Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 11 No. 4 (2024)

Advancements in nanobiochar for environmental remediation: A comprehensive review

DOI
https://doi.org/10.14719/pst.4654
Submitted
24 August 2024
Published
12-10-2024 — Updated on 17-10-2024
Versions

Abstract

 

This study delves into the diverse domain of biochar and its nano-variant, discussing their definitions, synthesis methods, properties and applications. Biochar, produced from various raw materials through different synthesis techniques, possesses unique characteristics that make it valuable for a wide range of uses. Nanobiochar, a new derivative, offers improved properties due to its nano-scale structure, enabling advanced applications. The study examines the physical and chemical attributes, surface area and pore structure of nanobiochar, along with methods for its functionalization and modifications. Synthesis techniques for nanobiochar are analyzed and compared with those for biochar and activated carbon. The versatility of nanobiochar is highlighted in its environmental, agricultural and energy applications, especially in water and soil purification, soil enhancement and energy storage. The environmental impact and safety considerations are also discussed, including eco-toxicity assessment, fate and transport in the environment and regulatory aspects. Additionally, the study addresses challenges, future perspectives, emerging trends and potential breakthroughs in nanobiochar research, emphasizing the need for ongoing exploration and innovation. In conclusion, nanobiochar shows great potential as a sustainable and versatile material with extensive applications, but it requires careful consideration of environmental and safety issues.

References

  1. Lehmann J. Terra preta nova–where to from here. Amazonian Dark Earths: WimSombroek’s Vision. 2009;473-86. https://doi.org/10.1007/978-1-4020-9031-8
  2. Manyà JJ. Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environmental Science and Technology. 2012;46(15):7939-54. https://doi.org/10.1021/es301029g
  3. Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, et al. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere. 2014;99:19-33. https://doi.org/10.1016/j.chemosphere.2013.10.071
  4. Nath BK, Chaliha C, Kalita E. Iron oxide permeated mesoporous rice-husk nanobiochar (IPMN) mediated removal of dissolved arsenic (As): chemometric modelling and adsorption dynamics. Journal of Environmental Management. 2019;246:397-409. https://doi.org/10.1016/j.jenvman.2019.06.008
  5. Liu WJ, Jiang H, Yu HQ. Emerging applications of biochar-based materials for energy storage and conversion. Energy and Environmental Science. 2019;12(6):1751-79. https://doi.org/10.1039/C9EE00206E
  6. Bhatt P, Barh A. Bioinformatic tools to study the soil microorganisms: an in silico approach for sustainable agriculture. In Silico Approach for Sustainable Agriculture. 2018;169-82. https://doi.org/10.1007/978-981-13-0347-0_10
  7. Bisinoti MC, Moreira AB, Melo CA, Fregolente LG, Bento LR, dos Santos JV, Ferreira OP. Application of carbon-based nanomaterials as fertilizers in soils. In: Nanomaterials Applications for Environmental Matrices. 2019;305-33. https://doi.org/10.1016/B978-0-12-814829-7.00008-2
  8. Elsawy H, El-Shahawy A, Ibrahim M, El-Halim AE, Talha N, Sedky A, et al. Properties of recycled nanomaterials and their effect on biological activity and yield of canola in degraded soils. Agriculture. 2022;12(12):2096.https://doi.org/10.3390/agriculture12122096
  9. Rajput P, Kumar P, Priya AK, Kumari S, Shiade SR, Rajput VD, et al. Nanomaterials and biochar mediated remediation of emerging contaminants. Science of the Total Environment. 2024;170064. https://doi.org/10.1016/j.scitotenv.2024.170064
