inceptisols of Prayagraj (UP) India. Pharma Innovation. 2022;11(8):560-63.
  2. Hokmalipour S, Shiri-e-Janagard M, Darbandi MH, Peyghami-e-Ashenaee F, Hasanzadeh M, Seiedi MN, et al. Comparison of agronomical nitrogen use efficiency in three cultivars of corn as affected by nitrogen fertilizer levels. World Appl Sci J. 2010;8(10):1168-74.
  3. Khardia N, Meena RH, Jat G, Sharma S, Kumawat H, Dhayal S, et al. Soil properties influenced by the foliar application of nano fertilizers in maize (Zea mays L.) crop. Int J Plant Soil Sci. 2022;34(14):99-111. DOI: 10.9734/IJPSS/2022/v34i1430996
  4. Kumar Y, Tiwari KN, Nayak RK, Rai A, Singh SP, Singh AN, et al. Nanofertilizers for increasing nutrient use efficiency, yield and economic returns in important winter season crops of Uttar Pradesh. Indian J Fert. 2020;16(8):772-86.
  5. Zhang J, Zhou X, Xu Y, Yao M, Xie F, Gai J, et al. Soybean SPX1 is an important component of the response to phosphate deficiency for phosphorus homeostasis. Plant Sci. 2016;248:82-91. https://doi.org/10.1016/j.plantsci.2016.04.010
  6. Piper CS. Soil and plant analysis. New York: Interscience Publishers, Inc.; 1944.
  7. Campbell CR, Plank CO. Preparation of plant tissue for laboratory analysis. In: Kalra YP, editor. Methods for plant analysis. CRC Press; 1998. p. 37-49.
  8. Subbiah BV, Asija GL. A rapid procedure for the estimation of available nitrogen in soils. Curr Sci. 1956;25:259-60.
  9. Patil PS, Gutam Sridhar, Priyadevi. Standard operating procedures-2021 of ICAR-All India Coordinated Research Project on Fruits. Technical Document Number 135. Bengaluru: ICAR-Indian Institute of Horticultural Research; 2021. p. 108.
  10. Jackson ML. Soil chemical analysis. Englewood Cliffs (NJ): Prentice-Hall Inc.; 1958. p. 498.
  11. Gangana Gowdra VM, Changalappa S, Halakanahal Shivalingappa L, Gundappa Guruputrappa K. Partial factor productivity and water use efficiency of ratoon pigeonpea under varied levels of irrigation, fertigation, and mulching. J Plant Nutr. 2024;47(8):1305-18. https://doi.org/10.1080/01904167.2024.2308190
  12. Hulmani S, Salakinkop SR, Somangouda G. Productivity, nutrient use efficiency, energetic, and economics of winter maize in south India. Plos one. 2022;17(7):e0266886. https://doi.org/10.1371/journal.pone.0266886
  13. Fageria NK, Baligar VC, Jones CA. Growth and mineral nutrition of field crops. 3rd ed. Boca Raton: CRC Press; 2010. p. 586.
  14. Barut ZB, Ertekin C, Karaagac HA. Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey. Energy. 2011;36(9):5466-75. https://doi.org/10.1016/j.energy.2011.07.035
  15. Mobtaker HG, Keyhani A, Mohammadi A, Rafiee S, Akram A. Sensitivity analysis of energy inputs for barley production in Hamedan province of Iran. Agric Ecosys Environ. 2010;137(3-4):367-72. https://doi.org/10.1016/j.agee.2010.03.011
  16. Yadav SN, Chandra R, Khura TK, Chauhan NS. Energy input–output analysis and mechanization status for cultivation of rice and maize crops in Sikkim. Agric Eng Int: CIGR J. 2013;15(3):108-16.
  17. Singh H, Mishra D, Nahar NM. Energy use pattern in production agriculture of a typical village in arid zone, India–-part I. Energy Conv Manag. 2002;43(16):2275-86. https://doi.org/10.1016/S0196-8904(01)00161-3
  18. Rafiee S, Avval SH, Mohammadi A. Modeling and sensitivity analysis of energy inputs for apple production in Iran. Energy. 2010;35(8):3301-06. https://doi.org/10.1016/j.energy.2010.04.015
  19. Devasenapathy P, Senthilkumar G, Shanmugam PM. Energy management in crop production. Indian J Agron. 2009;54(1):80-90.
  20. Mani I, Kumar P, Panwar JS, Kant K. Variation in energy consumption in production of wheat–maize with varying altitudes in hilly regions of Himachal Pradesh, India. Energy. 2007;32(12):2336-39. https://doi.org/10.1016/j.energy.2007.07.004
  21. Ferraro DO. Energy cost/use in pesticide production. In: Pimentel D, editor. Encyclopedia of Pest Management. 2007. p. 152-56.
