Downy mildew of millets - An overview
DOI:
https://doi.org/10.14719/pst.4499Keywords:
Downy mildew, millets, Sclerospora graminicola, Peronosclerospora sorghi, Sclerophthora macrosporaAbstract
Amidst global food insecurity, malnutrition, agricultural challenges, and climate change, millet farming is emerging as a viable alternativedue to its high nutritional value, resilience to extreme weather conditions, and adaptability to marginal soils. Often referred to as “super-crops”, millets gained international recognition in March 2021 during the 75th session of the United Nations General Assembly. Millets rank among the most important crops globally, following rice, wheat, maize, and sorghum. However, they are susceptible to more than fifty diseases, with the most destructive being ‘Downy Mildew’. This disease is caused by oomycete pathogens such as Sclerospora graminicola, Peronosclerospora sorghi and Sclerophthora macrospora, posing a significant threat to millet production, with yield losses ranging from 50% to 100%. This review emphasizes the importance of millet and the devastating effects of downy mildew on its yields. It explores the physiological and histological changes induced by the disease, the characterization of effector protein, and the genetic variability in millet populations. Additionally, various management techniques for combating downy mildew are examined, including chemical treatments, induced resistance, organic-based approaches, cultural practices, resistant genotypes, and advancements in nanotechnology. By compiling current knowledge on millet disease and effective management strategies, this review aims to serve as a comprehensive resource for researchers and farmers, supporting sustainable millet farming and improving global food security.
Downloads
References
Sarita ES, Singh E. Potential of millets: nutrients composition and health benefits. JSIR. 2016;5(2):46-50. https://doi.org/10.31254/jsir.2016.5204
Malathi B, Appaji C, Reddy GR, Dattatri K, Sudhakar N. Growth pattern of millets in India. Indian J Agric Res. 2016;50(4):382-86. https://doi.org/10.18805/ijare.v50i4.11257
Ojediran J, Adamu M, Jim-George D. Some physical properties of Pearl millet (Pennisetum glaucum) seeds as a function of moisture content. Afr J Agric. 2010;6(1):39-46.
Izge A, Song I. Pearl millet breeding and production in Nigeria: problems and prospects. JEIADC. 2013;5(2):25.
Promkhambut A, Younger A, Polthanee A, Akkasaeng C. Morphological and physiological responses of sorghum (Sorghum bicolor L. Moench) to waterlogging. Asian J Plant Sci. 2010;9(4):183. https://doi.org/10.3923/ajps.2010.183.193
Patanè C, Saita A, Sortino O. Comparative effects of salt and water stress on seed germination and early embryo growth in two cultivars of sweet sorghum. J Agron Crop Sci. 2013;199(1):30-37. https://doi.org/10.1111/j.1439-037X.2012.00531.x
Lata C, Gupta S, Prasad M. Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol. 2013;33(3):328-43. https://doi.org/10.3109/07388551.2012.716809
Sharma R, Girish A, Upadhyaya HD, Humayun P, Babu T, Rao VP, et al. Identification of blast resistance in a core collection of foxtail millet germplasm. Plant Dis. 2014;98(4):519-24. https://doi.org/10.1094/PDIS-06-13-0593-RE
Hariprasanna K. Foxtail Millet, Setaria italica (L.) P. Beauv. In: Patil JV, editor. Millets and Sorghum: Biology and Genetic Improvement. Hyderabad: ICAR; 2017. p.112-49. https://doi.org/10.1002/9781119130765.ch4
Sakamma S, Umesh K, Girish M, Ravi S, Satishkumar M, Bellundagi V. Finger millet (Eleusine coracana L. Gaertn.) production system: status, potential, constraints and implications for improving small farmer’s welfare. J Agric Sci. 2017;10(1):162. https://doi.org/10.5539/jas.v10n1p162
Deshpande S, Mohapatra D, Tripathi M, Sadvatha R. Kodo millet-nutritional value and utilization in Indian foods. JGPS. 2015;2(2):16-23.
