Anti-adipogenic effects of Parkia speciosa Hassk. pods extract containing gallic acid and p-coumaric acid on 3T3-L1 adipocytes
DOI:
https://doi.org/10.14719/pst.4421Keywords:
anti-adipogenic, antioxidant, HPLC, Parkia speciosa Hassk. podAbstract
Adipogenesis is the process by which preadipocytes develop into mature adipocytes and an increase in adipose mass may lead to obesity. Obesity is categorized as a chronic, low-grade inflammatory condition that can give rise to reactive oxygen species (ROS) production. Antioxidants help mitigate ROS, protecting cells and tissues from oxidative damage. Therefore, this study evaluates the antioxidant activities and inhibitory effects of Parkia speciosa Hassk. pod extract (PSPE) on adipogenesis in 3T3-L1 adipocytes. High-performance liquid chromatography (HPLC) detected gallic acid and p-coumaric acid in PSPE, with concentrations of measured at 53.97 ± 0.76 microgram/mL and 1.74 ± 0.11 microgram/mL, respectively. The IC50 values for 2,2-diphenyl-1- picrylhydrazyl (DPPH) scavenging and ferric-reducing antioxidant power (FRAP) were determined to be 57.05 ± 0.22 microgram/mL and 325.3 ± 4.85 microgram FeSO4/mL extract, respectively. MTT assay results indicated that PSPE concentrations ranging from 31.25 to 250 microgram/mL maintained over 80% cell viability, while oil red O staining demonstrated reduced lipid accumulation at concentrations of 62.5 and 125 microgram/mL after 48 and 72 hours of treatment. These findings suggest that PSPE has potential as a natural antioxidant and anti-adipogenic agent, capable of inhibiting lipid accumulation and mitigating oxidative damage.
Downloads
References
Datta P, Sharma A, Pal B, Mohit K. The role of adipokines and adipogenesis in the pathogenesis of osteoarthritis. In: Foti M, Locati M, editors. Cytokine effector functions in tissues: Academic Press: Amsterdam; 2017:99–107. https://doi.org/10.1016/B978-0-12-804214-4.00004-X
Naomi R, Teoh SH, Embong H, Balan SS, Othman F, Bahari H, et al. The role of oxidative stress and inflammation in obesity and its impact on cognitive impairments—A narrative review. Antioxidants. 2023;12(5):1071. https://doi.org/10.3390/antiox12051071
Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Phcog Rev. 2010;4(8):118–26. https://doi.org/10.4103/0973-7847.70902
Xu DP, Li Y, Meng X, Zhou T, Zhou Y, Zheng J, et al. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int J Mol Sci. 2017;18(1):96. https://doi.org/10.3390/ijms18010096
Babando AA, Ilemona AJ, Adesina AJ, Gangas P, Ibrahim H, Ojo OA. Antioxidants from Nigerian medicinal plants: What are the evidence? In: Mansour MA, editor. Lipid peroxidation research. IntechOpen: 2020. p. 43. https://doi.org/10.5772/intechopen.84454
Moussa Z, Judeh ZM, Ahmed SA. Nonenzymatic exogenous and endogenous antioxidants. Free Radic Med Biol. 2019;1:11-22. https://doi.org/10.5772/intechopen.87778
Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr J. 2015;15:1-22. https://doi.org/10.1186/s12937-016-0186-5
Azizul NH, Leong YH, Ahmad NI, Rahman SA. Nutraceutical potential of Parkia speciosa (stink bean): A current review. Am J Biomed Sci Res. 2019;4:392-402. https://doi.org/10.34297/ajbsr.2019.04.000842
Kamisah Y, Zuhair JSF, Juliana AH, Jaarin K. Parkia speciosa empty pod prevents hypertension and cardiac damage in rats given N(G)-nitro-L-arginine methyl ester. Biomed Pharmacother. 2017;96:291–98. https://doi.org/10.1016/j.biopha.2017.09.095
Ghasemzadeh A, Jaafar HZE, Bukhori MFM, Rahmat MH, Rahmat A. Assessment and comparison of phytochemical constituents and biological activities of bitter bean (Parkia speciosa Hassk.) collected from different locations in Malaysia. Chem Cent J. 2018;12(1):12. https://doi.org/10.1186/s13065-018-0377-6
Mustafa NH, Ugusman A, Jalil J, Kamisah Y. Anti-inflammatory property of Parkia speciosa empty pod extract in human umbilical vein endothelial cells. J Appl Pharm Sci. 2018;8(1):152–58. https://doi.org/10.7324/JAPS.2018.8123
Sonia N, Dsouza MR, Alisha. Pharmacological evaluation of Parkia speciosa Hassk. for antioxidant, anti-inflammatory, anti-diabetic and anti-microbial activities in vitro. Int J Life Sci. 2018;A11:49-59.
Gui JS, Jalil J, Jubri Z, Kamisah Y. Parkia speciosa empty pod extract exerts anti-inflammatory properties by modulating NFkB and MAPK pathways in cardiomyocytes exposed to tumor necrosis factor-alpha. Cytotechnology. 2019;71(1):79–89. https://doi.org/10.1007/s10616-018-0267-8
Fitrya F, Amriani A, Puspa Novita R, Setiorini D. Immunomodulatory effect of Parkia speciosa Hassk. pods extract on rat induced by Salmonella typhimurium. J Pharm Pharmacogn Res. 2020;8(5):457–65.
