Nutrient and energy conservation through nano-fertilizers in maize
DOI:
https://doi.org/10.14719/pst.4380Keywords:
nano DAP, Agronomic efficiency, energy utilization, nano ureaAbstract
In the current scenario, achieving food security while conserving resources and energy is a significant challenge. Maize is a widely cultivated but nutrient-exhaustive crop. The adoption of nanotechnology-based nano-fertilizers offers a pathway to achieving sustainable yields while reducing fertilizer requirements and conserving energy. A field experiment was conducted during the Kharif season of 2021 to explore nutrient and energy conservation through nano-fertilizers in maize at the University of Agricultural Sciences, GKVK, Bengaluru. The experiment involved nine treatments comprising various combinations of the recommended dose of fertilizers (RDF) with nano-urea and nano Di-Ammonium Phosphate (DAP) under a Randomized Complete Block Design (RCBD). The results indicated that Treatment T5 - 75% of the Recommended Dose of Nitrogen (RDN) + Nano-N—achieved a higher yield (10.20% higher than the conventional practice, T1-RDF + Farmyard Manure (FYM)) and improved nutrient uptake at harvest [299.22, 55.56, and 208.26 kg of nitrogen (N), phosphorus (P), and potassium (K) per hectare, respectively]. This treatment also demonstrated greater physiological efficiency (36.11, 200.66, and 52.70 kg of maize per kg of N, P, and K, respectively), higher energy output (260,851 MJ ha?¹), improved energy use efficiency (16.93), enhanced energy productivity (0.627 kg MJ?¹), and better energy profitability (15.93). Using 75% of RDN + Nano-N increases yield while reducing fertilizer use and conserving energy.
Downloads
References
Rathore R, Hasan A, David AA, Thomas T, Reddy IS, David A, et al. Effect of different levels of nano urea and conventional fertilizer on soil health of maize (Zea mays L.) Var, P3544 in an Inceptisols of Prayagraj,(UP) India. Pharma Innov. 2022;11(8):560-63.
Hokmalipour S, Shiri-e-Janagard M, Darbandi MH, Peyghami-e-Ashenaee F, Hasanzadeh M, Seiedi MN, et al. Comparison of agronomical nitrogen use efficiency in three cultivars of corn as affected by nitrogen fertilizer levels. World Appl. Sci. J. 2010;8(10):1168-74.
Khardia N, Meena RH, Jat G, Sharma S, Kumawat H, Dhayal S, et al. Soil properties influenced by the foliar application of nano fertilizers in maize (Zea mays L.) Crop. Int J Plant Soil Sci. 2022;34(14):99-111. DOI: 10.9734/IJPSS/2022/v34i1430996
Kumar Y, Tiwari KN, Nayak RK, Rai A, Singh SP, Singh AN, et al. Nanofertilizers for increasing nutrient use efficiency, yield and economic returns in important winter season crops of Uttar Pradesh. Indian J Fertil. 2020;16(8):772-86.
Zhang J, Zhou X, Xu Y, Yao M, Xie F, Gai J, et al. Soybean SPX1 is an important component of the response to phosphate deficiency for phosphorus homeostasis. Plant Sci. 2016;248:82-91. https://doi.org/10.1016/j.plantsci.2016.04.010
Piper CS. Soil and plant analysis. Interscience Publishers, Inc., New York; 1944.
Campbell CR, Plank CO. Preparation of plant tissue for laboratory analysis. In: Kalra YP, editor. Methods for Plant Analysis. 1998 p. 37-49. https://doi.org/10.1201/9781420049398.ch3
Subbiah BV, Asija GL. A rapid procedure for the estimation of available nitrogen in soils. Curr Sci. 1956;25:259-60. https://www.cabidigitallibrary.org/doi/full/10.5555/19571900070
Patil PS. Gutam Sridhar, Priyadevi. (eds.), Standard operating procedures-2021 of ICAR-All India Coordinated Research Project on Fruits;. Technical Document Number 135. ICAR-Indian Institute of Horticultural Research, Bengaluru, p108.