Kumar A. Studies on grain smut of little millet (Panicum sumatrense Roth ex Roemer and Schultes) caused by Macalpinomyces sharmae K. Vanky. Doctoral Dissertation [thesis]. JNKVV; 2015.
Sendhil R, Joseph J, Akhilraj M, Devi TS, Swaminathan N. 04. Status of millets in India: Trends and prospects.In:Pouchepparadjou A, Krishnan V, Swaminathan N, Sendhil N, Umamaheswari L, Sivasakthi Devi T, Parthasarathi S, Vengadessan V, Umamageswari M, editors. Sensitizing the Millet Farming, Consumption and Nutritional security. India: Researchgate.net. 2023;p.15-26.
Das I, Nagaraja A, Tonapi VA. Diseases of millets. Indian Farming. 2016;p.41-45.
Jogaiah S, Mitani S, Kestur Nagaraj A, Huntrike Shekar S. Activity of cyazofamid against Sclerospora graminicola, a downy mildew disease of pearl millet. Pest Manag Sci. 2007;63(7):722-27. https://doi.org/10.1002/ps.1383
Shetty HS, Raj SN, Kini K, Bishnoi H, Sharma R, Rajpurohit B, et al. Downy mildew of pearl millet and its management. All India Coordinated Research Project on Pearl Millet (ICAR). 2016.
Pramitha L, Choudhary P, Rana S, Singh RK, Das P, Sharma S, et al. Foxtail millet (Setaria italica L.): a model for small millets. Neglected and Underutilized Crops: Elsevier. 2023;p.305-24. https://doi.org/10.1016/B978-0-323-90537-4.00020-X
Paul P, Sharma P. Azadirachta indica leaf extract induces resistance in barley against leaf stripe disease. Physiol Mol Plant Pathol. 2002;61(1):3-13. https://doi.org/10.1016/S0885-5765(02)90412-1
Das I. Millet diseases: current status and their management. In: Patil JV, editor. Millets and Sorghum: Biology and Genetic Improvement.Wiley Online Library. 2017;p.291-322. https://doi.org/10.1002/9781119130765.ch11
Singh Y, Sharma D, Kharayat BS. Major diseases of sorghum and their management. Diseases of Field Crops Diagnosis and Management: Volume 1: Cereals, Small Millets and Fiber Crops. 1st ed. New York: taylorfrancis. 2020;p.153. https://doi.org/10.1201/9780429321849-7
Bock C. Peronosclerospora sorghi (sorghum downy mildew). Crop Protection Compendium. CABI. 2013;44643.
Kumar B, Kumar J, Srinivas P. Occurrence of downy mildew or green ear disease of finger millet in mid hills of Uttarakhand. J Mycol Pl Pathol. 2007;37(3):532-33.
Nomura H, Komori T, Uemura S, Kanda Y, Shimotani K, Nakai K, et al. Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nat Commun. 2012;3(1):926. https://doi.org/10.1038/ncomms1926
Ishiga Y, Watanabe M, Ishiga T, Tohge T, Matsuura T, Ikeda Y, et al. The SAL-PAP chloroplast retrograde pathway contributes to plant immunity by regulating glucosinolate pathway and phytohormone signaling. MPMI. 2017;30(10):829-41. https://doi.org/10.1094/MPMI-03-17-0055-R
Zhang B, Liu X, Sun Y, Xu L, Ren Z, Zhao Y, et al. Sclerospora graminicolasuppresses plant defense responses by disrupting chlorophyll biosynthesis and photosynthesis in foxtail millet. Front Plant Sci. 2022;13:928040. https://doi.org/10.3389/fpls.2022.928040
Ghareeb H, Becker A, Iven T, Feussner I, Schirawski J. Sporisorium reilianum infection changes inflorescence and branching architectures of maize. Plant Physiol. 2011;156(4):2037-52. https://doi.org/10.1104/pp.111.179499
Kumar A, Mali P, Manga V. Changes of some phenolic compounds and enzyme activities on infected pearl millet caused by Sclerospora graminicola. Int J Plant Physiol Biochem. 2010;2(1):6-10.
