Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Polyphenols extraction from sorghum grains using ultrasound, microwave and green solvents

DOI
https://doi.org/10.14719/pst.4563
Submitted
5 August 2024
Published
13-08-2025
Versions

Abstract

Sorghum with rich-tannin grain is a crop used where birds are a pest at harvest time. However, this commodity is undervalued because its high levels of polyphenol cannot be used to feed monogastric animals. This study was carried out with the following objectives: To determine the best conditions for extraction of polyphenols from sorghum grains using ultrasound, microwave and to use water and ethanol as environmentally friendly solvents. The most abundant polyphenols extracted from sorghum grains were determined using HPLC-mass spectrometry analysis and chemical characterization of extracts from sorghum grains by FTIR-ATR. In addition, the mineral composition of the extracts was determined and color, alkaloids, pH and solubility were determined as part of the characterization. Polyphenols extraction was performed using 3 combinations of mass/volume (1:8, 1:12 and 1:16) and 3 aqueous ethanol (0 %, 30 % and 70 %) with 9 treatments. These treatments were placed for 20 min in an ultrasound bath, after which samples were exposed to microwave for 5 min. The obtained phytochemical compounds were characterized by FTIR-(ATR) and HPLC/ESI/MS. Results showed that when HPLC/ESI/ MS analyses were used, 38 polyphenol compounds were detected. This suggests that tannin-rich sorghum grains could be a source of diverse polyphenols that are linked to interesting biological activities.