Singhania N, Chhikara N, Bishnoi S, Garg MK, Panghal A. Bioactive compounds of petai beans (Parkia speciosa Hassk.). In: Murthy HN, Paek KY, editors. Bioactive compounds in underutilized vegetables and legumes. Springer: Cham; 2021. p. 1–19. https://doi.org/10.1007/978-3-030-44578-2_30-1
Fithri NA, Fitrya F, Shabrina T, Yulanri D. Antioxidant activity analysis and standardization of Parkia speciosa (Petai) pods ethanol extract. Sci Technol Indones. 2019;4(1):5-10. https://doi.org/11.26554/sti.2219.4.1.5-11
Bobo-García G, Davidov-Pardo G, Arroqui C, Vírseda P, Marín-Arroyo MR, Navarro M. Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. J Sci Food Agric. 2015;95(1):204–09. https://doi.org/10.1002/jsfa.6706
Abd Manan E, Abd Gani SS, Zaidan UH, Halmi MI. Characterization of antioxidant activities in red dragon fruit (Hylocereus polyrhizus) pulp water-based extract. J Adv Res Fluid Mech Therm Sci. 2019;61(2):170-80.
Kang JW, Nam D, Kim KH, Huh JE, Lee JD. Effect of gambisan on the inhibition of adipogenesis in 3T3-L1 adipocytes. J Evid Based Complementary Altern Med. 2013;1:789067. https://doi.org/10.1155/2013/789067
Oruganti L, Reddy Sankaran K, Dinnupati HG, Kotakadi VS, Meriga B. Anti-adipogenic and lipid-lowering activity of piperine and epigallocatechin gallate in 3T3-L1 adipocytes. Arch Physiol Biochem. 2023;129(5):1152–59. https://doi.org/10.1080/13813455.2021.1908366
Hwang JM, Lee MH, Lee JH, Lee JH. Agastache rugosa extract and its bioactive compound tilianin suppress adipogenesis and lipogenesis on 3t3-l1 cells. Appl Sci. (Switzerland). 2021;11(16):7679. https://doi.org/10.3390/app11167679
Mohamad M, Ali MW, Ripin A, Ahmad A. Effect of extraction process parameters on the yield of bioactive compounds from the roots of Eurycoma longifolia. J Teknol (Sci Engin). 2013;60:51–57. https://doi.org/10.11113/jt.v60.1441
Ko HJ, Ang LH, Ng LT. Antioxidant activities and polyphenolic constituents of bitter bean Parkia speciosa. Int J Food Prop. 2014;17(9):1977–86. https://doi.org/10.1080/10942912.2013.775152
Siti HN, Jalil J, Asmadi AY, Kamisah Y. Parkia speciosa Hassk. Empty pod extract alleviates angiotensin II-induced cardiomyocyte hypertrophy in H9c2 cells by modulating the Ang II/ROS/NO Axis and MAPK pathway. Front Pharma. 2021;12:741623.
Gan CY, Latiff AA. Antioxidant Parkia speciosa pod powder as potential functional flour in food application: Physicochemical properties’ characterization. Food Hydrocoll. 2011;25(5):1174–80. https://doi.org/10.1016/j.foodhyd.2010.11.004
Pehlivan FE. Vitamin C: An antioxidant agent. In: Pehlivan FE, editor. Vitamin C. IntechOpen. 2017; p. 23-35. https://doi.org/10.5772/intechopen.69660
Etesami B, Ghaseminezhad S, Nowrouzi A, Rashidipour M, Yazdanparast R. Investigation of 3T3-L1 cell differentiation to adipocyte, affected by aqueous seed extract of Phoenix dactylifera L. Rep Biochem Mol Biol. 2020;9(1):14.
Li T, Zhang L, Jin C, Xiong Y, Cheng YY, Chen K. Pomegranate flower extract bidirectionally regulates the proliferation, differentiation and apoptosis of 3T3-L1 cells through regulation of PPAR gamma expression mediated by PI3K-AKT signaling pathway. Biomed Pharmacother. 2020;131:110769. https://doi.org/10.1016/j.biopha.2020.110769
Oh MJ, Lee H Bin, Yoo G, Park M, Lee CH, Choi I, et al. Anti-obesity effects of red pepper (Capsicum annuum L.) leaf extract on 3T3-L1 preadipocytes and high fat diet-fed mice. Food Funct. 2022;14(1):292–304. https://doi.org/10.1039/d2fo03201e
García-Carrasco B, Fernandez-Dacosta R, Dávalos A, Ordovás J, Rodriguez-Casado A. In vitro hypolipidemic and antioxidant effects of leaf and root extracts of Taraxacum officinale. J Med Sci. 2015;3(2):38–54. https://doi.org/10.3390/medsci3020038

Downloads
Published
Versions
- 15-04-2025 (2)
- 07-04-2025 (1)
How to Cite
Issue
Section
License
Copyright (c) 2025 A Anas, H Norhisham, M Emida, I M Y Mohd, H C Nur Dayana, N C Siti, R I Ahmad, A B R Sharaniza, E Zolkapli, S Suhana

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).