Pushpavathi B, Thakur RP, Rao KC. Inheritance of avirulence in Sclerospora graminicola, the pearl millet downy mildew pathogen. Plant Pathol J. 2006;5(1):54-59. https://doi.org/10.3923/ppj.2006.54.59
Raghavendra S, Safeeulla K. Histopathological studies on ragi (Eleusine coracana (L.) Gaertn.) infected by Sclerophthora macrospora (Sacc.) Thirum. Shaw and Naras. Proceedings of the Indian Academy of Sciences-Section B Part 2, Plant Sci. 1979;88:19-24. https://doi.org/10.1007/BF03046141
Kumar B, Srivastava JN. Finger millet or ragi (Eleusine coracana Gaertn.) diseases and their management strategies. Diseases of Field Crops: Diagnosis and Management. 2020. https://doi.org/10.1201/9780429321849-11
Jaiswal S, Sasode RS, Pandya R, Gupta PK. Bioagent and chemicals seed dressing for management of Pearl millet downy mildew incited by Sclerospora graminicola. Ann Plant Sci. 2021;29(2):110-13. https://doi.org/10.5958/0974-0163.2021.00023.9
Kumi F, Agbahoungba S, Badji A, Mwila N, Ibanda A, Anokye M, et al. Genetic diversity and population structure of Peronosclerospora sorghi isolates of Sorghum in Uganda. 2018.
Zhang B-j, Zhang Y-m, Sun Z-n, Fu Z-x, Xu L, Han Y-h. Impact of Sclerospora graminicola infection on spikelet differentiation and development of foxtail millet (Setaria italica L.). Acta Phytopathologica Sinica. 2023;679-89.
Nagaraja A, Das IK. Disease resistance in pearl millet and small millets. Biotic Stress Resistance in Millets: Elsevier. 2016;p.69-104. https://doi.org/10.1016/B978-0-12-804549-7.00003-2
Srivastava JN, Singh A. Diseases of field crops diagnosis and management, 2-volume set: volume 1: cereals, small millets and fiber crops volume 2: pulses, oil seeds, narcotics and sugar crops. CRC Press;2022.
Thakur R, Rao V, Sastry J, Sivaramakrishnan S, Amruthesh K, Barbind L. Evidence for a new virulent pathotype of Sclerospora graminicola on pearl millet. J Mycol Pl Pathol. 1999;29(1):61-69.
Perumal R, Nimmakayala P, Erattaimuthu SR, No E-G, Reddy UK, Prom LK, et al. Simple sequence repeat markers are useful for sorghum downy mildew (Peronosclerospora sorghi) and related species. BMC Genetics. 2008;9(1):1-14. https://doi.org/10.1186/1471-2156-9-77
Sharma RK, Bhardwaj P, Negi R, Mohapatra T, Ahuja PS. Identification, characterization and utilization of unigene derived microsatellite markers in tea (Camellia sinensis L.). BMC Plant Biology. 2009;9:1-24. https://doi.org/10.1186/1471-2229-9-53
Hadimani S, Joshi SM, Geetha N, Shetty HS, Jogaiah S. Elucidating the role of effector protein as biomarker for enhanced resistance against pearl millet downy mildew disease. Physiol Mol Biol Plants. 2023;102076. https://doi.org/10.1016/j.pmpp.2023.102076
Sasode RS, Pandya R, Fatehpuria PK. Management of pearl millet downy mildew by the application of bio-agents, chemicals and botanical. Int J Chem Stud. 2018;6(1):606-08.
Butler SEJ. Fungi and disease in plants. An introduction to the diseases of field and plantation crops, especially those of India and the East. Thacker, Spink and Company. 1918.
