Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. Sp2 (2025): Current Trends in Plant Science and Microbiome for Sustainability

Synthesis and optimization of agro-based solid and liquid formulation for enhanced shelf-life and biomass production of Trichoderma asperellum

DOI
https://doi.org/10.14719/pst.4641
Submitted
13 August 2024
Published
01-07-2025

Abstract

Beneficial organism-based bio-pesticides have currently gained high prominence in natural and organic farming systems to ingress and suppress pests and diseases in the realm of modern agriculture. Although conventional bio-pesticides have good track records under laboratory conditions, stability and storage issues are pre-dominantly found when tested under field conditions. Therefore, the preparation and in-field evaluation of precisely structured bio-pesticide formulations are immediately required for agricultural improvement. Herein, the liquid broth media and agro-substrates based Trichoderma asperellum suspension culture have been elucidated for the biomass production and shelf-life analysis. Among the 8 different liquid broth medium under the investigation, molasses yeast extract broth was found to have maximum biomass production (20.84 g fresh and 3.14 g dry weight of mycelium; 127.5×106 CFU/mL). In contrast, a shelf-life analysis of T. asperellum revealed Paraffin oil as the best medium (19×106 CFU/mL), where a maximum shelf-life (up to 180 days) was achieved with 39.37 % of viability. On solid substrates, a maximum CFU count of 13.33×106 CFU/g and viability of 15.25 % were observed in shelled maize cob powder. The current findings emphasize the aim of bestowing the different substrates for mass multiplication and viability of T. asperellum as a promising antagonist to menace soil borne pathogens and significantly increase disease resistance in plants.