  10. Ramanayaka S, Tsang DC, Hou D, Ok YS, Vithanage M. Green synthesis of graphitic nanobiochar for the removal of emerging contaminants in aqueous media. Science of the Total Environment. 2020; 706:135725. https://doi.org/10.1016/j.scitotenv.2019.135725
  11. Osman AI, Fawzy S, Farghali M, El-Azazy M, Elgarahy AM, Fahim RA, et al. Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage and carbon sequestration: a review. Environmental Chemistry Letters. 2022;20(4):2385-485. https://doi.org/10.1007/s10311-022-01424
  12. Sharma OP, Singh D, Kushwah N, Chauhan AP. Nanobiochar for sustainable agriculture and environmental remediation: A comprehensive review. International Journal of Environment and Climate Change. 2023;13(11):2060-72. https://doi.org/10.9734/ijecc/2023/v13i113366
  13. Chausali N, Saxena J, Prasad R. Nanobiochar and biochar based nanocomposites: Advances and applications. Journal of Agriculture and Food Research. 2021;5:100191. https://doi.org/10.1016/j.jafr.2021.100191
  14. Goren AY, Gungormus E, Vatanpour V, Yoon Y, Khataee A. Recent progress on synthesis and properties of black phosphorus and phosphorene as new-age nanomaterials for water decontamination. ACS Applied Materials and Interfaces. 2024;16(16):20055-78. https://doi.org/10.1021/acsami.3c19230
  15. Iconaru SL, Guégan R, Popa CL, Motelica-Heino M, Ciobanu CS, Predoi D. Magnetite (Fe3O4) nanoparticles as adsorbents for As and Cu removal. Applied Clay Science. 2016;134:128-35. https://doi.org/10.1016/j.clay.2016.08.019
  16. Onyancha RB, Ukhurebor KE, Aigbe UO, Osibote OA, Kusuma HS, Darmokoesoemo H. A methodical review on carbon-based nanomaterials in energy-related applications. Adsorption Science and Technology. 2022;2022:4438286. https://doi.org/10.1155/2022/4438286
  17. Kee SH, Chiongson JB, Saludes JP, Vigneswari S, Ramakrishna S, Bhubalan K. Bioconversion of agro-industry sourced biowaste into biomaterials via microbial factories–A viable domain of circular economy. Environmental Pollution. 2021;271:116311. https://doi.org/10.1016/j.envpol.2020.116311
  18. Sani MN, Amin M, Siddique AB, Nasif SO, Ghaley BB, Ge L, et al. Waste-derived nanobiochar: a new avenue towards sustainable agriculture, environment and circular bioeconomy. Science of the Total Environment. 2023;166881. https://doi.org/10.1016/j.scitotenv.2023.166881
  19. Wang J, Liu TL, Huang QX, Ma ZY, Chi Y, Yan JH. Production and characterization of high quality activated carbon from oily sludge. Fuel Processing Technology. 2017;162:13-19. https://doi.org/10.1016/j.fuproc.2017.03.017
  20. YasminKhan K, Ali B, Song Y, Iqbal B, Cui X, Ahmed W, et al. Assessment of biochar produced from aquatic plants for environmental and agricultural applications by multi-analytical characterizations. Polish Journal of Environmental Studies. 2023;32(5). https://doi.org/10.15244/pjoes/168261
  21. Maniscalco MP, Volpe M, Messineo A. Hydrothermal carbonization as a valuable tool for energy and environmental applications: A review. Energies. 2020;13(16):4098. https://doi.org/10.3390/en13164098
  22. McConnachie M, Konarova M, Smart S. Literature review of the catalytic pyrolysis of methane for hydrogen and carbon production. International Journal of Hydrogen Energy. 2023;48(66):25660-82. https://doi.org/10.1016/j.ijhydene.2023.03.123
  23. Yek PN, Cheng YW, Liew RK, Mahari WA, Ong HC, Chen WH, et al. Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review. Renewable and Sustainable Energy Reviews. 2021;151:111645. https://doi.org/10.1016/j.rser.2021.111645