Vasudeva R. Diseases of rape and mustard. Rapeseed and Mustard. 1958;16:77-86.
Thakur D. Pearl millet downy mildew. In: Singh US, Mukhopadhyay AN, Kumar J, Chaube HS, editors. Plant Diseases of International Importance: Diseases of Pulses and Cereals.USA: CABI. 1992;p.282-301.
Tuleen D, Frederiksen R, Vudhivanich P. Cultural practices and the incidence of sorghum downy mildew in grain sorghum. Phytopathol. 1980;70(9):905-08. https://doi.org/10.1094/Phyto-70-905
Janke G, Pratt R, Arnold J, Odvody G. Effects of deep tillage and roguing of diseased plants on oospore populations of Peronosclerospora sorghi in soil and on incidence of downy mildew in grain sorghum. Phytopathol. 1983;73(12):1674-78. https://doi.org/10.1094/Phyto-73-1674
Kumi F, Badji A, Mwila N, Odong T, Ochwo-Ssemakula M, Tusiime G, et al. New sources of sorghum resistant genotypes to downy mildew disease in Uganda. Biodiversitas. 2019. https://doi.org/10.13057/biodiv/d201136
Upadhyaya HD, Vetriventhan M, Asiri AM, CR Azevedo V, Sharma HC, Sharma R, et al. Multi-trait diverse germplasm sources from mini core collection for sorghum improvement. Agriculture. 2019;9(6):121. https://doi.org/10.3390/agriculture9060121
Zoclanclounon YAB, Kanfany G, Thiaw C, Fofana A, Mbaye N, Cisse N. Assessment of pearl millet genotypes for downy mildew resistance and agronomic performance under field conditions in senegal. Int J Agric Biol. 2018;20:493-98. https://doi.org/10.17957/IJAB/15.0504
Kanfany G, Fofana A, Tongoona P, Danquah A, Offei S, Danquah E, et al. Identification of new sources of resistance for pearl millet downy mildew disease under field conditions. Plant Genet Res. 2018;16(4):397-400. https://doi.org/10.1017/S1479262117000405
Saini K, Mathur A, Sharma R, Kumar V, Bagri R, Sharma YK, et al. Screening of pearl millet (Pennisetum glaucum) genotypes against downy mildew caused by Sclerospora graminicola(Sacc.) Schoret. J Pharm Innov.2022;11(2):1453-56.
Sauter H, Steglich W, Anke T. Strobilurins: evolution of a new class of active substances. Angew Chem Int Ed. 1999;38(10):1328-49. https://doi.org/10.1002/(SICI)1521-3773(19990517)38:10<1328::AID-ANIE1328>3.0.CO;2-1
Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B. The strobilurin fungicides. Pest Manag Sci. 2002;58(7):649-62. https://doi.org/10.1002/ps.520
Williams R, editor. Downy mildews of tropical cereals. Advances in Plant Pathology. 1984.
Chaluvaraju G, Basavaraju P, Shetty N, Deepak S, Amruthesh K, Shetty H. Effect of some phosphorous-based compounds on control of pearl millet downy mildew disease. Crop Prot. 2004;23(7):595-600. https://doi.org/10.1016/j.cropro.2003.11.008
Chaudhari R, Parmar G, Juneja R, Parmar S, Mungra K. Eco friendly management of pearl millet downy mildew (Sclerospora graminicola) by using organic compounds.J Pharm Innov. 2023;12(6):762-65.
Mane S, Chaudhari K, Patil B. Efficacy of biological control agents against downy mildew of bajara.Plant Dis. 2007;2(2):245-46.