References

  1. 1. Ahamedemujtaba V, Kulkarni S. Shelf Life of Trichoderma harzianum an antagonist in different oil-based formulations. Int J Appl Sci. 2017;6(2):34–40. https:// doi.org/10.21013/jas.v6.n2.p2
  2. 2. Kumar V, Bhupendra K, Pooja T, Dhananjay Y, Minseok S. Journey of Trichoderma from Pilot Scale to Mass Production: A Review. Agriculture. 2023;13(10):1–37. https://doi.org/10.3390/agriculture13102022
  3. 3. Dennis C, Webster J. Antagonistic properties of species groups of Trichoderma. Hyphal interaction. Trans Br Mycol Soc. 1971;57(3):363–69. https://doi.org/10.1016/S0007-1536(71)80050-5
  4. 4. Howell CR. Mechanisms employed by Trichoderma species in the biological control of plant disease: the history and evolution of current concepts. Plant Dis. 2003;87(1):4–10. https://doi.org/10.1094/pdis.2003.87.1.4
  5. 5. Jambhulkar PP, Singh B, Raja M, Ismaiel A, Tomar M, Sharma P, et al. Genetic diversity and antagonistic properties of Trichoderma strains from the crop rhizospheres in southern Rajasthan, India. Sci Rep. 2024;14:8610. https://doi.org/10.1038/s41598-024-58302-5
  6. 6. Papavizas GC. Trichoderma and Gliocladium: Biology, ecology and potential for biocontrol. Annu Rev Phytopathol. 1985;23(1):23–54. https://doi.org/10.1146/annurev.py.23.090185.000323
  7. 7. Harman GE. Myths and dogmas of biocontrol: Changes in perceptions derived from research on Trichoderma harzianum. Plant Dis. 2000;84(4):377–93. https://doi.org/10.1094/PDIS.2000.84.4.377
  8. 8. Nikita B, Chauhan PS. Excessive and disproportionate use of chemicals causes soil contamination and nutritional stress. 2020;1–10.
  9. 9. Choudhary A, Ashraf S, Musheer N. Screening of phytoextracts to control Fusarium oxysporum f. sp. vigni incitant of mungbean (Vigna radiata) wilt. Int J Acad Res Dev. 2017;2(6):1181–84
  10. 10. Kumar N, Singh SK. Screening of tolerance and compatibility of Trichoderma viride against common fertilizers and fungicides. Int J Chem Stud. 2017;5(4):1871–74.
  11. 11. Jagadish S, Mallesh G, Jaipraksah SP, Narayan RP, Mallikarjun D. Screening of Bioagents against Wilt Complex Pathogens of Tomato. Int J Pure Appl Biosci. 2018;6(1):1486–93. https://doi.org/10.18782/2320-7051.3016
  12. 12. Kamboj R, Yadav S, Patil JA, Kumar R. Evaluation of various substrates for mass production and shelf life of Trichoderma asperellum, Emerg Life Sci Res. 2023;9(2):137–46. https://doi.org/10.31783/elsr.2023.92137146
  13. 13. Srivastava M, Kumar V, Shahid M, Pandey S, Singh A. Trichoderma- a potential and effective bio-fungicide and alternative source against notable phytopathogens. African J. Agric. Res, 2016;11(5):310–16. https://doi.org/10.5897/AJAR2015.9568
  14. 14. Mukhopadhya AN, Brahm BA, Patel GJ. Trichoderma harzianum- a potential biocontrol agent for tobacco damping off. Tob Res. 1986;12:26–35.
  15. 15. Jagadeesh KS, Geetha GS. Effect of Trichoderma harzianum grown on different food bases on the biological control of Sclerotium rolfsii Sacc. in groundnut. Environ ecol. 1994;12(2):471–73.
  16. 16. Sangeetha P, Jeyarajan R, Panicker S. Mass multiplication of biocontrol agent Trichoderma spp. Indian J Mycol Plant Pathol. 1993;23(3):328–30.
  17. 17. Waghunde RR, Shelake RM, Sabalpara AN. Trichoderma: A significant fungus for agriculture and environment. Afr J Agric Res. 2016;11(22):1952–65. https://doi.org/10.5897/AJAR2015.10584
  18. 18. Hassan M. Enhance suppressive effect of compost on soybean rhizoctonia root rot by soil treatment with Trichoderma harzianum. J Plant Physiol Pathol. 2014;2(2):16. https://www.researchgate.net/publication/269394944
  19. 19. Sreenayana B, Nakkeeran S. Effect of oil-based formulation of Trichoderma spp. on growth parameters of cucumber seedlings. Int J Curr Microbiol Appl Sci. 2019;8(8):200–09. https://doi.org/10.20546/ijcmas.2019.808.024
  20. 20. Rai D, Tewari AK. Shelf life studies of different formulations based on Trichoderma harzianum (Th14). Ann Biol Res. 2016;7(7):1–5. https://www.researchgate.net/publication/341151757
  21. 21. Shukla V, Devi P, Baghel S. Isolation, characterization and biomass production of Trichoderma spp. a review. Res Environ Life Sci. 2016;9(7):889–94. https://ejbo.journals.ekb.egarticle_40312_02be2f3671e7004ea98ac04704a8f4cb.pdf
  22. 22. Maya N, Guldekar DD, Potdukhe SR, Parbat JM. Assessment of shelf life of Trichoderma asperellum on different liquid formulations. Int J Curr Microbiol Appl Sci. 2018;6:2575–79 https://www.ijcmas.com/special/6/Nadare%20
  23. Maya,%20et%20al.pdf
  24. 23. Bhale UN. Prospective of agricultural wastes as base resources for mass multiplication of Trichoderma species worldwide: an overview. Int J Curr Res. 2016;8(1):24968–78. https://www.researchgate.net/publication/312496007
