This is an outdated version published on 21-10-2024. Read the most recent version.
Forthcoming

A comparative study of drone and manual herbicide application for weed management in wet direct-seeded rice (Oryza sativa L.)

Authors

DOI:

https://doi.org/10.14719/pst.4507

Keywords:

Direct-seeded rice, unmanned aerial vehicles (UAVs), herbicides, pretilachlor, weed control efficiency

Abstract

A field experiment was conducted at Tamil Nadu Agricultural University, Coimbatore, during the Navarai season (January-April) of 2024 to assess the efficiency of drone-based herbicide application in terms of weed control, energy use, and cost effectiveness in wet direct-seeded rice (Oryza sativa L.). The study compared the effectiveness of weed control using herbicide combinations applied as pre-emergence followed by early post-emergence, with both drone and knapsack sprayer. The treatments included the application of pretilachlor followed by early post-emergence bispyribac sodium, and pyrazosulfuron followed by penoxsulam + cyhalofop butyl, using both drone and knapsack sprayer. Additionally, weed-free and unweeded control plots were included. Results indicated that the application of pretilachlor followed by bispyribac sodium using a drone sprayer significantly reduced weed density and weed dry weight compared to the unweeded plot. This treatment also resulted in a higher grain yield (5286 kg ha-1). Moreover, drone application of pretilachlor followed by bispyribac sodium provided a higher net return (? 51631/ha), benefit-cost ratio (2.17), energy-use efficiency (9.53), and energy productivity (0.30 kg/MJ). The experiment concluded that drone-based spraying of pretilachlor followed by bispyribac sodium is an effective weed management strategy for wet direct-seeded rice, offering superior yield attributes, energy use efficiency, and profitability.

Downloads

Download data is not yet available.

References

Xu Y, Chu C, Yao S. The impact of high-temperature stress on rice: Challenges and solutions. Crop J. 2021 Oct 1;9(5):963-76. https://doi.org/10.1016/j.cj.2021.02.011

Fukagawa NK, Ziska LH. Rice: Importance for global nutrition. J Nutr Sci Vitaminol. 2019;65(Supplement):S2–S3. DOI: 10.3177/jnsv.65.S2

Fahad S, Adnan M, Noor M, Arif M, Alam M, Khan IA, et al. Chapter 1 - Major constraints for global rice production. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK, editors. Advances in Rice Research for Abiotic Stress Tolerance [Internet]. Woodhead Publishing; 2019 [cited 2024 Jul 14]. p. 1-22. Available from: https://www.sciencedirect.com/science/article/pii/B9780128143322000010

Prasad R, Shivay YS, Kumar D. Current status, challenges and opportunities in rice production. 2017 [cited 2024 Jul 14]. Available from: https://link.springer.com/chapter/10.1007/978-3-319-47516-5_1

Susilawati HL, Setyanto P, Kartikawati R, Sutriadi MT. The opportunity of direct seeding to mitigate greenhouse gas emission from paddy rice field. IOP Conf Ser: Earth Environ Sci. 2019 Dec;393(1):012042. http://dx.doi.org/10.1088/1755-1315/393/1/012042

Xu L, Li X, Wang X, Xiong D, Wang F. Comparing the grain yields of direct-seeded and transplanted rice: A meta-analysis. Agronomy. 2019 Nov 17;9(11):767. https://doi.org/10.3390/agronomy9110767

Farooq M, Siddique KHM, Rehman H, Aziz T, Lee DJ, Wahid A. Rice direct seeding: Experiences, challenges and opportunities. Soil Till Res. 2011 Jan 1;111(2):87-98. DOI:10.1016/j.still.2010.10.008

Singh VP, Singh SP, Dhyani VC, Banga A, Kumar A, Satyawali K, et al. Weed management in direct-seeded rice. Ind Jour Weed Scie. 2016;48(3):233. DOI: 10.5958/0974-8164.2016.00059.9

Chamani Mohasses F, Mousavi Pakzad SM, Moatamed E, Entesari M, Bidadi H, Molaahmad Nalousi A, et al. Efficient genetic transformation of rice using Agrobacterium with a codon-optimized chromoprotein reporter gene (ChromoP) and introducing an optimized iPCR method for transgene integration site detection. PCTOC. 2023 Dec 10;156(1):1-14. https://doi.org/10.1007/s11240-023-02636-x

Das TK, Behera B, Nath CP, Ghosh S, Sen S, Raj R, et al. Herbicides use in crop production: An analysis of cost-benefit, non-target toxicities and environmental risks. Crop Prot. 2024 Jul 1;181:106691. DOI: 10.1016/j.cropro.2024.106691

Paul RAI, Arthanari PM, Pazhanivelan S, Kavitha R, Djanaguiraman M. UAV-based herbicide application for efficient weed management in direct-seeded rice. ASD [Internet]. 2023 Sep 30 [cited 2024 Apr 17];(Of). Available from: http://arccjournals.com/journal/agricultural-science-digest/D-5826

Damalas CA, Koutroubas SD. Farmers’ exposure to pesticides: Toxicity types and ways of prevention. Toxics. 2016 Jan 8;4(1):1. DOI: 10.3390/toxics4010001

Meesaragandla S, Jagtap MP, Khatri N, Madan H, Vadduri AA. Herbicide spraying and weed identification using drone technology in modern farms: A comprehensive review. RINENG. 2024 Mar 1;21:101870. https://doi.org/10.1016/j.rineng.2024.101870

Nobre FLDL, Santos RF, Herrera JL, Araújo ALD, Johann JA, Gurgacz F, et al. Use of drones in herbicide spot spraying: a systematic review. AWS. 2023 Dec 31;41:e020230014. DOI:10.51694/AdvWeedSci/2023;41:00028

Mani VS, Gautam KC, Dass B, Singh YR. Integrated weed management for sustainable agriculture. In: Proceedings of 3rd All India Weed Control Seminar, Ind Jour Weed Scie. 1973.