Siddaiah CN, Satyanarayana NR, Mudili V, Kumar Gupta V, Gurunathan S, Rangappa S, et al. Elicitation of resistance and associated defense responses in Trichoderma hamatum induced protection against pearl millet downy mildew pathogen. Sci Rep. 2017;7(1):43991. https://doi.org/10.1038/srep43991
Saini K, Mathur A, Sharma R, Kumar V, Bagri R, Gautum V. Biocontrol potential of three antagonists against downy mildew of pearl millet caused by Sclerospora graminicol (Sacc.) Schoret. JBC. 2020;180-84. https://doi.org/10.18311/jbc/2020/25991
Murali M, Amruthesh KN. Plant growth-promoting fungus Penicillium oxalicum enhances plant growth and induces resistance in pearl millet against downy mildew disease. Plant Pathol J. 2015;163(9):743-54. https://doi.org/10.1111/jph.12371
Sangwan P, Raj K. Evaluation of bioagents for management of downy mildew of pearl millet caused by Sclerospora graminicola (Sacc.) Schroet. Forage Res. 2016;42(1):44-47.
Nandini B, Geetha N, Prakash HS, Hariparsad P. Natural uptake of anti-oomycetes Trichoderma produced secondary metabolites from pearl millet seedlings–A new mechanism of biological control of downy mildew disease. JBC. 2021;156:104550. https://doi.org/10.1016/j.biocontrol.2021.104550
Shivakumar P, Geetha H, Shetty H. Peroxidase activity and isozyme analysis of pearl millet seedlings and their implications in downy mildew disease resistance. Plant Sci. 2003;164(1):85-93. https://doi.org/10.1016/S0168-9452(02)00339-4
Raj SN, Deepak S, Basavaraju P, Shetty HS, Reddy M, Kloepper JW. Comparative performance of formulations of plant growth promoting rhizobacteria in growth promotion and suppression of downy mildew in pearl millet. Crop Prot. 2003;22(4):579-88. https://doi.org/10.1016/S0261-2194(02)00222-3
Geetha H, Shetty H. Induction of resistance in pearl millet against downy mildew disease caused by Sclerospora graminicola using benzothiadiazole, calcium chloride and hydrogen peroxide—a comparative evaluation. Crop Prot. 2002;21(8):601-10. https://doi.org/10.1016/S0261-2194(01)00150-8
Deepak S, Raj SN, Umemura K, Kono T, Shetty HS. Cerebroside as an elicitor for induced resistance against the downy mildew pathogen in pearl millet. Ann appl Biol. 2003;143(2):169-73. https://doi.org/10.1111/j.1744-7348.2003.tb00283.x
Chandrashekhara, Niranjan Raj S, Manjunath G, Deepak S, Shekar Shetty H. Seed treatment with aqueous extract of Viscum album induces resistance to pearl millet downy mildew pathogen. J Plant Interact. 2010;5(4):283-91. https://doi.org/10.1080/17429140903556539
Daayf F, Schmitt A, Belanger R. The effects of plant extracts of Reynoutria sachalinensis on powdery mildew development and leaf physiology of long English cucumber. Plant Dis. 1995;79(6):577-80. https://doi.org/10.1094/PD-79-0577
Singh S, Shetty H. Efficacy of systemic fungicide metalaxyl for the control of downy mildew (Sclerospora graminicola) of pearl millet (Pennisetum glaucum). Indian J Agric Sci. 1990;60(9):575-81.
