Review Articles
Vol. 12 No. 1 (2025)
Silver nanoparticles: Toxicity and inhibitory effects against Aflatoxins
Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, 2000 Stip, R. North Macedonia
Faculty of Pharmacy, University “Ss. Cyril and Methodius”, 1000 Skopje, R. North Macedonia
Abstract
Among the numerous nanomaterials, metal nanoparticles, like silver nanoparticles (AgNPs), are the most employed. Significant focus has been given to their dual role due to their versatile properties. Beneficial, on the one side, as potent antimicrobial properties determine different applications in medicine, agriculture, and food safety, to potentially harmful on the other side. Mycotoxins, secondary metabolites produced by toxigenic strains of fungi, are highly toxic substances recognized for their influence on processes of mutagenesis and carcinogenesis, hepatotoxicity, immunosuppression and estrogenic properties in animals and humans, posing severe threats to health through contaminated food and feed. Thus, this paper explores the toxicity mechanisms of AgNPs and their inhibitory effects on aflatoxins, a class of mycotoxins produced mostly by Aspergillus species that pose significant health risks. The interaction between AgNPs and aflatoxins is examined, highlighting the potential of AgNPs in mitigating aflatoxin contamination. The article gives a summary of the synthesis, properties, and dual roles of AgNPs in the toxicity and inhibition of aflatoxins, concentrating on their possible uses and safety concerns at the end. It is found that elements affect AgNP’s toxicity, like particle solubility, surface area, surface charge, size, concentration, formulation, tendency to agglomerate, and exposure duration. Therefore, assessing the safe levels of AgNP exposure and developing guidelines for their use in different fields are crucial for minimizing the risks. It can be summarized that the biosynthesized AgNPs generated through green synthesis, owing to their biocompatibility and low toxicity, could be applied in harmless concentrations as strong antifungals and anti-mycotoxins. This can offer significant potential for enhancing food safety due to their strong antimicrobial properties, which can inhibit the growth of foodborne pathogens and extend shelf life. However, the potential for nanoparticle migration into food must be considered, which raises critical concerns about human health, regulatory challenges, and environmental impact.
References
- Ali Mansoori G. Principles of nanotechnology: molecular-based study of condensed matter in small systems. World Scientific Publishing Company; 2005. https://doi.org/10.1142/5749
- Geng H, Pedersen SV, Ma Y, Haghighi T, Dai H, Howes PD, et al. Noble metal nanoparticle biosensors: from fundamental studies toward point-of-care diagnostics. Acc Chem Res. 2022;55:593?604. https://doi.org/10.1021/acs.accounts.1c00598
- Khan T, Ullah N, Khan MA, Mashwani Z-u-R, Nadhman A. Plant-based gold nanoparticles; a comprehensive review of the decade-long research on synthesis, mechanistic aspects and diverse applications. Adv Colloid Interface Sci. 2019;272:102017. https://doi.org/10.1016/j.cis.2019.102017
- Reidy B, Haase A, Luch A, Dawson KA, Lynch I. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials. 2013;6(6):2295?350. https://doi.org/10.3390/ma6062295
- Wahab S, Salman A, Khan Z, Khan S, Krishnaraj C, Yun S-I. Metallic nanoparticles: A promising arsenal against antimicrobial resistance - Unraveling mechanisms and enhancing medication efficacy. Int J Mol Sci. 2023;24(19):14897. https://doi.org/10.3390/ijms241914897
- Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, et al. Nanotechnology’s frontier in combating infectous and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther. 2024;9(1):34. https://doi.org/10.1038/s41392-024-01745-z
- Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications and toxicity effects. Int Nano Lett. 2012;2:32. https://doi.org/10.1186/2228-5326-2-32
- AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3(2):279–90. https://doi.org/10.1021/nn800596w
- Taheri S, Cavallaro A, Christo SN, Smith LE, Majewski P, Barton M, et al. Substrate independent silver nanoparticle based antibacterial coatings. Biomaterials. 2014;35(16):4601?09. https://doi.org/10.1016/j.biomaterials.2014.02.033