Devasenapathy P, Senthilkumar G, Shanmugam PM. Energy management in crop production. IJA. 2009;54(1):80-90. DOI: https://doi.org/10.59797/ija.v54i1.4771

S Murthy RS, Elangovan S, Arunachalam P. Energy auditing in crop production. 2020; p. 137-88.

Singh R, Pande K, Sachan VK, Singh N, Sahu RP, Singh M. Productivity, profitability and energy consumption of potato based intercropping systems. Int J Veg Sci. 2015 Apr 14;22. DOI:10.1080/19315260.2014.1003632

Gomez KA, Gomez AA. Statistical procedures for agricultural research [Internet]. John Wiley and Sons. 1984 [cited 2024 May 26]. Available from: https://books.google.com/books?hl=en&lr=&id=PVN7_XRhpdUC&oi=fnd&pg=PA1&dq=gomez+and+gomez+1984&ots=Ht4bbjnrl3&sig=k9O1jQfkMzz8TTjYDRYvIYsOzcY

Chauhan BS, Ngoc STT, Duong D, Ngoc PL. Effect of pretilachlor on weedy rice and other weeds in wet-seeded rice cultivation in South Vietnam. Plant Prod Sci. 2014;17(4):315-20. DOI:10.1626/pps.17.315

Sahu R, Kumar D, Sahu J, Sharda K, Sohane R. Bio-efficacy of pre and post-emergence herbicides for control of complex weed flora in transplanted rice (Oryza sativa L.). Int J Chem Stud. 2020 Mar 1;8:2348-51. DOI: https://doi.org/10.22271/chemi.2020.v8.i2aj.9100

Kanaujiya PK, Singh R, Kumar P, Maurya NK, Kumar P, Kumar A, et al. Efficacy of various herbicide combinations on yield, its attributes and economics of transplanted rice in Indo Gangetic plain zone (Oryza sativa L.). Int J Chem Stud. 2021 Mar 1;9(2):519-22. DOI: https://doi.org/10.22271/chemi.2021.v9.i2h.11872

Ramesh T, Madhusree S, Rathika S, Meena S, Raja K. Drone based herbicide application in greengram (Vigna radiata). Indian J Agric Sci. 2024 Mar 12;94(3):329-32. https://doi.org/10.56093/ijas.v94i3.144541

Ray J. Exploring agriculture in the age of drones: A comprehensive review. Afr J Biol Sci. 2024 Jul 20;6:216-29.

Mehdizadeh M, Al-Taey D, Omidi A, Hadi A, Abbood Y, Askar S, et al. Advancing agriculture with machine learning: a new frontier in weed management. Front Agric Sci Eng. 2024 Apr 26. https://doi.org/10.15302/J-FASE-2024564

Martin D, Singh V, Latheef MA, Bagavathiannan M. Spray deposition on weeds (palmer amaranth and morning glory) from a remotely piloted aerial application system and backpack sprayer. Drones. 2020 Sep;4(3):59. https://doi.org/10.3390/drones4030059

Zhang K, Chen J, Wang C, Han L, Shang Z, Wang G, et al. Evaluation of herbicides aerially applied from a small unmanned aerial vehicle over wheat field. IJPAA. [Internet]. 2020 Apr 4 [cited 2024 Apr 16];3(1). Available from: http://ijpaa.org/index.php/ijpaa/article/view/61

Tursun N, Datta A, Sakinmaz MS, Kantarci Z, Knezevic SZ, Chauhan BS. The critical period for weed control in three corn (Zea mays L.) types. Crop Protection. 2016 Dec 1;90:59-65. DOI:10.1016/j.cropro.2016.08.019

Walia S, Banerjee T, Kumar R. Efficacy of weed management techniques on weed control, biomass yield and soil herbicide residue in transplanted wild marigold (Tagetes minuta L.) under high rainfall conditions of Western Himalaya. Agronomy. 2021 Oct 22;11(11):2119. https://doi.org/10.3390/agronomy11112119

Paul RAI, Arthanari PM, Pazhanivelan S, Kavitha R, Djanaguiraman M. Drone-based herbicide application for energy saving, higher weed control and economics in direct-seeded rice (Oryza sativa). Indian J Agric Sci. 2023;93(7):704-09. https://doi.org/10.56093/ijas.v93i7.137859

Published

21-10-2024

Versions

How to Cite

1.
Avhale VR, Senthil Kumar G, Prabukumar G, Djanaguiraman M, Kumaraperumal R, Patil SG. A comparative study of drone and manual herbicide application for weed management in wet direct-seeded rice (Oryza sativa L.). Plant Sci. Today [Internet]. 2024 Oct. 21 [cited 2024 Nov. 23];. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/4507

Issue

Section

Research Articles