Skip to main navigation menu Skip to main content Skip to site footer

Special issue on Int Conf Spices

Vol. 11 No. sp3 (2024): International Seminar on Spices KAU - 2024

In Vivo induction and identification of heteroploids in ginger

DOI
https://doi.org/10.14719/pst.4819
Submitted
26 August 2024
Published
29-12-2024 — Updated on 09-09-2025
Versions

Abstract

Ginger, a commercially important spice, is propagated vegetatively and genetic variations among clones are limited. The study aimed to induce heteroploidy in ginger to create genetic variations that could potentially enhance production, improve quality and disease and insect resistance was undertaken at College of Agriculture, Vellayani, Kerala. Eight superior ginger genotypes were selected and treated with colchicine (0.1%). In vivo induction using colchicine resulted in twenty suspected heteroploids. These genotypes were field planted and observed for morphologic, cytologic and yield characters. The morphological characters like plant height and number of leaves per plant were significantly higher in the treated genotypes compared to the control. The chromosome number counting revealed the plants T1S5, T5S1, T8S1 and T8S4 to be heteroploids with chromosome numbers 27, 68, 24 and 30 respectively. The histogram peak of the colchicine treated plants T1S5, T8S1 and T8S4 obtained in both channels 50 and 200, confirming heteroploidy. Among the four heteroploids developed, the heteroploid plant, T8S1 was found to be highly promising with respect to plant height, number of leaves plant-1, fresh rhizome yield plant-1 and dry rhizome yield per plant. The study suggested that induced heteroploidy in ginger plants using colchicine can lead to genetic variations with potentially beneficial traits for cultivation.