- Naqvi SIZ, Kausar H, Afzal A, Hashim M, Mujahid H, Javed M, et al. Antifungal activity of Juglans-regia-mediated silver nanoparticles (AgNPs) against Aspergillus-ochraceus-induced toxicity in in vitro and in vivo settings. J Funct Biomater. 2023;14(4):221. https://doi.org/10.3390/jfb14040221
- Reddy KRN, Salleh B, Saad B, Abbas HK, Abel C, Shier WT. An overview of mycotoxin contamination in foods and its implications for human health. Toxin Rev. 2010;29(1):3–26. https://doi.org/10.3109/15569541003598553
- Ellis WO, Smith JP, Simpson BK, Oldham JH. Aflatoxins in food: occurrence, biosynthesis, effects on organisms, detection and methods of control. Crit Rev Food Sci Nutr. 1991;30(4):403?39. https://doi.org/10.1080/10408399109527551
- Klvana M, Bren U. Aflatoxin B1-formamidopyrimidine DNA adducts: Relationships between structures, free energies and melting temperatures. Molecules. 2019;24(1):150. https://doi.org/10.3390/molecules24010150
- Benkerroum N. Aflatoxins: Producing-molds, structure, healthi and incidence in Southeast Asian and Sub-Saharan African countries. Int J Environ Res Public Health. 2020; 17(4):1215. https://doi.org/10.3390/ijerph17041215
- Chanda A, Roze LV, Linz JE. A possible role for exocytosis in aflatoxin export in Aspergillus parasiticus. Eukaryot Cell. 2010;9(11):1724?27. https://doi.org/10.1128/EC.00118-10
- Liu Y, Wu F. Global burden of aflatoxin-induced hepatocellular carcinoma: a risk assessment. Environ Health Perspect. 2010;118(6):818?24. https://doi.org/10.1289/ehp.0901388
- Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275(1):177–82. https://doi.org/10.1016/j.jcis.2004.02.012
- Horky P, Skalickova S, Baholet D, Skladanka J. Nanoparticles as a solution for eliminating the risk of mycotoxins. Nanomaterials. 2018; 8(9):727. doi:10.3390/nano8090727
- Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, et al. Twenty-eightday oral toxicity, genotoxicity and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol. 2008;20(6):575?83. https://doi.org/10.1080/08958370701874663
- Jo Y-K, Kim BH, Jung G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis. 2009;93(10):1037?43. https://doi.org/10.1094/PDIS-93-10-1037
- Ahmad T, Wani IA, Manzoor N, Ahmed J, Asiri AM. Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids Surf B Biointerfaces. 2013;107:227?34. https://doi.org/10.1016/j.colsurfb.2013.02.004
- Jung JH, Cheol Oh H, Soo Noh H, Ji JH, Soo Kim S. Metal nanoparticle generation using a small ceramic heather with a local heating area. J Aerosol Sci. 2006;37(12):1662?70. https://doi.org/10.1016/j.jaerosci.2006.09.002
- Mamdouh S, Mahmoud A, Samir A, Mobarak M, Mohamed T. Using femtosecond laser pulses to investigate the nonlinear optical properties of silver nanoparticles colloids in distilled water synthesized by laser ablation. Phys B Condens Matter. 2022;631:413727. https://doi.org/10.1016/j.physb.2022.413727
- Jeevanandam J, Krishnan S, Hii YS, Pan S, Chan YS, Acquah C, et al. Synthesis approach dependent antiviral properties of silver nanoparticles and nanocomposites. J Nanostructure Chem. 2022;12(5):809?31. https://doi.org/10.1007/s40097-021-00465-y
- Vigneswari S, Amelia TSM, Hazwan MH, Mouriya GK, Bhubalan K, Amirul A-AA, et al. Transformation of biowaste for medical applications: Incorporation of biologically derived silver nanoparticles as antimicrobial coating. Antibiotics. 2021;10(3):229. https://doi.org/10.3390/antibiotics10030229
- Sun Y. Controlled synthesis of colloidal silver nanoparticles in organic solutions: Empirical rules for nucleation engineering. Chem Soc Rev. 2013;42:2497?511. https://doi.org/10.1039/C2CS35289C
- Alahmad A, Al-Zereini WA, Hijazin TJ, Al-Madanat OY, Alghoraibi I, Al-Qaralleh O, et al. Green synthesis of silver nanoparticles using Hypericum perforatum L. aqueous extract with the evaluation of its antibacterial activity against clinical and food pathogens. Pharmaceutics. 2022;14(5):1104. https://doi.org/10.3390/pharmaceutics14051104
- Smilkov K, Ackova DG, Cvetkovski A, Geskovski N, Boev B, Pejova B, et al. First characterization of functionalized nanoparticles - tandem of biosynthesized silver nanoparticles conjugated with piperine. Chem Pap. 2022;76:1019?30. https://doi.org/10.1007/s11696-021-01911-5.
- Baran MF, Keskin C, Baran A, Hatipo?lu A, Yildiztekin M, Küçükaydin S, et al. Green synthesis of silver nanoparticles from Allium cepa L. peel extract, their antioxidant, antipathogenic and anticholinesterase Activity. Molecules. 2023;28:2310. https://doi.org/10.3390/molecules28052310.