References

  1. 1. De Morais Cardoso L, Pinheiro SS, Martino HSD, Pinheiro Pinheiro-Sant'Ana HM. Sorghum (Sorghum bicolor L.): Nutrients, bioactive compounds and potential impact on human health. Crit Rev Food Sci Nut. 2017;57(2):372–90. https://doi.org/10.1080/10408398.2014.887057
  2. 2. Hussein RA, El-Anssary AA. Plants secondary metabolites: The key drivers of the pharmacological actions of medicinal plants. J Her Med. 2019;1(3):11–30. https://doi.org/10.5772/intechopen.76139
  3. 3. Mercado-Mercado G, Carrillo L de la R, Wall-Medrano A, Diaz JAL, Alvarez-Parrilla E. Review polyphenolic compounds and antioxidant capacity of typical spices consumed in Mexico. Nutr Hosp. 2013;28(1):36–46.
  4. 4. Guo Q, Wang N, Liu H, Li Z, Lu L, Wang C. The bioactive compounds and biological functions of Asparagus officinalis L.–A review. J Funct Foods. 2020;65:103727. https://doi.org/10.1016/j.jff.2019.103727
  5. 5. Cuitino MJ, Vera M. Effect of condensed tannins on grain sorghum yield. J INIA. 2016;(44):20–24.
  6. 6. Taylor JRN, Belton PS, Beta T, Duodu KG. Increasing the utilization of sorghum, millets and pseudocereals: Developments in the science of their phenolic phytochemicals, biofortification and protein functionality. J Cereal Sci. 2014;59:257–75. https://doi.org/10.1016/j.jcs.2013.10.009
  7. 7. Bauza R, Barreto R, Bratschi C, Silva D, Tejero B. Apparent fecal digestibility of sorghum batches with different tannin contents, subjected to different processing technologies in pigs. Agrocienc Urug. 2016;20(1):79–89. https://doi.org/10.31285/AGRO.20.1.11
  8. 8. Olivas-Aguirre FJ, Wall-Medrano A, Gonzalez-Aguilar GA, Lopez-Diaz JA, Alvarez-Parrilla E, Rosa LA et al. Hydrolyzable tannins: biochemistry, nutritional and analytical aspects and health effects. Nutr Hosp. 2015;31(1):55–66.
  9. 9. Wang Y, Zhang H, Liang H, Yuan Q. Purification, antioxidant activity and protein precipitating capacity of punicalin from promegranate husk. Food Chem. 2013;138(1):437–43. https://doi.org/10.1016/j.foodchem.2012.10.092
  10. 10. Batchu S, Chaudhary K, Wiebe G, Seubert J. Bioactive compounds in heart disease. In: Watson RR, Preedy VR, editors. Bioactive food as dietary interventions for cardiovascular disease. 1st ed. London (UK) and Waltham (USA): Academic Press; 2013. p. 431431–441. https://doi.org/10.1016/B978-0-12-396485-4.00026-8
  11. 11. WongWong-Paz JE, Aguilar Aguilar-Zarate P, Veana F, Muniz Muniz-Marquez DB. Impact of green extraction technologies to obtain bioactive compounds from citrus fruit waste. Tip Rev Espec Cien Quim-Biol. 2020;23(1):1–11.
  12. 12. Chen X, Wang Z, Kan J. Polysaccharides from ginger (Zingiber officinale) stems and leaves: Effects of dual‑ and triple‑frequency ultrasound‑assisted extraction on structural characteristics and biological activities. Food Biosci. 2021;42:101166. https://doi.org/10.1016/j.fbio.2021.101166 .
  13. 13. Bedoya-Catano JF, Ramon-Palacio C, Gil-Garzon MA, Ramirez-Sanchez C. Extraction of antioxidants from blueberries (Vaccinium corymbosum): Effect of green solvents on total polyphenols, antioxidant capacity and electrochemical behavior. Tecnol. 2022;25(53):p.2277. https://doi.org/10.22430/22565337.2277
  14. 14. Gomez-Martinez M, Ascacio-Valdes JA, Flores-Gallegos AC, Gonzalez-Dominguez J, Gomez-Martinez S, Aguilar CN et al. Location and tissue effects on phytochemical composition and in vitro antioxidant activity of Moringa oleifera. Ind Crops Prod. 2020;151:112439. https://doi.org/10.1016/j.indcrop.2020.112439
  15. 15. Furr M, Mahlberg PG. Histochemical analyses of laticifers and glandular trichomes in Cannabis sativa. J Nat Prod. 1981;44:153–59. https://doi.org/10.1021/np50014a002
  16. 16. Huang TC, Chen CP, Wefler V, Raftery A. A stable reagent for the Liebermann-Burchard reaction. Application to rapid serum cholesterol determination. Anal Chem. 1961;33(10):1405 1405–07. https://doi.org/10.1021/ac60178a040