References

  1. 1. Shukla Y, Singh M. Cancer preventive properties of ginger: A brief review. Food Chem Toxicol. 2007;45(5):683–90. https://doi.org/10.1016/j.fct.2006.11.002
  2. 2. Ravindran PN, Babu KN, Shiva KN, editors. Botany and crop improvement of ginger. In: Ginger – The genus Zingiber. CRC Press; Boca Raton, FL; 2005. p.15–85. https://doi.org/10.1017/s0014479705293547
  3. 3. Jayachandran BK, Vijayagopal PD. Attempts on breaking self incompatibility in ginger (Zingiber officinale Rosc.). Agri Res J Kerala. 1979;17(3):256–7.
  4. 4. Ramachandran K. Chromosome numbers in Zingiberaceae. Cytologia. 1969;34:213–21.
  5. 5. Ramachandran K. Polyploidy induced in ginger by colchicine treatment. Curr Sci. 1982;51:288–9.
  6. 6. Jayachandran BK. Induced mutations in ginger [PhD thesis]. Kerala Agricultural University, Kerala, India; 1989.
  7. 7. Smith MK, Hamill SD, Gogel BJ, Severn Ellis AA. Ginger (Zingiber officinale) autotetraploid with improved processing quality produced by an in vitro colchicine treatment. Aust J Exp Agric. 2004;44:1065–72. https://doi.org/10.1071/ea03204
  8. 8. Ramachandran K, Nair PNC. Induced tetraploids of ginger (Zingiber officinale Rosc). J Spices Aromat Crops. 1992;1:39–42.
  9. 9. Sheeba PT. Induction of autotetraploidy in ginger [MSc (Hort) thesis]. Kerala Agricultural University; 1996. 73 p.
  10. 10. Dolezel J, Greilhuber J, Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols. 2007;2(9):2233–44.https://doi.org/10.1038/nprot.2007.310
  11. 11. Gopinath PP, Prasad R, Joseph B, Adarsh VS. GRAPES: General R Shiny-based analysis platform empowered by statistics. Version 1.0.0. 2020. https://www.kaugrapes.com/home.version 1.0.0.
  12. 12. Talebi SF, Saharkhiz MJ, Kermani MJ, Sharifi Y, Fard RF. Effect of different antimitotic agents on polyploid induction of anise hyssop (Agastache foeniculum L.). Caryologia. 2017;70(2):184–93. https://doi.org/10.1080/00087114.2017.1318502
  13. 13. Nair RR. Variation in pollen fertility and chromosome number among germplasm collections of ginger (Zingiber officinale Rosc.). Int J Cytol Cytosyst Cytogenet. 2016;69(1):73–81. https://doi.org/10.1080/00087114.2015.1109957
  14. 14. Sadhu A, Bhadra S, Bandyopadhyay M. Novel nuclei isolation buffer for flow cytometric genome size estimation of Zingiberaceae: A comparison with common isolation buffers. Ann Bot. 2016;118(6):1057–70. https://doi.org/10.1093/aob/mcw173
  15. 15. Ramsey J, Schemske DW. Pathways, mechanisms, and rates of polyploidy formation in flowering plants. Annu Rev Ecol Syst. 1998;29:467–501. https://doi.org/10.1146/annurev.ecolsys.29.1.467
  16. 16. Hamill SD, Smith MK, Dodd WA. In vitro induction of banana autotetraploids by colchicine treatment of micropropagated diploids. Aust J Bot. 1992;40(6):887–96. https://www.publish.csiro.au/bt/bt9920887
  17. 17. Hua KW, Hua JM, Ping HH, Lin SG. Generation of autotetraploid plant of ginger (Zingiber officinale Rosc.) and its quality evaluation. Pharmacogn Mag. 2011;7(27):200–6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3173894/
  18. 18. Prasath D, Nair RR, Babu PA. Effect of colchicine-induced tetraploids of ginger (Zingiber officinale Roscoe) on cytology, rhizome morphology, and essential oil content. J Appl Res Med Aromat Plants. 2022. https://doi.org/10.1016/j.jarmap.2022.100422
  19. 19. Beck SL, Dunlop RW, Fossey A. Stomatal length and frequency as a measure of ploidy level in black wattle, Acacia mearnsii (De Wild.). Bot J Linn Soc. 2003;141:177–81. https://www.researchgate.net/publication/238420371
  20. 20. Omidbaigi R, Mirzaee M, Hassani ME, Moghadam SM. Induction and identification of polyploidy in basil (Ocimum basilicum L.) medicinal plant by colchicine treatment. Int J Plant Prod. 2010;4(2):87–98.
  21. 21. Avery GS, Pottorf L. Polyploidy, auxin and nitrogen in green plants. Am J Bot. 1945;32:669–71. https://www.jstor.org/stable/2437623
  22. 22. Nagat E, Kamla B, Hoda K. Phenotypic and molecular characterization of polyploid Vicia faba induced by colchicine. GSC Biol Pharm Sci. 2020;11(3):235–43. https://doi.org/10.30574/gscbps.2020.11.3.0184
  23. 23. Liu G, Li Z, Bao M. Colchicine-induced chromosome doubling in Platanus acerifolia and its effect on plant morphology. Euphytica. 2007;157:145–54. https://doi.org/10.1007/s10681-007-9406-6
  24. 24. Smith MK, Hamill SD. Zingiber officinale, ginger, ‘Buderim Gold’. Plant Var J. 2002;15:85.
  25. 25. Nasirvand S, Zakaria RA, Zare N, Esmaeilpoor B. Polyploidy induction in parsley (Petroselinum crispum L.) by colchicine treatment. Cytologia. 2018;83(4):393–96.https://doi.org/10.1508/cytologia.83.393
  26. 26. Widorento W. In vitro induction and characterization of tetraploid patchouli (Pogostemon cablin Benth) plant. Plant Cell Tissue Organ Cult. 2016;125:261–67. https://doi.org/10.1007/s11240-016-0946-0