- Mie R, Samsudin MW, Din LB, Ahmad A, Ibrahim N, Adnan SNA. Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum. Int J Nanomedicine. 2014;9:121?27. http://dx.doi.org/10.2147/IJN.S52306
- Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD. Green Synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 2019;9(5):2673?702. https://doi.org/10.1039/c8ra08982e
- Panacek A, Kvítek L, Prucek R, Kolar M, Vecerova R, Pizúrova N, et al. Silver colloid nanoparticles: synthesis, characterization and their antibacterial activity. J Phys Chem B. 2006;110(33):16248?53. https://doi.org/10.1021/jp063826h
- Kathiravan V, Ravi S, Ashokkumar S, Velmurugan S, Elumalai K, Khatiwada CP. Green synthesis of silver nanoparticles using Croton sparsiflorus morong leaf extract and their antibacterial and antifungal activities. Spectrochim Acta A Mol Biomol Spectrosc. 2015;139:200?05. https://doi.org/10.1016/j.saa.2014.12.022
- Al-zubaidi LA, Wsain SM, Ibrahim SM. Evaluate the antifungal and detoxification activity of silver nanoparticles prepared with the Curcuma plant extract against Aflatoxin B1 in broiler feed. IOP Conf Ser: Earth Environ Sci; 2021.779:012076. https://doi.org/10.1088/1755-1315/779/1/012076
- Priyadarshini E, Priyadarshini SS, Cousins BG, Pradhan N. Metal-fungus interaction: Review on cellular processes underlying heavy metal detoxification and synthesis of metal nanoparticles. Chemosphere. 2021;274:129976. https://doi.org/10.1016/j.chemosphere.2021.129976
- Babele PK, Thakre PK, Kumawat R, Tomar RS. Zinc oxide nanoparticles induce toxicity by affecting cell wall integrity pathway, mitochondrial function and lipid homeostasis in Saccharomyces cerevisiae. Chemosphere. 2018;213:65?75. https://doi.org/10.1016/j.chemosphere.2018.09.028
- Selvaraj M, Pandurangan P, Ramasami N, Rajendran SB, Sangilimuthu SN, Perumal P. Highly potential antifungal activity of quantum-sized silver nanoparticles against Candida albicans. Appl Biochem Biotechnol. 2014;173(1):55–66. https://doi.org/10.1007/s12010-014-0782-9
- Athie-García MS, Piñón-Castillo HA, Muñoz-Castellanos LN, Ulloa-Ogaz AL, Martínez-Varela PI, Quintero-Ramos A, et al. Cell wall damage and oxidative stress in Candida albicans ATCC10231 and Aspergillus niger caused by palladium nanoparticles. Toxicol In Vitro. 2018;48:111–20. https://doi.org/10.1016/j.tiv.2018.01.006
- Ouda SM. Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Res J Microbiol. 2014;9:34?42. https://doi.org/10.3923/jm.2014.34.42
- Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J. Our current understanding of fungal biofilms. Crit Rev Microbiol. 2009;35(4):340?55. https://doi.org/10.3109/10408410903241436
- Lee Y-H, Cheng F-Y, Chiu H-W, Tsai J-C, Fang C-Y, Chen C-W, et al. Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials. 2014;35(16):4706?15. https://doi.org/10.1016/j.biomaterials.2014.02.021
- Mussin J, Giusiano G. Biogenic silver nanoparticles as antifungal agents. Front Chem. 2022; 10:1023542. https://doi.org/10.3389/fchem.2022.1023542
- Rizwana H, Alwhibi MS, Al-Judaie RA, Aldehaish HA, Alsaggabi NS. Sunlight-mediated green synthesis of silver nanoparticles using the berries of Ribes rubrum (Red Currants): characterisation and evaluation of their antifungal and antibacterial activities. Molecules. 2022; 27(7):2186. https://doi.org/10.3390/molecules27072186
- Cruz-Luna AR, Cruz-Martínez H, Vásquez-López A, Medina DI. Metal nanoparticles as novel antifungal agents for sustainable agriculture: current advances and future directions. J Fungi. 2021;7(12):1033. https://doi.org/10.3390/jof7121033
- Kim K-J, Sung WS, Moon S-K, Choi J-S, Kim JG, Lee DG. Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol. 2008;18(8):1482?84. PMID: 18756112.
- Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology. 2012;40(1):53?58. https://doi.org/10.5941/MYCO.2012.40.1.053
- Kotzybik K, Gräf V, Kugler L, Stoll DA, Greiner R, Geisen R, et al. Influence of different nanomaterials on growth and mycotoxin production of Penicillium verrucosum. PLoS One. 2016;11(3):e0150855. https://doi.org/10.1371/journal.pone.0150855
- Mussin JE, Roldán MV, Rojas F, de Los Ángeles Sosa M, Pellegri N, Giusiano G. Antifungal activity of silver nanoparticles in combination with ketoconazole against Malassezia furfur. AMB Express. 2019;9(1):131. https://doi.org/10.1186/s13568-019-0857-7
- Pietrzak K, Twaruzek M, Czyzowska A, Kosicki R, Gutarowska B. Influence of silver nanoparticles on metabolism and toxicity of moulds. Acta Biochim Pol. 2015;62(4):851?57. https://doi.org/10.18388/abp.2015_1146
- Nguyen DH, Vo TNN, Nguyen NT, Ching YC, Thi TTH. Comparison of biogenic silver nanoparticles formed by Momordica charantia and Psidium guajava leaf extract and antifungal evaluation. PLoS One. 2020;15(9):e0239360. https://doi.org/10.1371/journal.pone.0239360
- Asghar MA, Zahir E, Shahid SM, Khan MN, Asghar MA, Iqbal J, et al. Iron, copper and silver nanoparticles: Green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity. LWT. 2018;90:98?107. https://doi.org/10.1016/j.lwt.2017.12.009
- Mousavi SAA, Pourtalebi S. Inhibitory effects of silver nanoparticles on growth and aflatoxin B1 production by Aspergillus parasiticus. Iran J Med Sci. 2015;40(6):501?06. PMCID: PMC4628140
- Mallmann EJJ, Cunha FA, Castro BNMF, Maciel AM, Menezes EA, Fechine PBA. Antifungal activity of silver nanoparticles obtained by green synthesis. Rev Inst Med Trop Sao Paulo. 2015;57(2):165?67. https://doi.org/10.1590/S0036-46652015000200011
- Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM. Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharmaceutics. 2009;6(5):1388?401. https://doi.org/10.1021/mp900056g
- Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res. 2006;5(4):916?24. https://doi.org/10.1021/pr0504079
- Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effects of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52(4):662?68. https://doi.org/10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3
- Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T. Mode of bacterial action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol. 2003;69(7):4278?81. https://doi.org/10.1128/AEM.69.7.4278-4281.2003
- Bocate KP, Reis GF, de Souza PC, Oliveira Junior AG, Durán N, Nakazato G, et al. Antifungal activity of silver nanoparticles and simvastatin against toxigenic species of Aspergillus. Int J Food Microbiol. 2019;291:79?86. https://doi.org/10.1016/j.ijfoodmicro.2018.11.012
- Deabes MM, Khalil WKB, Attallah AG, El-Desouky TA, Naguib KM. Impact of silver nanoparticles on gene expression in Aspergillus flavus producer aflatoxin B1. Open Access Maced J Med Sci. 2018;6(4):600?05. https://doi.org/10.3889/oamjms.2018.117
- Abd El-Ghany MN, Hamdi S, Korany SM, Elbaz RM, Emam AN, Farahat MG. Biogenic silver nanoparticles produced by soil rare actinomycetes and their significant effect on Aspergillus-derived mycotoxins. Microorganisms. 2023;11(4):1006. https://doi.org/10.3390/microorganisms11041006
- Xiang S, Ma X, Shi H, Ma T, Tian C, Chen Y, et al. Green synthesis of an alginate-coated silver nanoparticle shows high antifungal activity by enhancing its cell membrane penetrating ability. ACS Appl Bio Mater. 2019;2(9):4087?96. https://doi.org/10.1021/acsabm.9b00590
- Li J, Zhang B, Chang X, Gan J, Li W, Niu S, et al. Silver nanoparticles modulate mitochondrial dynamics and biogenesis in HepG2 cells. Environ Pollut. 2020;256:113430. https://doi.org/10.1016/j.envpol.2019.113430
- Chang X, Niu S, Shang M, Li J, Guo M, Zhang W, et al. ROS-Drp1-mediated mitochondria fission contributes to hippocampal HT22 cell apoptosis induced by silver nanoparticles. Redox Biol. 2023;63:102739. https://doi.org/10.1016/j.redox.2023.102739
- Samal D, Khandayataray P, Sravani M, Murthy MK. Silver nanoparticle ecotoxicity and phytoremediation: a critical review of current research and future prospects. Environ Sci Pollut Res. 2024;31:8400–28. https://doi.org/10.1007/s11356-023-31669-0
