Skip to main navigation menu Skip to main content Skip to site footer

Special issue on Int Conf Spices

Vol. 11 No. sp3 (2024): International Seminar on Spices KAU - 2024

Chitosan-induced growth enhancement, piperine production and relative expression of piperine synthase gene in long pepper (Piper longum L.)

DOI
https://doi.org/10.14719/pst.4454
Submitted
25 July 2024
Published
25-12-2024

Abstract

A study was undertaken to investigate the effects of chitosan (CS) at varying concentrations (0 g/L, 1 g/L, 2 g/L, 3 g/L and 4 g/L) on Piper longum. CS, a naturally occurring polysaccharide, has garnered attention for its potential to enhance plant growth and yield. The experiment involved foliar applications of CS at 2, 4 and 6 months after planting (MAP), followed by observations 1 month postapplication (3, 5 and 7 MAP). This allowed for a comprehensive assessment of the impact of CS on the growth, physiological, biochemical and yield parameters of P. longum. Notably, the findings highlighted that foliar spraying of CS at lower concentrations (1 g/L and 2 g/L) significantly stimulated the growth and yield attributes and expression of the piperine synthase gene in P. longum. These concentrations positively affected various parameters, including shoot length, physiological functions, biochemical processes and yield metrics. Conversely, higher concentrations of CS (3 g/L and 4 g/L) exhibited inhibitory effects, leading to compromised performance across the assessed parameters. Moreover, these concentrations produced poorer results than the control treatment, highlighting the detrimental effects of excessive CS application on P. longum. Overall, these findings emphasize the importance of optimizing CS concentrations for effective enhancement of growth and yield in P. longum cultivation, while also highlighting the potential risks associated with excessive CS application.