  24. Kumar M, Xiong X, Wan Z, Sun Y, Tsang DC, Gupta J, et al. Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresource Technology. 2020;312:123613. https://doi.org/10.1016/j.biortech.2020.123613
  25. El-Ramady H, El-Henawy A, Amer M, Omara AE, Elsakhawy T, Elbasiouny H, et al. Agricultural waste and its nano-management: Mini review. Egyptian Journal of Soil Science. 2020;60(4):349-64. https://doi.org/10.21608/ejss.2020.46807.1397
  26. Hristea G, Iordoc M, Lungulescu EM, Bejenari I, Volf I. A sustainable bio-based char as emerging electrode material for energy storage applications. Scientific Reports. 2024;14(1):1095. https://doi.org/10.1038/s41598-024-51350
  27. Wang T, Zhai Y, Zhu Y, Li C, Zeng G. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals and physicochemical properties. Renewable and Sustainable Energy Reviews. 2018;90:223-47. https://doi.org/10.1016/j.rser.2018.03.071
  28. Jiang M, He L, Niazi NK, Wang H, Gustave W, Vithanage M, et al. Nanobiochar for the remediation of contaminated soil and water: challenges and opportunities. Biochar. 2023;5(1):2. https://doi.org/10.1007/s42773-022-00201
  29. Pavlenko V, ?ó?towska S, Haruna AB, Zahid M, Mansurov Z, Supiyeva Z, et al. A comprehensive review of template-assisted porous carbons: Modern preparation methods and advanced applications. Materials Science and Engineering: R: Reports. 2022;149:100682. https://doi.org/10.1016/j.mser.2022.100682
  30. Manawi YM, Ihsanullah, Samara A, Al-Ansari T, Atieh MA. A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method. Materials. 2018;11(5):822. https://doi.org/10.3390/ma11050822
  31. Fang J, Zhan L, Ok YS, Gao B. Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. Journal of Industrial and Engineering Chemistry. 2018;57:15-21. https://doi.org/10.1016/j.jiec.2017.08.026
  32. Cui J, Zhang F, Li H, Cui J, Ren Y, Yu X. Recent progress in biochar-based photocatalysts for wastewater treatment: synthesis, mechanisms and applications. Applied Sciences. 2020;10(3):1019. https://doi.org/10.3390/app10031019
  33. Shen Y, Zhang L, Wang K, Li X, Li J, Zhang S, et al. Bio?mediated synthesis–a sustainable strategy for nanomaterials preparation: A comprehensive bibliometric review. Nano Select. 2021;2(12):2275-90. https://doi.org/10.1002/nano.202100089
  34. Nishshankage K, Fernandez AB, Pallewatta S, Buddhinie PK, Vithanage M. Current trends in antimicrobial activities of carbon nanostructures: potentiality and status of nanobiochar in comparison to carbon dots. Biochar. 2024;6(1):2. https://doi.org/10.1007/s42773-023-00282-2
  35. SookhakLari K, Davis GB, Kumar A, Rayner JL, Kong XZ, Saar MO. The dynamics of per-and polyfluoroalkyl substances (PFAS) at interfaces in porous media: A computational roadmap from nanoscale molecular dynamics simulation to macroscale modeling. ACS Omega. 2024;9(5):5193-202. https://doi.org/10.1021/acsomega.3c09201
  36. Ramanayaka S, Vithanage M, Alessi DS, Liu WJ, Jayasundera AC, Ok YS. Nanobiochar: production, properties and multifunctional applications. Environmental Science: Nano. 2020;7(11):3279-302. https://doi.org/10.1039/D0EN00486C
  37. Salem SS, Hammad EN, Mohamed AA, El-Dougdoug W. A comprehensive review of nanomaterials: Types, synthesis, characterization and applications. Biointerface Res Appl Chem. 2022;13(1):41. https://doi.org/10.33263/BRIAC131.041
  38. Murtaza G, Ahmed Z, Valipour M, Ali I, Usman M, Iqbal R, et al. Recent trends and economic significance of modified/functionalized biochars for remediation of environmental pollutants. Scientific Reports. 2024;14(1):217. https://doi.org/10.1038/s41598-023-50623