Jackson M. Soil chemical analysis prentice Hall. Inc., Englewood Cliffs, NJ. 1958;498(1958):183-204.
Gangana Gowdra VM, Changalappa S, Halakanahal Shivalingappa L, Gundappa Guruputrappa K. Partial factor productivity and water use efficiency of ratoon pigeonpea under varied levels of irrigation, fertigation, and mulching. J Plant Nutr. 2024;47(8):1305-18. https://doi.org/10.1080/01904167.2024.2308190
Hulmani S, Salakinkop SR, Somangouda G. Productivity, nutrient use efficiency, energetic, and economics of winter maize in south India. Plos one 2022;17(7):e0266886. https://doi.org/10.1371/journal.pone.0266886
Fageria NK, Baligar VC, Jones CA. Growth and mineral nutrition of field crops CRC Press.
Barut ZB, Ertekin C, Karaagac HA. Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey. Energy. 2011;36(9):5466-75. https://doi.org/10.1016/j.energy.2011.07.035
Mobtaker HG, Keyhani A, Mohammadi A, Rafiee S, Akram A. Sensitivity analysis of energy inputs for barley production in Hamedan province of Iran. Agric Ecosys Environ. 2010;137(3-4):367-72. https://doi.org/10.1016/j.agee.2010.03.011
Yadav SN, Chandra R, Khura TK, Chauhan NS. Energy input–output analysis and mechanization status for cultivation of rice and maize crops in Sikkim. Agric Eng Int: CIGR J. 2013;15(3):108-16. https://cigrjournal.org/index.php/Ejounral/article/view/2394/1771
Singh H, Mishra D, Nahar NM. Energy use pattern in production agriculture of a typical village in arid zone, India–-part I. Energy Conv Manag. 2002;43(16):2275-86. https://doi.org/10.1016/S0196-8904(01)00161-3
Rafiee S, Avval SH, Mohammadi A. Modeling and sensitivity analysis of energy inputs for apple production in Iran. Energy. 2010;35(8):3301-06. https://doi.org/10.1016/j.energy.2010.04.015
Devasenapathy P, Senthilkumar G, Shanmugam PM. Energy management in crop production. Indian J Agron. 2009;54(1):80-90. https://www.indianjournals.com/ijor.aspx?target=ijor:ija&volume=54&issue=1&article=014
Mani I, Kumar P, Panwar JS, Kant K. Variation in energy consumption in production of wheat–maize with varying altitudes in hilly regions of Himachal Pradesh, India. Energy. 2007;32(12):2336-39. https://doi.org/10.1016/j.energy.2007.07.004
Ferraro DO. Energy cost/use in pesticide production. In: Pimental D, editor. Encyclopedia of Pest Management; 2007. p. 152-56. https://doi.org/10.1201/9781420068467.ch39
Chaudhary VP, Gangwar B, Pandey DK, Gangwar KS. Energy auditing of diversified rice–wheat cropping systems in Indo-gangetic plains. Energy. 2009;34(9):1091-96. https://doi.org/10.1016/j.energy.2009.04.017
Erdal G, Esengün K, Erdal H, Gündüz O. Energy use and economical analysis of sugar beet production in Tokat province of Turkey. Energy. 2007;32(1):35-41. https://doi.org/10.1016/j.energy.2006.01.007
Tuti MD, Prakash V, Pandey BM, Bhattacharyya R, Mahanta D, Bisht JK, et al. Energy budgeting of colocasia-based cropping systems in the Indian sub-Himalayas. Energy. 2012;45(1):986-93. https://doi.org/10.1016/j.energy.2012.06.056
Kumar V, Saharawat YS, Gathala MK, Jat AS, Singh SK, Chaudhary N et al. Effect of different tillage and seeding methods on energy use efficiency and productivity of wheat in the Indo-Gangetic Plains. Field Crops Res. 2013;142:1-8. https://doi.org/10.1016/j.fcr.2012.11.013