  17. 17. MartinezMartinez-Damian MT, Cruz Cruz-Alvarez O, Moreno Moreno-Perez EDC, Valle Valle-Guadarrama S. Intensidad de color y compuestos bioactivos en colectas de chile guajillo del norte de México. Rev Mex De Cienc Agric. 2019;10(1):35 35–49. https://doi.org/10.29312/ remexca.v10i1.465
  18. 18. AgostiniAgostini-Costa TS, Silva GI, Martins PLA, Becke SFJ, Costa RCS. Carotenoid and total vitamin C content of peppers from selected Brazilian cultivars. J Food Comp Analysis. 2017; 57:73–79. https://doi.org/10.1016/j.jfca.2016.12.020
  19. 19. Li X, Wu X, Bi J, Liu X, Li X, Guo C. Polyphenols accumulation effects on surface color variation in apple slices hot air-drying process. Lwt. 2019;108:421–28. https://doi.org/10.1016/j.lwt.2019.03.098
  20. 20. Bouillon P, Fanciullino AL, Belin E, Breard D, Boisard S, Bonnet B et al. Image analysis and polyphenol profiling unveil red-flesh apple phenotype complexity. Plant Methods. 2024;20(1):71. https://doi.org/10.1186/s13007-024-01196-1
  21. 21. CarranzaCarranza-Tellez J, Avila Avila-Palma A, Contreras Contreras-Martinez CS, Gutierrez Gutierrez-Hernandez R, Garcia Garcia-Gonzalez JM, Carranza Carranza-Concha J. Analisis quimico, bioactivo y de color en tres variedades de guayaba. Rev Mex Cienc Agric. 2024;15(6):e3360. https:/ doi.org/10.29312/ remexca.v15i6.3360
  22. 22. Dyner L, Ferreyra V, Sanchez E, Cagnasso C, Carrion OM. Centesimal composition and mineral content of white sorghum flours used in general consumer products and gluten gluten-free products. Diaeta. 2017;35(160):16–21.
  23. 23. Ona N, Novillo F. Determination of condensed tannins in sorghum and their deactivation using urea. Quimica Central. 2010;1(1):9–18. https://doi.org/10.29166/quimica.v1i1.1188
  24. 24. Montiel MD, Elizalde JC, Santini F, Giorda L. Physical and chemical characteristics of sorghum grain: Relationship with ruminal degradation in cattle. Arch de Zootec. 2011; 60(231):533–41. https://doi.org/10.4321/S0004-05922011000300042
  25. 25. Vazquez-Flores AA, Lopez-Diaz JA, Wall-Medrano A, Laura A. Hydrolyzable and condensed tannins: chemical nature, advantages and disadvantages of their consumption. Tech Chihuahua. 2012;6(2):84–93. 26. Earp CF, McDonough CM, Awika J, Rooney LW. Testa development in the caryopsis of Sorghum bicolor (L.) Moench. J Cereal Sci. 2004;39(2):303–11. https://doi.org/10.1016/j.jcs.2003.11.005
  26. 27. Barrett A, Ndou T, Hughey CA, Straut C, Howell A, Dai Z, et al. Inhibition of α-amylase and glucoamylase by tannins extracted from cocoa, pomegranates, cranberries and grapes. J Agric Food Chem. 2013;61(7):1477 1477–86. https://doi.org/10.1021/jf304876g
  27. 28. Velazquez N, Sanchez H, Osella C, Santiago LG. Using white sorghum flour for gluten-free breadmaking. Int J Food Sci Nutr. 2012;63(4):491–97. https://doi.org/10.3109/09637486.2011.636734
  28. 29. Bagryantseva OV, Sokolov IE, Kolobanov AI, Elizarova EV, Khotimchenko SA. On the regulate tropane alkaloids in grain products. Vopr Pitan. 2020;89(3):54–61.
  29. 30. Shimshoni JA, Cuneah O, Sulyok M, Krska R, Sionov E, Barel S, et al. Newly discovered ergot alkaloids in Sorghum ergot Claviceps africana occurring for the first time in Israel. Food Chem. 2017;219:459–67. https://doi.org/10.1016/j.foodchem.2016.09.182
  30. 31. Khoddami A, Wilkes M, Roberts T. Techniques for analysis of plant phenolic compounds . Molecules. 2013;18:2328–75. https://doi.org/10.3390/molecules18022328
  31. 32. Rajbhar K, Dawda H, Mukundan U. Polyphenols: Methods of extraction. Sci Revs Chem Commun. 2015;5(1):1–6. https://doi.org/10.5958/2321-5844.2015.00001.1
  32. 33. Sripad G, Prakash V, Narasinga M. Rao J. Extractability of polyphenols of sunflower seed in various solvents. Biosci. 1982;4 (2):145 145–52. https://doi.org/10.1007/BF02702723