  39. Ng LY, Ariffin H, Yasim-Anuar TA, Farid MA, Hassan MA. High-energy ball milling for high productivity of nanobiochar from oil palm biomass. Nanomaterials. 2022;12(18):3251. https://doi.org/10.3390/nano12183251
  40. Hassan SS, Williams GA, Jaiswal AK. Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresource Technology. 2018;262:310-18. https://doi.org/10.1016/j.biortech.2018.04.099
  41. Kan T, Strezov V, Evans TJ. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews. 2016;57:1126-40. https://doi.org/10.1016/j.rser.2015.12.185
  42. Li X, Xu T, Liang Z, Amar VS, Huang R, Maddipudi BK, et al. Simultaneous electrospinning and electrospraying for the preparation of a precursor membrane containing hydrothermally generated biochar particles to produce the value-added product of carbon nanofibrous felt. Polymers. 2021;13(5):676.https://doi.org/10.3390/polym13050676
  43. Ndukwu MC, Ikechukwu-Edeh CE, Nwakuba NR, Okosa I, Horsefall IT, Orji FN. Nanomaterials application in greenhouse structures, crop processing machinery, packaging materials and agro-biomass conversion. Materials Science for Energy Technologies. 2020;3:690-99. https://doi.org/10.1016/j.mset.2020.07.006
  44. Alison L, Menasce S, Bouville F, Tervoort E, Mattich I, Ofner A, Studart AR. 3D printing of sacrificial templates into hierarchical porous materials. Scientific Reports. 2019;9(1):409. https://doi.org/10.1038/s41598-018-36789
  45. Sahu JN, Karri RR, Zabed HM, Shams S, Qi X. Current perspectives and future prospects of nanobiotechnology in wastewater treatment. Separation and Purification Reviews. 2021;50(2):139-58. https://doi.org/10.1080/15422119.2019.1630430
  46. Singh N, Malik MA, Hashmi AA. Nanotechnology and its application in wastewater treatment. Sustainable Practices in the Textile Industry. 2021;307-32. https://doi.org/10.1002/9781119818915.ch13
  47. Shah KA, Tali BA. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Materials Science in Semiconductor Processing. 2016;41:67-82. https://doi.org/10.1016/j.mssp.2015.08.013
  48. Ibitoye SE, Mahamood RM, Jen TC, Loha C, Akinlabi ET. An overview of biomass solid fuels: Biomass sources, processing methods and morphological and microstructural properties. Journal of Bioresources and Bioproducts. 2023. https://doi.org/10.1016/j.jobab.2023.09.005
  49. Foong SY, Liew RK, Yang Y, Cheng YW, Yek PN, Mahari WA, et al. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges and future directions. Chemical Engineering Journal. 2020;389:124401. https://doi.org/10.1016/j.cej.2020.124401
  50. Bokov D, TurkiJalil A, Chupradit S, Suksatan W, Javed Ansari M, Shewael IH, et al. Nanomaterial by sol?gel method: synthesis and application. Advances in Materials Science and Engineering. 2021;2021(1):5102014. https://doi.org/10.1155/2021/5102014
  51. Patwardhan SV, Manning JR, Chiacchia M. Bioinspired synthesis as a potential green method for the preparation of nanomaterials: Opportunities and challenges. Current Opinion in Green and Sustainable Chemistry. 2018;12:110-16.https://doi.org/10.1016/j.cogsc.2018.08.004
  52. Daniel E. Development and characterization of nanoparticles modified urea formaldehyde resin adhesive. Doctoral Dissertation. 2021.
  53. Shak KP, Pang YL, Mah SK. Nanocellulose: Recent advances and its prospects in environmental remediation. Beilstein Journal of Nanotechnology. 2018;9(1):2479-98. https://doi.org/10.3762/bjnano.9.232
  54. Trache D, Tarchoun AF, Derradji M, Hamidon TS, Masruchin N, Brosse N, Hussin MH. Nanocellulose: from fundamentals to advanced applications. Frontiers in Chemistry. 2020;8:392. https://doi.org/10.3389/fchem.2020.00392
  55. Abd-Elsalam KA, Zahid M, editors. Aquananotechnology: applications of nanomaterials for water purification. Elsevier; 2020.