  22. Chaudhary VP, Gangwar B, Pandey DK, Gangwar KS. Energy auditing of diversified rice–wheat cropping systems in Indo-gangetic plains. Energy. 2009;34(9):1091-96. https://doi.org/10.1016/j.energy.2009.04.017
  23. Erdal G, Esengün K, Erdal H, Gündüz O. Energy use and economical analysis of sugar beet production in Tokat province of Turkey. Energy. 2007;32(1):35-41. https://doi.org/10.1016/j.energy.2006.01.007
  24. Tuti MD, Prakash V, Pandey BM, Bhattacharyya R, Mahanta D, Bisht JK, et al. Energy budgeting of colocasia-based cropping systems in the Indian sub-Himalayas. Energy. 2012;45(1):986-93. https://doi.org/10.1016/j.energy.2012.06.056
  25. Kumar V, Saharawat YS, Gathala MK, Jat AS, Singh SK, Chaudhary N, et al. Effect of different tillage and seeding methods on energy use efficiency and productivity of wheat in the Indo-Gangetic Plains. Field Crops Res. 2013;142:1-8. https://doi.org/10.1016/j.fcr.2012.11.013
  26. Babu S, Mohapatra KP, Das A, Yadav GS, Tahasildar M, Singh R, et al. Designing energy-efficient, economically sustainable and environmentally safe cropping system for the rainfed maize–fallow land of the Eastern Himalayas. Sci Total Environ. 2020;722:e137874. https://doi.org/10.1016/j.scitotenv.2020.137874
  27. Panse VG, Sukhatme PV. Statistical methods for agricultural workers. 2nd ed. New Delhi: Indian Council of Agricultural Research; 1967.
  28. Chandana P, Latha KR, Chinnamuthu CR, Malarvizhi P, Lakshmanan A. Impact of foliar application of nano nitrogen, zinc and copper on yield and nutrient uptake of rice. Int J Plant Soil Sci. 2021;33(24):276-82. https://doi.org/10.9734/ijpss/2021/v33i2430778
  29. Rajesh H, Yadahalli GS, Chittapur BM, Halepyati AS, Hiregoudar S. Growth, yield and economics of sweet corn (Zea mays L. saccarata) as influenced by foliar sprays of nano fertilizers. J Farm Sci. 2021;34(04):381-85. https://doi.org/10.61475/jfm.v34i04.157
  30. Meena BK, Ramawtar, Balyan JK, Sharma RK, Nagar KC, Choudhary MC, et al. Effect of nano fertilizers on growth and yield of maize (Zea mays L.) in Southern Rajasthan. Pharma Innov. 2023;12(8):2123-26.
  31. Samui S, Sagar L, Sankar T, Manohar A, Adhikary R, Maitra S, et al. Growth and productivity of rabi maize as influenced by foliar application of urea and nano-urea. Crop Res. 2022;57(3):136-140. http://dx.doi.org/10.31830/2454-1761.2022.019
  32. Midde SK, Perumal MS, Murugan G, Sudhagar R, Mattepally VS, Bada MR. Evaluation of nano urea on growth and yield attributes of rice (Oryza sativa L.). Chem Sci Rev Lett. 2022;11(42):211-214.
  33. Kaviyazhagan S, Anandan P, Stalin P. Nitrogen scheduling and conjoined application of nano and granular urea on growth characters, growth analysis and yield of sweet corn (Zea mays var saccharata). Pharma Innovation. 2022;11(11):1974-78.
  34. Avellan A, Yun J, Morais BP, Clement ET, Rodrigues SM, Lowry GV. Critical review: Role of inorganic nanoparticle properties on their foliar uptake and in plants translocation. Environ Sci Technol. 2021;55(20):13417-31. https://doi.org/10.1021/acs.est.1c00178
  35. Rahman MH, Haque KS, Khan MZ. A review on application of controlled released fertilizers influencing the sustainable agricultural production: A cleaner production process. Environ Technol Innov. 2021;23:e101697. https://doi.org/10.1016/j.eti.2021.101697
  36. Balaganesh B, Malarvizhi P, Chandra Sekaran N, Jeyakumar P, Latha KR, Lakshmanan A. Influence of biodegradable polymer coated urea on nitrogen uptake and utilization of maize (Zea mays L). Int J Plant Soil Sci. 2021;33(24):297-306. https://doi.org/10.9734/ijpss/2021/v33i2430781
  37. Sharma SK, Sharma PK, Mandeewal RL, Sharma V, Chaudhary R, Pandey R, et al. Effect of foliar application of nano-urea under different nitrogen levels on growth and nutrient content of pearl millet (Pennisetum glaucum L.). Int J Plant Soil Sci. 2022;34(20):149-55. https://doi.org/10.9734/ijpss/2022/v34i2031138
  38. Kannoj J, Jain D, Tomar M, Patidar R, Choudhary R. Effect of nano urea vs conventional urea on the nutrient content, uptake and economics of black wheat (Triticum aestivum L.) along with biofertilizers. Biol Forum. 2022;14(2a):499-504.