References

  1. 1. Maheswari RS, Suma B, Presannakumari KT. Morphological and biochemical characterization of Long pepper (Piper longum L.) genotypes from Western Ghats regions of Kerala, India. J Trop Agric. 2018;56(2):167–75. https://jtropag.kau.in/index.php/ojs2/article/view/430
  2. 2. Biswas P, Ghorai M, Mishra T, Gopalakrishnan AV, Roy D, Mane AB, et al. Piper longum L.: A comprehensive review on traditional uses, phytochemistry, pharmacology and health-promoting activities. Phytother Res. 2022;36(12):4425–76. https://doi.org/10.1002/ptr.7649
  3. 3. Pellis A, Guebitz GM, Nyanhongo GS. Chitosan: sources, processing and modification techniques. Gels. 2022;8(7):393. https://doi.org/10.3390/gels8070393
  4. 4. Shinde NA, Kawar PG, Dalvi SG. Chitosan-based nanoconjugates: A promising solution for enhancing crop drought-stress resilience and sustainable yield in the face of climate change. Plant Nano Biol. 2024;7:100059. https://doi.org/10.1016/j.plana.2024.100059
  5. 5. Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant physiol. 1949 ;24(1):1. https://doi.org/10.1104/pp.24.1.1
  6. 6. Aharoni A, Dixit S, Jetter R, Thoenes E, Van Arkel G, Pereira A. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell. 2004;16(9):2463–80. https://doi.org/10.1105/tpc.104.022897
  7. 7. Reddy KP, Subhani SM, Khan PA, Kumar KB. Effect of light and benzyladenine on dark-treated growing rice (Oryza sativa) leaves II. Changes in peroxidase activity. Plant Cell Physiol. 1985;26(6): 987–94. https://doi.org/10.1093/oxfordjournals.pcp.a077018
  8. 8. Luke H. Methods in enzymatic analysis. In: Brenmeryer Academic Press. 2nd Ed. New York. 1974.
  9. 9. Sowbhagya HB, Sampathu SR, Krishnamurthy N, Shankaranarayana ML. Stability of piperine in different solvents and its spectrophotometric estimation. Indian Spices. 1990;27(1): 21–23.
  10. 10. Krishna MV, Sivakumar S, Sivasamy M, Jayaprakash P, Senthil N, Iyanar K, et al. Morphological diversity and genetic variability of wheat (Triticum aestivum L.) genotypes in the southern hills zone. J Pharm Innov. 2022;11(7):2722-30.. https://www.kaugrapes.com/home
  11. 11. Gonzalez Gomez H, Ramirez Godina F, Ortega Ortiz H, Benavides Mendoza A, Robledo Torres V, Cabrera De la Fuente M. Use of chitosan-PVA hydrogels with copper nanoparticles to improve the growth of grafted watermelon. Mol. 2017;22(7):1031. https://doi.org/10.3390/molecules22071031
  12. 12. Rahman M, Mukta JA, Sabir AA, Gupta DR, Mohi Mohi-UdUd-Din M, Hasanuzzaman M, et al. Chitosan biopolymer promotes yield and stimulates accumulation of antioxidants in strawberry fruit. PloS One. 2018;13(9):e0203769. https://doi.org/10.1371/journal.pone.0203769
  13. 13. Hassnain, Basit A, Alam M, Ahmad I, Ullah I, Alam N, et al. Efficacy of chitosan on performance of tomato (Lycopersicon esculentum L.) plant under water stress condition. Pak J Agri Res. 2020;33(1):27. http://dx.doi.org/10.17582/journal.pjar/2020/33.1.27.41
  14. 14. El-Serafy RS. Phenotypic plasticity, biomass allocation and biochemical analysis of cordyline seedlings in response to oligo-chitosan foliar spray. J Soil Sci Plant Nutr. 2020;20(3):503–1514. https://doi.org/10.1007/s42729-020-00229-7
  15. 15. Faqir Y, Chai Y, Wu S, Luo T, Liao S, Kaleri AR et al. Chitosan microspheres-based controlled release nitrogen fertilizer enhance the growth, antioxidant and metabolite contents of Chinese cabbage. SSRN J. 2022;26. https://dx.doi.org/10.2139/ssrn.4111232
  16. 16. Salachna P, Lopusiewicz L. Chitosan oligosaccharide lactate increases productivity and quality of baby leaf red perilla. Agronomy. 2022;12(5):1182. https://doi.org/10.3390/agronomy12051182
  17. 17. Uge E, Sulandari S, Hartono S, Somowiyarjo S. The effect of chitosan application against plant growth and intensity of stunting disease on black pepper (Piper nigrum L.) seedlings. J Perlindungan Tanam Indones. 2018;22(2):224–32. https://doi.org/10.22146/jpti.25453
  18. 18. LopezLopez-Moya F, Escudero N, Zavala Zavala-Gonzalez EA, Esteve Esteve-Bruna D, Blázquez MA, Alabadi D, et al. Induction of auxin biosynthesis and WOX5 repression mediate changes in root development in Arabidopsis exposed to chitosan. Sci Rep. 2017;7(1):16813. https://doi.org/10.1038/s41598-017-16874-5