Babu S, Mohapatra KP, Das A, Yadav GS, Tahasildar M, Singh R, et al. Designing energy-efficient, economically sustainable and environmentally safe cropping system for the rainfed maize–fallow land of the Eastern Himalayas. Sci Total Environ. 2020;722:e137874. https://doi.org/10.1016/j.scitotenv.2020.137874
Panse VG, Sukhatme PV, editors. Statistical methods for agricultural workers. Indian Council of Agriculture Research. 1954;pp.361. https://www.cabidigitallibrary.org/doi/full/10.5555/19561604178
Chandana P, Latha KR, Chinnamuthu CR, Malarvizhi P, Lakshmanan A. Impact of foliar application of nano nitrogen, zinc and copper on yield and nutrient uptake of rice. Int J Plant Soil Sci. 2021;33(24):276-82. https://doi.org/10.9734/ijpss/2021/v33i2430778
Rajesh H, Yadahalli GS, Chittapur BM, Halepyati AS, Hiregoudar S. Growth, yield and economics of sweet corn (Zea mays L. saccarata) as influenced by foliar sprays of nano fertilizers. J Farm Sci. 2021;34(04):381-85. https://doi.org/10.61475/jfm.v34i04.157
Meena BK, Ramawtar, Balyan JK, Sharma RK, Nagar KC, Choudhary MC, et al. Effect of nano fertilizers on growth and yield of maize (Zea mays L.) in Southern Rajasthan. Pharma Innov. 2023;12(8):2123-26.
Samui S, Sagar L, Sankar T, Manohar A, Adhikary R, Maitra S, et al. Growth and productivity of rabi maize as influenced by foliar application of urea and nano-urea. Crop Res. 2022;57(3):136-140. http://dx.doi.org/10.31830/2454-1761.2022.019
Midde SK, Perumal MS, Murugan G, Sudhagar R, Mattepally VS, Bada MR. Evaluation of nano urea on growth and yield attributes of rice (Oryza sativa L.). Chem Sci Rev Lett. 2022;11(42):211-214. DOI:10.37273/chesci.cs205301427
Kaviyazhagan S, Anandan P, Stalin P. Nitrogen scheduling and conjoined application of nano and granular urea on growth characters, growth analysis and yield of sweet corn (Zea mays var saccharata). The Pharma Innov. 2022;11(11):1974-78.
Avellan A, Yun J, Morais BP, Clement ET, Rodrigues SM, Lowry GV. Critical review: Role of inorganic nanoparticle properties on their foliar uptake and in plants translocation. Environ Sci Technol. 2021;55(20):13417-31. https://doi.org/10.1021/acs.est.1c00178
Rahman MH, Haque KS, Khan MZ. A review on application of controlled released fertilizers influencing the sustainable agricultural production: A Cleaner production process. Environ Technol Innov. 2021;23:e101697. https://doi.org/10.1016/j.eti.2021.101697
Balaganesh B, Malarvizhi P, Chandra Sekaran N, Jeyakumar P, Latha KR, Lakshmanan A. Influence of biodegradable polymer coated urea on nitrogen uptake and utilization of maize (Zea mays L). Int J Plant Soil Sci. 2021;33(24):297-306. https://doi.org/10.9734/ijpss/2021/v33i2430781
Sharma SK, Sharma PK, Mandeewal RL, Sharma V, Chaudhary R, Pandey R, et al. Effect of foliar application of nano-urea under different nitrogen levels on growth and nutrient content of pearl millet (Pennisetum glaucum L.). Int J Plant Soil Sci. 2022;34(20):149-55. https://doi.org/10.9734/ijpss/2022/v34i2031138
Kannoj J, Jain D, Tomar M, Patidar R, Choudhary R. Effect of nano urea vs conventional urea on the nutrient content, uptake and economics of black wheat (Triticum aestivum L.) along with biofertilizers. Biol Forum–An Int J. 2022;14(2a):499-504.