  27. 27. Sattler MC, Carvalho CR, Clarindo WR. The polyploidy and its key role in plant breeding. Planta. 2016;243(2):281–96. https://doi.org/10.1007/s00425-015-2450-x
  28. 28. Lindayani, Norzulaani K, Ibrahim H, Rahman NA. Effect of colchicine on tissue culture–derived plants of Zingiber officinale Rosc. and Zingiber officinale var. rubrum Theilade. J Sci Tech Trop. 2010;6:11–16.
  29. 29. Omanakumari N, Mathew PM. Karyomorphological studies on four species of Zingiber Adns. Cytologia. 1985;50(3):445–51. https://doi.org/10.1508/cytologia.50.445
  30. 30. Wang L, Gao F, Xu K, Li X. Natural occurrence of mixoploid ginger (Zingiber officinale Rosc.) in China and its morphological variations. Sci Hortic. 2014;172(1):54–60. https://doi.org/10.1016/j.scienta.2014.03.043
  31. 31. Dhamayanthi KPM, Zachariah TJ. Studies on karyology and essential oil constituents in two cultivars of ginger. J Cytol Genet. 1998;33(2):195–9.
  32. 32. Lee H, Lin T. Isolation of plant nuclei suitable for flow cytometry from recalcitrant tissue by use of a filtration column. Plant Mol Biol Rep. 2005;23:53–8. https://doi.org/10.1007/bf02772646
  33. 33. Carvalho JFR, Carvalho CR, Otoni WC. In vitro induction of polyploidy in annatto (Bixa orellana). Plant Cell Tissue Organ Cult. 2005;80:69–75. https://doi.org/10.1007/s11240-004-8833-5
  34. 34. Beji M. Evolutionary relationships in the genus Hedysarum: Contribution of experimentally induced tetraploidy [thesis]. Tunis: University of Tunis; 1991.
  35. 35. Sakhanokho HF, Rajasekaran K, Kelley RY, Islam-Faridi N. Induced polyploidy in diploid ornamental ginger (Hedychium muluense R.M. Smith) using colchicine and oryzalin. HortScience. 2009;44(7):1809–14. https://doi.org/10.21273/hortsci.44.7.1809
  36. 36. Pundir NPS, Rao NK, van der Maesen LJG. Induced autotetraploidy in chickpea (Cicer arietinum L.). Theor Appl Genet. 1983;65:119–22 https://link.springer.com/article/10.1007/BF00264878
  37. 37. Hagberg A, Ellerstrom S. The competition between diploid, tetraploid and aneuploid rye, theoretical and practical aspects. Hereditas. 1959;45:369–416. https://doi.org/10.1111/j.1601-5223.1959.tb03058.x
  38. 38. Thompson MM. Cytogenetics of rubus: meiotic instability in some higher polyploids. Am J Bot. 1962;49:575–87. https://doi.org/10.2307/2439714
  39. 39. Marzougui N, Boubaya A, Thabti I, Elfalleh W, Guasmi F, Ferchichi A. Polyploidy induction of Tunisian Trigonella foenum-graecum L. populations. Afr J Biotechnol. 2009;10(43):8570–7. https://doi.org/10.5897/ajb10.2632
  40. 40. Huang HP, Gao SL, Chen LL, Wei KH. In vitro tetraploid induction and generation of tetraploids from mixoploids in Dioscorea zingiberensis. Pharmacogn Mag. 2010;6(21):51–6. https://doi.org/10.4103/0973-1296.59966
  41. 41. Hill HD, Myers WM. Isolation of diploid and tetraploid clones from mixoploid plants of ryegrass (Lolium perenne L.), produced by treatment of germinating seeds with colchicine. J Hered. 1944;35:359–61. https://doi.org/10.1093/oxfordjournals.jhered.a105340
  42. 42. Jiang Y, Liu S, Hu J, He G, Liu Y, et al. Polyploidization of Plumbago auriculata Lam. in vitro and its characterization including cold tolerance. Plant Cell Tiss Organ Cult. 2020;140:315–25. https://doi.org/10.1007/s11240-019-01729-w
  43. 43. Juliao SA, Ribeiro CV, Lopes JML, Matos EM, et al. Induction of synthetic polyploids and assessment of genomic stability in Lippia alba. Front Plant Sci. 2020;11:292. https://doi.org/10.3389/fpls.2020.00292
  44. 44. Vainola A. Polyploidization and early screening of Rhododendron hybrids. Euphytica. 2000;112:239–44. https://link.springer.com/article/10.1023/A:1003994800440
  45. 45. Harbard JL, Griffin AR, Foster S, Brooker C, Kha LD, Koutoulis A. Production of colchicine induced autotetraploids as a basis for sterility breeding in Acacia mangium Willd. Forestry. 2012;85:427–36. https://doi.org/10.1093/forestry/cps041
  46. 46. Parson JL, Martin SL, Golenia G, James T. Polyploidization for the genetic improvement of Cannabis sativa. Front Plant Sci. 2019;10:476. https://doi.org/10.3389/fpls.2019.00476
  47. 47. Kumar LSS. A comparative study of autotetraploid and diploid types of green gram (Phaseolus radiatus L.). Proc Indian Acad Sci. 1945;21:266–8. https://repository.ias.ac.in/36929/1/36929.pdf
  48. 48. Sen KN, Chedda HR. Colchicine-induced tetraploids of five varieties of black gram. Indian J Genet. 1958;18:238–48.
  49. 49. Tetraploid muskmelon alters morphological characteristics and improves fruit quality. Sci Hortic. 2010;125(3):396–400. https://www.researchgate.net/publication/248478129
  50. 50. Tan FQ, Zhang M, Xie KD, Fan YJ, et al. Polyploidy remodels fruit metabolism by modifying carbon source utilization and metabolic flux in Ponkan mandarin. Plant Sci. 2019;289:110276. 110276. https://pubmed.ncbi.nlm.nih.gov/31623787/

Downloads

Download data is not yet available.