  39. Sahu TK, Kumar M, Kumar N, Chandrakar T, Singh DP. Effect of nano urea application on growth and productivity of rice (Oryza sativa L.) under midland situation of Bastar region. Pharma Innovation. 2022;11(6):185-87.
  40. Lahari S, Hussain SA, Parameswari YS, Sharma S. Grain yield and nutrient uptake of rice as influenced by the nano forms of nitrogen and zinc. Int. J Environ Clim Change. 2021;11(7):1-6. https://doi.org/10.9734/ijecc/2021/v11i730434
  41. Chen J, Liu L, Wang Z, Zhang Y, Sun H, Song S, et al. Nitrogen fertilization increases root growth and coordinates the root–shoot relationship in cotton. Front Plant Sci. 2020;11:880. https://doi.org/10.3389/fpls.2020.00880
  42. Sankar LR, Mishra GC, Maitra S, Barman S. Effect of nano NPK and straight fertilizers on yield, economics and agronomic indices in baby corn (Zea mays L.). Int J Chem Stud. 2020;8(2):614-18. https://doi.org/10.22271/chemi.2020.v8.i2j.8836
  43. Maloth A, Thatikunta R, Parida BK, Naik DS, Varma N. Evaluation of nano-DAP on plant growth, enzymatic activity and yield in paddy (Oryza sativa L.). Int J Environ Clim Chang. 2024;14(1):890-97. https://doi.org/10.9734/ijecc/2024/v14i13907
  44. Sarkar D, Sankar A, Devika OS, Singh S, Shikha, Parihar M, et al. Optimizing nutrient use efficiency, productivity, energetics, and economics of red cabbage following mineral fertilization and biopriming with compatible rhizosphere microbes. Sci Rep. 2021;11(1):e15680. https://doi.org/10.1038/s41598-021-95092-6
  45. Mahmoodi P, Yarnia M, Rashidi V, Amirnia R, Tarinejhad A. Effects of nano and chemical fertilizers on physiological efficiency and essential oil yield of Borago officinalis L. Appl Ecol Environ Res. 2018;16(4):4773-78. http://dx.doi.org/10.15666/aeer/1604_47734788
  46. Sharaf-Eldin MA, Elsawy MB, Eisa MY, El-Ramady H, Usman M, Zia-ur-Rehman M. Application of nano-nitrogen fertilizers to enhance nitrogen efficiency for lettuce growth under different irrigation regimes. Pak J Agric Sci. 2022;59(3):367-79. DOI:10.21162/PAKJAS/22.1044
  47. Kumar V, Singh AK, Jat SL, Parihar CM, Pooniya V, Sharma S. Nutrient uptake and fertilizer-use efficiency of maize hybrids under conservation agriculture with nutrient expert based SSNM practices. Ann Agric Res. 2015;36(2):160-66. https://epubs.icar.org.in/index.php/AAR/article/view/55538
  48. Choudhary RL, Behera UK, Singh HV, Meena MD, Dotaniya ML, Jat RS. Energetics and nitrogen-use efficiency of kharif maize in conservation agriculture-based maize (Zea mays)–wheat (Triticum aestivum) sequence. Int J Chem Stud. 2020;8(2):1252-58. https://doi.org/10.22271/chemi.2020.v8.i2s.8937
  49. Gummadi SC, Kumari G. Influence of nutrient and weed management on growth, yield and energetics of maize. Int J Environ Clim Chang. 2022;12(11):946-52. https://doi.org/10.9734/ijecc/2022/v12i1131063
  50. Yadav MR, Parihar CM, Jat SL, Singh AK, Kumar D, Pooniya V, et al. Effect of long-term tillage and diversified crop rotations on nutrient uptake, profitability and energetics of maize (Zea mays) in north-western India. Indian J Agric Sci. 2016;86(6):743-49. https://doi.org/10.56093/ijas.v86i6.58897

Downloads

Download data is not yet available.