  19. 19. Muley AB, Shingote PR, Patil AP, Dalvi SG, Suprasanna P. Gamma radiation degradation of chitosan for application in growth promotion and induction of stress tolerance in potato (Solanum tuberosum L.). Carbohydr Polym. 2019;210:289–301.https://doi.org/10.1016/j.carbpol.2019.01.056
  20. 20. Mukarram M, Khan MMA, Uddin M, Corpas FJ. Irradiated chitosan (ICH): An alternative tool to increase essential oil content in lemongrass (Cymbopogon flexuosus). Acta Physiol Plant. 2022;44:1–15. https://doi.org/10.1007/s11738-021-03335-w
  21. 21. Arshad MA, Akhtar G, Rajwana IA, Ullah S, Hussain MB, Amin M, et al. Foliar application of chitosan improves plant biomass, physiological and biochemical attributes of rose (Gruss-an-Teplitz). Kuwait J Sci. 2022;49(2). https://doi.org/10.48129/kjs.11655
  22. 22. Limpanavech P, Chaiyasuta S, Vongpromek R, Pichyangkura R, Khunwasi C, Chadchawan S, et al. Chitosan effects on floral production, gene expression and anatomical changes in the Dendrobium orchid. Sci Hortic. 2008;116(1):65–72. https://doi.org/10.1016/j.scienta.2007.10.034
  23. 23. RamosRamos-Garcia M, Ortega Ortega-Centeno S, Hernandez Hernandez-Lauzardo AN, Alia Alia-Tejacal I, Bosquez Bosquez-Molina E, Bautista Bautista-Banos S . Response of gladiolus (Gladiolus spp,) plants after exposure corms to chitosan and hot water treatments. Sci Hortic. 2019;121(4):480–84. https://doi.org/10.1016/j.scienta.2009.03.002
  24. 24. Morovvat SA, Sadrabadi R, Noferest KS, Darban AS, Salati M. Effects of foliar application chitosan and salicylic acid on physiological characteristics and yield under deficit irrigation condition. Agrivita J Agric Sci. 2020;43(1):101–13. https://doi.org/10.17503/agrivita.v43i1.2796
  25. 25. Hasanah Y, Sembiring M. Effect of foliar application of chitosan and salicylic acid on the growth of soybean (Glycine max (L.) Merr.) varieties. In: IOP Conference Series: Earth and Environmental Sciences: IOP Publishing. 2018; p. 012027.
  26. 26. Akhtar G, Faried HN, Razzaq K, Ullah S, Wattoo FM, Shehzad MA, et al. Chitosan-induced physiological and biochemical regulations confer drought tolerance in pot marigold (Calendula officinalis L.). Agronomy. 2022;12(2):474. https://doi.org/10.3390/agronomy12020474
  27. 27. Shehzad MA, Nawaz F, Ahmad F, Ahmad N, Masood S. Protective effect of potassium and chitosan supply on growth, physiological processes and antioxidative machinery in sunflower (Helianthus annuus L.) under drought stress. Ecotoxicol Environ Saf. 2020;187:109841. https://doi.org/10.1016/j.ecoenv.2019.109841
  28. 28. Dzung NA, Khanh VTP, Dzung TT. Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydr Polym.2011;84(2):751–55. https://doi.org/10.1016/j.carbpol.2010.07.066
  29. 29. Pichyangkura R, Chadchawan S. Biostimulant activity of chitosan in horticulture. Sci Hortic. 2015;196:49–65. https://doi.org/10.1016/j.scienta.2015.09.031
  30. 30. Xue W, Han Y, Tan J, Wang Y, Wang G, Wang H . Effects of nanochitin on the enhancement of the grain yield and quality of winter wheat. J Agric Food Chem 2017;66(26):6637–45. https://doi.org/10.1021/acs.jafc.7b00641
  31. 31. Chookhongkha N, Miyagawa S, Jirakiattikul Y, Photchanachai S. Chili growth and seed productivity as affected by chitosan. In: Proceedings of the International Conference on Agriculture Technology and Food Sciences (ICATFS’2012), Manila, Philippines 2012 Nov 17 . p. 17-18.
  32. 32. El-Khateeb MA, Nasr AAM, Hassan NAA. Growth and quality improvement of Dracaena surculosa Lindl. by the foliar application of some bio-stimulants. Int J Environ. 2018;7(2):53–64.
  33. 33. Ahmed KB, Khan MM, Siddiqui H, Khanam N, Uddin M, Naeem M, et al. Fractions of radiation-processed chitosan induce growth, photosynthesis and secondary metabolism in Java citronella (Cymbopogon winterianus Jowitt). In: Radiation-Processed Polysaccharides. Academic Press; 2022. p. 273–98. https://doi.org/10.1016/B978-0-323-85672-0.00006-4
  34. 34. Zeng K, Deng Y, Ming J, Deng L. Induction of disease resistance and ROS metabolism in navel oranges by chitosan. Sci Hortic. 2010;126(2):223–28. https://doi.org/10.1016/j.scienta.2010.07.017