- Ahamed M, Alsalhi MS, Siddiqui MKJ. Silver nanoparticle applications and human health. Clin Chim Acta. 2010;411(23-24):1841?48. https://doi.org/10.1016/j.cca.2010.08.016
- W?ng Y, Han Y, Xu D-X. Developmental impacts and toxicological hallmarks of silver nanoparticles across diverse biological models. Environ Sci Ecotechnol. 2023;19:100325. https://doi.org/10.1016/j.ese.2023.100325
- Babaei V, Ashtarinezhad A, Torshabi M, Teimourian S, Shahmirzaie M, Abolghasemi J, et al. High inflammatory cytokines gene expression can be detected in workers with prolonged exposure to silver and silica nanoparticles in industries. Sci Rep. 2024;14(1):5667. https://doi.org/10.1038/s41598-024-56027-z
- Ong WTJ, Nyam KL. Evaluation of silver nanoparticles in cosmeceutical and potential biosafety complications. Saudi J Biol Sci. 2022;29(4):2085?94. https://doi.org/10.1016/j.sjbs.2022.01.035
- Vazquez-Muñoz R, Borrego B, Juárez-Moreno K, Garsía-Garsía M, Mota Morales JD, Bogdanchikova N, et al. Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter? Toxicol Lett. 2017;276:11?20. https://doi.org/10.1016/j.toxlet.2017.05.007
- Dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M, et al. Silver nanoparticles: therapeutical uses, toxicity and safety issues. J Pharm Sci. 2014;103(7):1931?44. https://doi.org/10.1002/jps.24001
- Ferdous Z, Nemmar A. Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci. 2020;21(7):2375. https://doi.org/10.3390/ijms21072375
- Koivisto AJ, Burrueco-Subirà D, Candalija A, Vázquez-Campos S, Nicosia A, Ravegnani F, et al. Exposure assessment and risks associated with wearing silver nanoparticle-coated textiles [version 1; peer review: 2 approved with reservations]. Open Res Europe. 2024;4:100. https://doi.org/10.12688/openreseurope.17254.1.
- Stefaniak AB, Duling MG, Lawrence RB, Thomas TA, Lebouf RF, Wade EE, et al. Dermal exposure potential from textiles that contain silver nanoparticles. Int J Occup Environ Health. 2014;20(3):220?34. https://doi.org/10.1179/2049396714Y.0000000070
- Gautam R, Yang SJ, Maharjan A, Jo JH, Acharya M, Heo Y, et al. Prediction of skin sensitization potential of silver and zinc oxide nanoparticles through the human cell line activation test. Front Toxicol. 2021;3:649666. https://doi.org/10.3389/ftox.2021.649666
- Stoehr LC, Gonzalez E, Stampfl A, Casals E, Duschl A, Puntes V, et al. Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells. Part Fibre Toxicol. 2011;8(1):36. https://doi.org/10.1186/1743-8977-8-36
- Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag Release. Part Fibre Toxicol. 2014;11:11. https://doi.org/10.1186/1743-8977-11-11
- Suliman YAO, Ali D, Alarifi S, Harrath AH, Mansour L, Alwasel SH. Evaluation of cytotoxic, oxidative stress, proinflammatory and genotoxic effect of silver nanoparticles in human lung epithelial cells. Environ Toxicol. 2015;30(2):149–60. https://doi.org/10.1002/tox.21880
- D?ugosz O, Sochocka M, Ochnik M, Banach M. Metal and bimetallic nanoparticles: Flow synthesis, bioactivity and toxicity. J Colloid Interface Sci. 2021;586:807?18. https://doi.org/10.1016/j.jcis.2020.11.005
- Li Y, Cummins E. Hazard characterization of silver nanoparticles for human exposure routes. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2020;55(6):704?25. https://doi.org/10.1080/10934529.2020.1735852
- Williams KM, Gokulan K, Cerniglia CE, Khare S. Size and dose dependent effects of silver nanoparticles exposure on intestinal permeability in an in vitro model of the human gut epithelium. J Nanobiotechnology. 2016;14(1):62. https://doi.org/10.1186/s12951-016-0214-9
- Shahare B, Yashpal M. Toxic effects of repeated oral exposure of silver nanoparticles on small intestine mucosa of mice. Toxicol Mech Methods. 2013;23(3):161?67. https://doi.org/10.3109/15376516.2013.764950
- Inkielewicz-Stepniak I, Santos-Martinez MJ, Medina C, Radomski MW. Pharmacological and toxicological effects of co-Exposure of human gingival fibroblasts to silver nanoparticles and sodium fluoride. Int J Nanomedicine. 2014;9:1677?87. https://doi.org/10.2147/IJN.S59172
Downloads
Download data is not yet available.