Prasad V, D'Souza C, Yadav D, Shaikh A, Vigneshwaran N. Spectroscopic characterization of zinc oxide nanorods synthesized by solid-state reaction. Spectrochim Acta A Mol Biomol Spectrosc. 2006;65(1):173-78. https://doi.org/10.1016/j.saa.2005.10.001
Cakmak I. Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant and Soil. 2008;302:1-17. https://doi.org/10.1007/s11104-007-9466-3
Nandhini M, Rajini S, Udayashankar A, Niranjana S, Lund OS, Shetty H, et al. Biofabricated zinc oxide nanoparticles as an eco-friendly alternative for growth promotion and management of downy mildew of pearl millet. Crop Prot. 2019;121:103-12. https://doi.org/10.1016/j.cropro.2019.03.015
Xing K, Zhu X, Peng X, Qin S. Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agron Sustain Dev. 2015;35:569-88. https://doi.org/10.1007/s13593-014-0252-3
Sathiyabama M, Manikandan A. Chitosan nanoparticle induced defense responses in fingermillet plants against blast disease caused by Pyricularia grisea (Cke.) Sacc. Carbohydr Polym. 2016;154:241-46. https://doi.org/10.1016/j.carbpol.2016.06.089
Siddaiah CN, Prasanth KVH, Satyanarayana NR, Mudili V, Gupta VK, Kalagatur NK, et al. Chitosan nanoparticles having higher degree of acetylation induce resistance against pearl millet downy mildew through nitric oxide generation. Sci Rep. 2018;8(1):2485. https://doi.org/10.1038/s41598-017-19016-z
Tran PA, Webster TJ. Selenium nanoparticles inhibit Staphylococcus aureus growth. Int J Nanomedicine. 2011;1553-58. https://doi.org/10.2147/IJN.S21729
Kong H, Yang J, Zhang Y, Fang Y, Nishinari K, Phillips GO. Synthesis and antioxidant properties of gum arabic-stabilized selenium nanoparticles. Int J Biol Macromol. 2014;65:155-62. https://doi.org/10.1016/j.ijbiomac.2014.01.011
Wang X, Zhang W, Chen H, Liao N, Wang Z, Zhang X, et al. High selenium impairs hepatic insulin sensitivity through opposite regulation of ROS. Toxicol Lett. 2014;224(1):16-23. https://doi.org/10.1016/j.toxlet.2013.10.005
Nandini B, Hariprasad P, Prakash HS, Shetty HS, Geetha N. Trichogenic-selenium nanoparticles enhance disease suppressive ability of Trichoderma against downy mildew disease caused by Sclerospora graminicola in pearl millet. Sci Rep. 2017;7(1):2612. https://doi.org/10.1038/s41598-017-02737-6
Nandini B, Puttaswamy H, Prakash HS, Adhikari S, Jogaiah S, Nagaraja G. Elicitation of novel trichogenic-lipid nanoemulsion signaling resistance against pearl millet downy mildew disease. Biomo. 2019;10(1):25. https://doi.org/10.3390/biom10010025
Shailasree S, Melvin P. b-amino butyric acid–resistance inducing agent in pearl millet. J Plant Biochem Physiol. 2015;2(144):2.
Lavanya S, Amruthesh K. 3, 5-dichloroanthranilic acid (DCA)–an elicitor induces systemic resistance against downy mildew in pearl millet. Int J Life Sci. 2016;4:97-106.
Murali M, Sudisha J, Amruthesh K, Ito SI, Shetty HS. Rhizosphere fungus Penicillium chrysogenum promotes growth and induces defence-related genes and downy mildew disease resistance in pearl millet. Plant Biology. 2013;15(1):111-18. https://doi.org/10.1111/j.1438-8677.2012.00617.x
García-Mier L, Guevara-González RG, Mondragón-Olguín VM, Verduzco-Cuellar BdR, Torres-Pacheco I. Agriculture and bioactives: achieving both crop yield and phytochemicals. Int J Mol Sci. 2013;14(2):4203-22. https://doi.org/10.3390/ijms14024203
Pushpalatha H, Sudisha J, Shetty HS. Cellulysin induces downy mildew disease resistance in pearl millet driven through defense response. Eur J Plant Pathol. 2013;137:707-17. https://doi.org/10.1007/s10658-013-0281-9