Sahu TK, Kumar M, Kumar N, Chandrakar T, Singh DP. Effect of nano urea application on growth and productivity of rice (Oryza sativa L.) under midland situation of Bastar region. The Pharma Innov J. 2022;11(6):185-87.
Lahari S, Hussain SA, Parameswari YS, Sharma S. Grain yield and nutrient uptake of rice as influenced by the nano forms of nitrogen and zinc. Int J Environ Climate Change. 2021;11(7):1-6. https://doi.org/10.9734/ijecc/2021/v11i730434
Chen J, Liu L, Wang Z, Zhang Y, Sun H, Song S, et al. Nitrogen fertilization increases root growth and coordinates the root–shoot relationship in cotton. Front Plant Sci. 2020;11:880. https://doi.org/10.3389/fpls.2020.00880
Sankar LR, Mishra GC, Maitra S, Barman S. Effect of nano NPK and straight fertilizers on yield, economics and agronomic indices in baby corn (Zea mays L.). Int J Chem Stu. 2020;8(2):614-18. https://doi.org/10.22271/chemi.2020.v8.i2j.8836
Maloth A, Thatikunta R, Parida BK, Naik DS, Varma N. Evaluation of nano-DAP on plant growth, enzymatic activity and yield in paddy (Oryza sativa L.). Int J Environ Clim Chang. 2024;14(1):890-97. https://doi.org/10.9734/ijecc/2024/v14i13907
Sarkar D, Sankar A, Devika OS, Singh S, Shikha, Parihar M, et al. Optimizing nutrient use efficiency, productivity, energetics, and economics of red cabbage following mineral fertilization and biopriming with compatible rhizosphere microbes. Sci Rep. 2021;11(1):e15680. https://doi.org/10.1038/s41598-021-95092-6
Mahmoodi P, Yarnia M, Rashidi V, Amirnia R, Tarinejhad A. Effects of nano and chemical fertilizers on physiological efficiency and essential oil yield of Borago officinalis L. Appl Ecol Environ Res. 2018;16(4):4773-78. http://dx.doi.org/10.15666/aeer/1604_47734788
Sharaf-Eldin MA, Elsawy MB, Eisa MY, El-Ramady H, Usman M, Zia-ur-Rehman M. Application of nano-nitrogen fertilizers to enhance nitrogen efficiency for lettuce growth under different irrigation regimes. Pak J Agric Sci. 2022;59(3):367-79. DOI:10.21162/PAKJAS/22.1044
Kumar V, Singh AK, Jat SL, Parihar CM, Pooniya V, Sharma S. Nutrient uptake and fertilizer-use efficiency of maize hybrids under conservation agriculture with nutrient expert based SSNM practices. Ann Agric Res. 2015;36(2):160-66. https://epubs.icar.org.in/index.php/AAR/article/view/55538
Choudhary RL, Behera UK, Singh HV, Meena MD, Dotaniya ML, Jat RS. Energetics and nitrogen-use efficiency of Kharif maize in conservation agriculture-based maize (Zea mays)–wheat (Triticum aestivum) sequence. Int J Chem Stu. 2020;8(2):1252-58. https://doi.org/10.22271/chemi.2020.v8.i2s.8937
Gummadi SC, Kumari G. Influence of nutrient and weed management on growth, yield and energetics of maize. Int J Environ Clim Chang. 2022;12(11):946-52. https://doi.org/10.9734/ijecc/2022/v12i1131063
Yadav MR, Parihar CM, Jat SL, Singh AK, Kumar D, Pooniya V, et al. Effect of long-term tillage and diversified crop rotations on nutrient uptake, profitability and energetics of maize (Zea mays) in north-western India. Indian J Agric Sci. 2016;86(6):743-49. https://doi.org/10.56093/ijas.v86i6.58897
Downloads
Published
Versions
- 31-10-2024 (2)
- 31-10-2024 (1)
How to Cite
Issue
Section
License
Copyright (c) 2024 Asha Kiran K., Jayadeva H. M., Vinay M. Gangana Gowdra, Pruthviraj N., Kotresh D. J., Devika A. R.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).