  35. 35. Ma Z, Yang L, Yan H, Kennedy JF, Meng X. Chitosan and oligochitosan enhance the resistance of peach fruit to brown rot. Carbohydr Polym. 2013;94(1):272–77. https://doi.org/10.1016/j.carbpol.2013.01.012
  36. 36. Anusuya S, Sathiyabama M. Effect of chitosan on growth, yield and curcumin content in turmeric under field condition. Biocatal Agric Biotechnol. 2016;6:102–06. https://doi.org/10.1016/j.bcab.2016.03.002
  37. 37. Sun C, Fu D, Jin L, Chen M, Zheng X, Yu T. Chitin isolated from yeast cell wall induces the resistance of tomato fruit to Botrytis cinerea. Carbohydr Polym. 2018;199:341–52. https://doi.org/10.1016/j.carbpol.2018.07.045
  38. 38. Choudhary RC, Kumaraswamy RV, Kumari S, Pal A, Raliya R, Biswas P, et al. Synthesis, characterization and application of chitosan nanomaterials loaded with zinc and copper for plant growth and protection. In: Prasad, R., Kumar, M., Kumar, V, editors. Nanotechnology, Singapore. Springer; 2017;227–47. https://doi.org/10.1007/978-981-10-4573-8_10
  39. 39. Singh RK, Soares B, Goufo P, Castro I, Cosme F, Pinto-Sintra AL, , et al. Chitosan upregulates the genes of the ROS pathway and enhances the antioxidant potential of grape (Vitis vinifera L. Touriga Franca and Tinto Cao) tissues. Antioxidants. 2019;8(11):525. https://doi.org/10.3390/antiox8110525
  40. 40. Silva V, Singh RK, Gomes N, Soares BG, Silva A, Falco V, et al. Comparative insight upon chitosan solution and chitosan nanoparticles application on the phenolic content, antioxidant and antimicrobial activities of individual grape components of Sousão variety. Antioxidants. 2020;9(2):178. https://doi.org/10.3390/antiox9020178
  41. 41. Brasili E, Miccheli A, Marini F, Pratico G, Sciubba F, Di Cocco ME, et al. Metabolic profile and root development of Hypericum perforatum L. in vitro roots under stress conditions due to chitosan treatment and culture time. Front Plant Sci. 2016;7:507. https://doi.org/10.3389/fpls.2016.00507
  42. 42. Yin H, Frettee XC, Christensen LP, Grevsen K. Chitosan oligosaccharides promote the content of polyphenols in Greek oregano (Origanum vulgare ssp. hirtum). J Agric Food Chem. 2012;60(1):136—3. https://doi.org/10.1021/jf204376j
  43. 43. Sathiyabama M, Bernstein N, Anusuya S. Chitosan elicitation for increased curcumin production and stimulation of defence response in turmeric (Curcuma longa L.). Ind Crops Prod. 2016;89:87–94. https://doi.org/10.1016/j.indcrop.2016.05.007
  44. 44. Mehregan M, Mehrafarin A, Labbafi MR, Naghdi Badi H. Effect of different concentrations of chitosan biostimulant on biochemical and morphophysiological traits of stevia plant (Stevia rebaudiana Bertoni). J Med Plants. 2017;16(62):169–81. http://dorl.net/dor/20.1001.1.2717204.2017.16.62.17.0
  45. 45. Bilal Ahmad BA, Khan MM, Hassan Jaleel HJ, Yawar Sadiq YS, Asfia Shabbir AS, Moin Uddin MU. Exogenously sourced y-irradiated chitosan-mediated regulation of growth, physiology, quality attributes and yield in Mentha piperita L. Turk J Biol. 2017;41(2):388–401. https://doi.org/10.3906/biy-1608-64
  46. 46. Krstic Milosevic D, Jankovic T, Uzelac B, Vinterhalter D, Vinterhalter B. Effect of elicitors on xanthone accumulation and biomass production in hairy root cultures of Gentiana dinarica. Plant Cell Tiss Organ Cult. 2017;130:631–40. https://doi.org/10.1007/s11240-017-1252-1
  47. 47. Ghasemi PA. Diversity in chemical composition and yield of essential oil from two Iranian landraces of sweet basil. Genetika. 2014;46(2):419—26. https://doi.org/10.2298/GENSR1402419P
  48. 48. Emami Bistgani Z, Siadat SA, Bakhshandeh A, Ghasemi Pirbalouti A, Hashemi M. Morpho-physiological and phytochemical traits of (Thymus daenensis Celak.) in response to deficit irrigation and chitosan application. Acta Physiol Plant. 2017;39:1–13. https://doi.org/10.1007/s11738-017-2526-2
  49. 49. Jaleel H, Khan MM, Ahmad B, Shabbir A, Sadiq Y, Uddin M, et al. Essential oil and citral production in field-grown lemongrass in response to gamma-irradiated chitosan. J Herbs Spices Med Plants. 2017;23(4): 378–92. https://doi.org/10.1080/10496475.2017.1349702