  56. Zama EF, Reid BJ, Arp HP, Sun GX, Yuan HY, Zhu YG. Advances in research on the use of biochar in soil for remediation: a review. Journal of Soils and Sediments. 2018;18:2433-50. https://doi.org/10.1007/s11368-018-2000-9
  57. Guo XX, Liu HT, Zhang J. The role of biochar in organic waste composting and soil improvement: A review. Waste Management. 2020;102:884-99. https://doi.org/10.1016/j.wasman.2019.12.003
  58. Abed Hussein B, Mahdi AB, EmadIzzat S, AcwinDwijendra NK, Romero Parra RM, Barboza Arenas LA, et al. Production, structural properties nanobiochar and effects nanobiochar in soil: a review. Egyptian Journal of Chemistry. 2022;65(12):607-18. https://dx.doi.org/10.21608/ejchem.2022.131162.5772
  59. Marci?czyk M, Ok YS, Oleszczuk P. From waste to fertilizer: Nutrient recovery from wastewater by pristine and engineered biochars. Chemosphere. 2022;306:135310. https://doi.org/10.1016/j.chemosphere.2022.135310
  60. Hafeez A, Pan T, Tian J, Cai K. Modified biochars and their effects on soil quality: a review. Environments. 2022;9(5):60. https://doi.org/10.3390/environments9050060
  61. Escudero-Curiel S, Giráldez A, Pazos M, Sanromán Á. From waste to resource: valorization of lignocellulosicagri-food residues through engineered hydrochar and biochar for environmental and clean energy applications—a comprehensive review. Foods. 2023;12(19):3646. https://doi.org/10.3390/foods12193646
  62. Khedulkar AP, Pandit B, Doong RA. Agricultural waste to real worth biochar as a sustainable material for supercapacitor. Science of the Total Environment. 2023;869:161441. https://doi.org/10.1016/j.scitotenv.2023.161441
  63. Khedulkar AP, Thamilselvan A, Doong RA, Pandit B. Sustainable high-energy supercapacitors: Metal oxide-agricultural waste biochar composites paving the way for a greener future. Journal of Energy Storage. 2024;77:109723. https://doi.org/10.1016/j.est.2023.109723
  64. Sánchez-Hernández E, Langa-Lomba N, González-García V, Casanova-Gascón J, Martín-Gil J, Santiago-Aliste A, et al. Lignin–chitosan nanocarriers for the delivery of bioactive natural products against wood-decay phytopathogens. Agronomy. 2022;12(2):461.https://doi.org/10.3390/agronomy12020461
  65. Gómez-González E, Caro C, Martínez-Gutiérrez D, García-Martín ML, Ocaña M, Becerro AI. Holmium phosphate nanoparticles as negative contrast agents for high-field magnetic resonance imaging: Synthesis, magnetic relaxivity study and in vivo evaluation. Journal of Colloid and Interface Science. 2021;587:131-40. https://doi.org/10.1016/j.jcis.2020.11.119
  66. Spanu D, Binda G, Dossi C, Monticelli D. Biochar as an alternative sustainable platform for sensing applications: A review. Microchemical Journal. 2020;159:105506.https://doi.org/10.1016/j.microc.2020.105506
  67. Elbasiouny H, Elbehiry F. Addressing the microplastic dilemma in soil and sediment with focus on biochar-based remediation techniques. Soil Systems. 2023;7(4):110.https://doi.org/10.3390/soilsystems7040110
  68. Yang B, Dai J, Zhao Y, Wu J, Ji C, Zhang Y. Advances in preparation, application in contaminant removal and environmental risks of biochar-based catalysts: A review. Biochar. 2022;4(1):51.https://doi.org/10.1007/s42773-022-00169-8
  69. Zahra Z, Habib Z, Hyun S, Sajid M. Nanowaste: Another future waste, its sources, release mechanism and removal strategies in the environment. Sustainability. 2022;14(4):2041.https://doi.org/10.3390/su14042041