  25. 24. Kajal M, Damayanti G, Potdukhe SR, Sonune BD, Wargane VS, Hemalatha K, Pawar VD et al. Comparison of different oil formulations on shelf life of Trichoderma asperellum. J Pharmacogn Phytochem 2021;10(1):171–74. https://www.phytojournal.com/archives/2021/vol10issue1/PartC/9-6-268-482.pdf
  26. 25. Askew DJ, Laing MD. An adopted selective medium for the quantitative isolation on Trichoderma species. Plant Pathol. 1993;42(5):686–90 https://www.researchgate.net/publication/230177003
  27. 26. Sood M, Kapoor D, Kumar V, Sheteiwy MS, Ramakrishnan M, Landi M, AranitiF, Sharma A et al. Trichoderma: The secrets of a multitalented biocontrol agent. 2020;9(6):762. https://doi.org/10.3390/plants9060762
  28. 27. Sudha ADD, Rajesh M, Ramalakshmi A, Kavitha S, Perveen K, Alshaikh NA, Sayyed RZ et al. Volatilome profiling and evaluation of plant growth stimulation and Anti-ergot activity of VOCs produced by Trichoderma asperelloides. Sydowia, 2023;76:93–109. https://www.jeb.co.in/journal_issues/202407_jul24/paper_01.pdf
  29. 28. Afshan NUS. Recent Advancement in Fungal Biocontrol Agents. Plant Mycobiome, Diversity, Interactions and Uses Springer. 2023;4:203–23. https://www.researchgate.net/publication/369770243
  30. 29. Palmieri DG, Ianiri C, Grosso D, Barone G, Curtis FD, Castoria R, Lima G et al. Advances and perspectives in the use of biocontrol agents against fungal plant diseases. Horticulturae. 2023;8(7):577. https://doi.org/10.3390/horticulture8070577
  31. 30. Mawar R, Manjunatha B, and Kumar S. Commercialization, diffusion and adoption of bioformulations for sustainable disease management in indian arid agriculture: Prospects and challenges. Circ. Econ. Sust. 2021;1:1367–85. https://doi.org/10.1007/s43615-021-00089-y
  32. 31. Sudha A, Geetha P, Kohila P, Vijayakumar M, Senthilkumar M. A study on technology dissemination, Farmer’s perceptions towards pesticides and impact of KVK in the district of Salem in turmeric cultivation. Biol forum. 2021;13(4):248–53. https://www.researchgate.net/publication/361795357
  33. 32. Khan S, Bagwan NB, Igbal MA, Tamboli RR. Mass multiplication and shelf life of liquid fermented final product of Trichoderma asperellum in different formulations. Adv Bioresearch. 2011;2(1):178–82. https://www.soeagra.com/abr.htm
  34. 33. Babu KN, Pallavi PN. Isolation, identification and mass multiplication of Trichoderma an important bio-control agent. Int J Pharm Life Sci. 2013; 4(1):2320–23. https://scholar.google.com/scholar_lookup?title=Issolation,+Identification+and+Mass+Multiplication+of+
  35. 34. Sidana A, Farooq U. Sugarcane bagasse: A potential medium for fungal cultures. Chin J Biol. 2014;5(3):1–5. https://doi.org/10.1155/2024/840505
  36. 35. Subash N, Viji J, Sasikumar C, Meenakshisundaram M. Isolation, media optimization and formulation Trichoderma harzianum in agricultural soil. J Microbiol Biotechnol Res. 2013;3(1):61–64. https://www.cabidigitallibrary.org/doi/full/10.5555/20133123375
  37. 36. Sathiyaseelan K, Sivasakthivelan P, Lenin G. Evaluation of a antagonistic activity and shelf life of Trichoderma asperellum. Bot Res Int. 2009;2(3):195–97. https://idosi.org/bri/2(3)09/12.pdf
  38. 37. Lei CJ, Halim NA, Asib N, Zakaria A, Azmi WA. Conidial emulsion formulation and thermal storability of Metarhizium anisopliae against Red Palm Weevil, Rhynchophorus ferrugineus Olivier.Microorganisms. 2022;10(7):
  39. 1460. https://doi.org/10.3390/microorganisms10071460
  40. 38. Mohiddin FA, Bashir I, Padder SA, Hamid B. Evaluation of different substrates for mass multiplication of Trichoderma species. J Pharmacogn Phytochem. 2017;6(6):563–69. https://www.phytojournal.com/archives/2017.v6.
  41. i6.2133/evaluation-of-different-substrates-for-mass
  42. 39. Mev AK, Meena RL. Mass multiplication of Trichoderma harzianum for biocontrol of rhizome rot of ginger. J Phytol Res. 2003;16(1):89–92. https://jphytolres.org/paper/634
  43. 40. Gandhikumar N, Raguchander T, Prabakar K. Mass multiplication of biocontrol agents: a cost effective approach. Ann Plant Prot Sci. 2001;9(1):140–42 https://www.biosciencejournals.com/assets/archives/2025/vol3issue10/3-9-29.
  44. 1.1.pdf
  45. 41. Hari K, Somasekhar N. Utilization of sugarcane wastes for the mass multiplication of fungal biocontrol agents. Co-op Sugar. 1998;29(9):637–38. https://www.cabidigitallibrary.org/doi/full/10.5555/19980309178
  46. 42. Pandey A, Soccol CR, Mitchell D. New developments in solid state fermentation: I-bioprocesses and products. Process Biochem. 2000;35(10):1153–69. https://doi.org/10.1016/S0032-9592(00)00152-7

Downloads

Download data is not yet available.