  50. 50. Torabi Giglou M, Heydarnajad Giglou R, Azarmi R, Salimi G, Maleki Lajayer H, Mokhtari AM et al. Effects of Kitoplus® and chitosan coated iron nano-oxide on morpho-physiological properties of peppermint under drought stress. J Veg Sci. 2023;6(2):135–46.
  51. 51. Liu Y, Wisniewski M, Kennedy JF, Jiang Y, Tang J, Liu J . Chitosan and oligochitosan enhance ginger (Zingiber officinale Roscoe) resistance to rhizome rot caused by Fusarium oxysporum in storage. Carbohydr Polym. 2016;151:474–79. https://doi.org/10.1016/j.carbpol.2016.05.103
  52. 52. Schnabel A, Athmer B, Manke K, Schumacher F, Cotinguiba F, Vogt T. Identification and characterization of piperine synthase from black pepper, Piper nigrum L. Commun Biol. 2021;4(1):445. https://doi.org/10.1038/s42003-021-01967-9
  53. 53. Kim HJ, Chen F, Wang X, Rajapakse NC. Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.). J Agric Food Chem. 2005;53(9):3696–701. https://doi.org/10.1021/jf0480804
  54. 54. Lei C, Ma D, Pu G, Qiu X, Du Z, Wang H , et al. Foliar application of chitosan activates artemisinin biosynthesis in Artemisia annua L. Ind Crop Prod. 2011;33(1):176–82. https://doi.org/10.1016/j.indcrop.2010.10.001
  55. 55. Fooladi Vanda, G, Shabani L, Razavizadeh R. Chitosan enhances rosmarinic acid production in shoot cultures of Melissa officinalis L. through the induction of methyl jasmonate. Botanical Studies. 2019;60:1–10. https://doi.org/10.1186/s40529-019-0274-x
  56. 56. Singh S. Enhancing phytochemical levels, enzymatic and antioxidant activity of spinach leaves by chitosan treatment and an insight into the metabolic pathway using DART-MS technique. Food Chem. 2016;199:176–84. https://doi.org/10.1016/j.foodchem.2015.11.127
  57. 57. Ahmed KBM, Khan MMA, Siddiqui H, Jahan A. Chitosan and its oligosaccharides, a promising option for sustainable crop production-a review. Carbohydr Polym. 2020;227:115331. https://doi.org/10.1016/j.carbpol.2019.115331
  58. 58. Lee YS, Kim YH, Kim SB. Changes in the respiration, growth and vitamin C content of soybean sprouts in response to chitosan of different molecular weights. HortScience. 2005;40(5):1333–35. https://doi.org/10.21273/HORTSCI.40.5.1333
  59. 59. Ghoname AA, El-Nemr MA, Abdel-Mawgoud AMR, El-Tohamy WA. Enhancement of sweet pepper crop growth and production by application of biological, organic and nutritional solutions. Res J Agric Biol Sci . 2010;6(3):349–55.
  60. 60. Mahmood N, Abbasi NA, Hafiz IA, Ali I, Zakia S. Effect of biostimulants on growth, yield and quality of bell pepper cv. yolo wonder. Pak J Agric Sci 2017;54(2). http://pakjas.com.pk/papers/2703.pdf
  61. 61. Mukta JA, Rahman M, Sabir AA, Gupta DR, Surovy MZ, Rahman M, , et al. Chitosan and plant probiotics application enhance growth and yield of strawberry. Biocatal Agric Biotechnol. 2017;11:9–18. https://doi.org/10.1016/j.bcab.2017.05.005
  62. 62. Alkharpotly AA, Abdelrasheed KG. The performance of globe artichoke plants as affected by spraying with chitosan and salicylic acid. J Plant Prod . 2021;12(11):1271–78. https://dx.doi.org/10.21608/jpp.2021.209341
  63. 63. Sharma G, Sharma P. Chitosan nanofertilizer boost source activity in plant. J Plant Nutr 2021;44(16):2486–99. https://doi.org/10.1080/01904167.2021.1918159
  64. 64. Sheikha SA, Al Al-Malki FM. Growth and chlorophyll responses of bean plants to the chitosan applications. Eur J Sci Res 2011;50(1):124–34.
  65. 65. Liu J, Gai L, Zong H. Foliage application of chitosan alleviates the adverse effects of cadmium stress in wheat seedlings (Triticum aestivum L.). Plant Physiol Biochem . 2021;164:115–21. https://doi.org/10.1016/j.plaphy.2021.04.038
  66. 66. Maluin FN, Hussein MZ, Yusof NA, Fakurazi S, Idris AS, Hilmi NH, et al. Phytotoxicity of chitosan-based agronanofungicides in the vegetative growth of oil palm seedling. PLoS One. 2020;15(4):e0231315. https://doi.org/10.1371/journal.pone.0231315
  67. 67. Ningsih S, Sari DW. Effect of chitosan on chlorophyll content and phytotoxicity in Brassica Juncea L. Techno J Penelit . 2023;12(2):90–98. https://doi.org/10.33387/tjp.v12i2.6639

Downloads

Download data is not yet available.