Hou S, Liu Z, Li Y, Yang M, Hou S, Han Y, et al. Exogenous salicylic acid enhanced resistance of Foxtail millet (Setaria italica) to Sclerospora graminicola. Plant Growth Regulation. 2023;99(1):35-44. https://doi.org/10.1007/s10725-022-00854-5
Govind SR, Jogaiah S, Abdelrahman M, Shetty HS, Tran L-SP. Exogenous trehalose treatment enhances the activities of defense-related enzymes and triggers resistance against downy mildew disease of pearl millet. Front Plant Sci. 2016;7:1593. https://doi.org/10.3389/fpls.2016.01593
Wang H, Han Y, Wu C, Zhang B, Zhao Y, Zhu J, et al. Comparative transcriptome profiling of resistant and susceptible foxtail millet responses to Sclerospora graminicola infection. BMC Plant Biol. 2022;22(1):567. https://doi.org/10.1186/s12870-022-03963-5
Girigowda Manjunatha GM, Sathyanaraya Niranjan-Raj SN-R, Prashanth G, Shantharaj Deepak SD, Amruthesh K, Shetty H. Nitric oxide is involved in chitosan-induced systemic resistance in pearl millet against downy mildew disease. Pest Manag Sci. 2009;65(7):737-43. https://doi.org/10.1002/ps.1710
Aida K, Takakuwa N, Kinoshita M, Sugawara T, Imai H, Ono J, et al. editors. Properties and physiological effects of plant cerebroside species as functional lipids. Advanced Research on Plant Lipids: Proceedings of the 15th International Symposium on Plant Lipids. Springer.2003. https://doi.org/10.1007/978-94-017-0159-4_54
Beyer P, Al-Babili S, Ye X, Lucca P, Schaub P, Welsch R, et al. Golden rice: introducing the ?-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J Nutr. 2002;132(3):506S-10S. https://doi.org/10.1093/jn/132.3.506S
Pushpalatha H, Mythrashree S, Shetty R, Geetha N, Sharathchandra R, Amruthesh K, et al. Ability of vitamins to induce downy mildew disease resistance and growth promotion in pearl millet. Crop Prot. 2007;26(11):1674-81. https://doi.org/10.1016/j.cropro.2007.02.012
Tonapi VA, Thirunavukkarasu N, Gupta S, Gangashetty PI, Yadav O, editors. Pearl millet in the 21stcentury. Singapore: Springer Nature Singapore. 2024. https://doi.org/10.1007/978-981-99-5890-0
Deevi KC, Swamikannu N, Pingali PR, Gumma MK. Current trends and future prospects in global production, utilization and trade of pearl millet. In: Tonapi VA, editor. In: Pearl Millet in the 21st Century: Food-Nutrition-Climate resilience-Improved livelihoods. Singapore: Springer Nature Singapore. 2024;p.1-33. https://doi.org/10.1007/978-981-99-5890-0_1
Acharya Balkrishna RS, Prajapati UB, Srivastava A, Joshi RA, Tripathi P. A review on Bajra/Pearl millet (Cenchrus americanus (L.) Morrone). JSIR . 2024;13:1-8. https://doi.org/10.31254/jsir.2024.13101
Raj C, Sharma R. Sexual compatibility types in F1progenies of Sclerospora graminicola, the causal agent of pearl millet downy mildew. J Fungus. 2022;8(6):629. https://doi.org/10.3390/jof8060629
Sharma R, Rao V, Senthilvel S, Rajput S, Thakur R. Virulence diversity in north Indian isolates of Sclerospora graminicola, the pearl millet downy mildew pathogen. Plant Pathol J. 2011;93(1):71-78.
Thakur R, Chandrashekara Rao K, Rao V, Pushpavathi B. Characterization of Sclerospora graminicola isolates from pearl millet for virulence and genetic diversity. Plant Pathol J. 2006;22(1):28-35. https://doi.org/10.5423/PPJ.2006.22.1.028
Andersen EJ, Nepal MP. Genetic diversity of disease resistance genes in foxtail millet (Setaria italica L.). Plant Gene. 2017;10:8-16. https://doi.org/10.1016/j.plgene.2017.03.002
Downloads
Published
Versions
- 18-11-2024 (2)
- 11-11-2024 (1)
How to Cite
Issue
Section
License
Copyright (c) 2024 B Yuvashree, I Johnson, M Karthikeyan, R Anandham
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).