  70. Tran PT, Vu BT, Ngo ST, Tran VD, Ho TD. Climate change and livelihood vulnerability of the rice farmers in the North Central region of Vietnam: A case study in Nghean province, Vietnam. Environmental Challenges. 2022;7:100460.https://doi.org/10.1016/j.envc.2022.100460
  71. Tyumina E, Subbotina M, Polygalov M, Tyan S, Ivshina I. Ketoprofen as an emerging contaminant: occurrence, ecotoxicity and (bio) removal. Frontiers in Microbiology. 2023;14:1200108.https://doi.org/10.3389/fmicb.2023.1200108
  72. Wang L, Wu WM, Bolan NS, Tsang DC, Li Y, Qin M, Hou D. Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: Current status and future perspectives. Journal of Hazardous Materials. 2021;401:123415. https://doi.org/10.1016/j.jhazmat.2020.123415
  73. Zhang W, Meng J, Huang Y, Sarkar B, Singh BP, Zhou X, et al. Effects of soil grain size and solution chemistry on the transport of biochar nanoparticles. Frontiers in Environmental Science. 2023; 10:1114940.https://doi.org/10.3389/fenvs.2022.1114940
  74. Abbas Q, Yousaf B, Ullah H, Ali MU, Ok YS, Rinklebe J. Environmental transformation and nano-toxicity of engineered nanoparticles (ENPs) in aquatic and terrestrial organisms. Critical Reviews in Environmental Science and Technology. 2020;50(23):2523-81.https://doi.org/10.1080/10643389.2019.1705721
  75. Xiang L, Liu S, Ye S, Yang H, Song B, Qin F, et al. Potential hazards of biochar: The negative environmental impacts of biochar applications. Journal of Hazardous Materials. 2021;420:126611.https://doi.org/10.1016/j.jhazmat.2021.126611
  76. Li Y, Ge C, Cheng C, Wang X, Si D, Mu C, et al. Nanobiochar uptake and translocation by plants: Assessing environmental fate and food chain risk. Science of the Total Environment. 2023;905:167012.https://doi.org/10.1016/j.scitotenv.2023.167012
  77. Jatav HS, Rajput VD, Minkina T, Singh SK, Chejara S, Gorovtsov A, et al. Sustainable approach and safe use of biochar and its possible consequences. Sustainability. 2021; 13(18):10362.https://doi.org/10.3390/su131810362
  78. Yang H, Feng Q, Xu W, Tang Y, Bai G, Liu Y, et al. Unraveling the nuclear isotope tapestry: Applications, challenges and future horizons in a dynamic landscape. Eco-Environment and Health. 2024.https://doi.org/10.1016/j.eehl.2024.01.001
  79. Amenta V, Aschberger K, Arena M, Bouwmeester H, Moniz FB, Brandhoff P, et al. Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regulatory Toxicology and Pharmacology. 2015;73(1):463-76.https://doi.org/10.1016/j.yrtph.2015.06.016
  80. Cao Y, Chen J, Bian Q, Ning J, Yong L, Ou T, et al. Genotoxicity evaluation of titanium dioxide nanoparticles in vivo and in vitro: A meta-analysis. Toxics. 2023;11(11):882.https://doi.org/10.3390/toxics11110882
  81. Yadav R, Ramakrishna W. Biochar as an environment-friendly alternative for multiple applications. Sustainability. 2023;15(18):13421.https://doi.org/10.3390/su151813421
  82. Kumari R, Suman K, Karmakar S, Mishra V, Lakra SG, Saurav GK, Mahto BK. Regulation and safety measures for nanotechnology-based agri-products. Frontiers in Genome Editing. 2023;5:1200987.https://doi.org/10.3389/fgeed.2023.1200987
  83. Li S. Reviewing air pollutants generated during the pyrolysis of solid waste for biofuel and biochar production: Toward cleaner production practices. Sustainability. 2024;16(3):1169.https://doi.org/10.3390/su16031169