  33. 34. Badui DS. Quimica de los alimentos. 4th ed. Mexico D.F.: Pearson Educacion, S.A. de C.V.; 2016.
  34. 35. Almanza K, Navarro M, Ruiz J. Extraction of powdered dye from avocado seeds in Hass and Fuerte varieties. Cienc Tecnol Aliment. 2020;17(1):5–14.
  35. 36. Oliveira RN, Mancini MC, Oliveira FCSD, Passos TM, Quilty B, Thire RMDSM et al. FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria (Rio de Janeiro). 2016;21(03):767–79. https://doi.org/10.1590/S1517-707620160003.0072
  36. 37. Haraf S, Higazy A, Hebeish A. Propolis induced antibacterial activity and other technical properties of cotton textiles. Int J Biol Macromol. 2013;59:408–16. https://doi.org/10.1016/j.ijbiomac.2013.04.030
  37. 38. Ranca J, De Luca M, Ribeiro T. Propolis - based chitosan varnish: drug delivery, controlled release and antimicrobial activity against oral pathogen bacteria. BMC Complement Altern Med. 2014;14(478):1–11. https://doi.org/10.1186/1472-6882-14-478
  38. 39. Asemani M, Rabbani AR. Detailed FTIR spectroscopy characterization of crude oil extracted asphaltenes: Curve resolve of overlapping bands. J Pet Sci Eng. 2020;185:106618. https://doi.org/10.1016/j.petrol.2019.106618
  39. 40. Yang X, Ou Q, Yang W, Shi Y, Liu G. Diagnosis of liver cancer by FTIR spectra of serum. Spectrochim Acta A Mol Biomol Spectrosc. 2021;263:120181. https://doi.org/10.1016/j.saa.2021.120181
  40. 41. Peng H, Hhahidi F. Metabolic, toxicological, chemical and commercial perspectives on esterification of dietary polyphenols: a review. Crit Rev Food Sci Nutr. 2024;64(21):7465–504. https://doi.org/10.1080/10408398.2023.2185589
  41. 42. Behar H, Reategui O, Liviac D, Arcos J, Best I. Phenolic compounds and in vitro antioxidant activity of six accessions of mashua (Tropaeolum tuberosum R. & P.) from Puno Region, Peru. Rev Fac Nac Agron. 2021;74(3): 9707–14. https://doi.org/10.15446/rfnam.v74n3.93020
  42. 43. Xu DP, Li Y, Meng X, Zhou T, Zhou Y, Zheng J et al. Natural antioxidants in foods and medicinal plants: extraction, assessment and resources. Int J Mol Sci. 2017;18(1):96. https://doi.org/10.3390/ijms18010096
  43. 44. Gul K, Singh AK, Jabeen R. Nutraceuticals and functional foods: The foods for the future world. Crit Rev Food Sci Nutr. 2016;56(16):2617–27. https://doi.org/10.1080/10408398.2014.903384
  44. 45. He Q, Yao K, Jia D, Fan H, Liao X, Shi B. Determination of total catechins in tea extracts by HPLC and spectrophotometry. Nat Prod Res. 2009;23(1):93–100. https://doi.org/10.1080/14786410801886682
  45. 46. Zhou S, Chen W, Fan K. Recent advances in combined ultrasound and microwave treatment for improving food processing efficiency and quality: A review. Food Biosci. 2024;103683. https://doi.org/10.1016/j.fbio.2024.103683
  46. 47. Lujano E, Manganiello L, Contento A, Rios A. Identification and quantification of (+)-catechins and procyanidins in cocoa from Ocumare de la Costa, Venezuela. Rev Ing UC. 2019; 26(2):192 192–201.
  47. 48. Mendes FET, Miranda GM, Camilo HKVS, da Silva Lira R, Bitu VDCN, De Souza CES. Avaliacao da atividade antimicrobiana, antioxidante e citoprotetora da quercetina contra a acao toxica do cloreto de bario. Res Soc Dev. 2021;10(6):e12610615632. https://doi.org/10.33448/rsd-v10i6.15632
  48. 49. Aleman A, Marin D, Taladrid D, Montero P, Gomez-Guillen CM. Encapsulation of antioxidant sea fennel (Crithmum maritimum) aqueous and ethanolic extracts in freeze-dried soy phosphatidylcholine liposomes. Food Res Int. 2019;119:665–74. https://doi.org/10.1016/j.foodres.2018.10.044
  49. 50. Brito JCM, Lima WG, da Cruz Nizer WS. Quercetin as a potential nutraceutic against coronavirus disease (COVID COVID-19). Ars Phar. 2019;62(1):95–99.

Downloads

Download data is not yet available.