  84. Olugbenga OS, Adeleye PG, Oladipupo SB, Adeleye AT, John KI. Biomass-derived biochar in wastewater treatment-a circular economy approach. Waste Management Bulletin. 2024;1(4):1-4.https://doi.org/10.1016/j.wmb.2023.07.007
  85. Malhotra M, Aboudi K, Pisharody L, Singh A, Banu JR, Bhatia SK, et al. Biorefinery of anaerobic digestate in a circular bioeconomy: Opportunities, challenges and perspectives. Renewable and Sustainable Energy Reviews. 2022;166:112642.https://doi.org/10.1016/j.rser.2022.112642
  86. Habib U, Ahmad F, Awais M, Naz N, Aslam M, Urooj M, et al. Sustainable catalysis: Navigating challenges and embracing opportunities for a greener future. Journal of Chemistry and Environment. 2023;2(2):14-53.https://doi.org/10.56946/jce.v2i2.205
  87. Kaur K, Kaur R, Kaur H. A systematic review of lignocellulosic biomass for remediation of environmental pollutants. Applied Surface Science Advances. 2024;19:100547.https://doi.org/10.1016/j.apsadv.2023.100547
  88. Pokrajac L, Abbas A, Chrzanowski W, Dias GM, Eggleton BJ, Maguire S, et al. Nanotechnology for a sustainable future: Addressing global challenges with the international network4sustainable nanotechnology. ACS Nano. 2021 Dec 28;15(12):18608-23. https://doi.org/10.1021/acsnano.1c10919
  89. Zhang M, Gao B, Yao Y, Xue Y, Inyang M. Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chemical Engineering Journal. 2012; 210:26-32.https://doi.org/10.1016/j.cej.2012.08.052
  90. Wang MC, Sheng GD, Qiu YP. A novel manganese-oxide/biochar composite for efficient removal of lead (II) from aqueous solutions. International Journal of Environmental Science and Technology. 2015;12:1719-26.https://doi.org/10.1007/s13762-014-0538-7
  91. Thippeswamy BH, Maligi AS, Hegde G. Roadmap of effects of biowaste-synthesized carbon nanomaterials on carbon nano-reinforced composites. Catalysts. 2021;11(12):1485.https://doi.org/10.3390/catal11121485
  92. Ahuja R, Kalia A, Sikka R, PC. Nano modifications of biochar to enhance heavy metal adsorption from wastewaters: a review. Acs Omega. 2022;7(50):45825-36.https://doi.org/10.1021/acsomega.2c05117
  93. Goswami L, Kushwaha A, Kafle SR, Kim BS. Surface modification of biochar for dye removal from wastewater. Catalysts. 2022;12(8):817.https://doi.org/10.3390/catal12080817
  94. Sashidhar P, Kochar M, Singh B, Gupta M, Cahill D, Adholeya A, Dubey M. Biochar for delivery of agri-inputs: Current status and future perspectives. Science of the Total Environment. 2020;703:134892.https://doi.org/10.1016/j.scitotenv.2019.134892
  95. Khare P. A comprehensive evaluation of inherent properties and applications of nanobiochar prepared from different methods and feedstocks. Journal of Cleaner Production. 2021;320:128759.https://doi.org/10.1016/j.jclepro.2021.128759
  96. Shareef TM, Zhao B. The fundamentals of biochar as a soil amendment tool and management in agriculture scope: an overview for farmers and gardeners. Journal of Agricultural Chemistry and Environment. 2016;6(1):38-61.https://doi.org/10.4236/jacen.2017.61003
  97. Lee XJ, Lee LY, Gan S, Thangalazhy-Gopakumar S, Ng HK. Biochar potential evaluation of palm oil wastes through slow pyrolysis: thermochemical characterization and pyrolytic kinetic studies. Bioresource Technology. 2017;236:155-63.https://doi.org/10.1016/j.biortech.2017.03.105
  98. Lee J, Yang X, Cho SH, Kim JK, Lee SS, Tsang DC, et al. Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery and biochar fabrication. Applied Energy. 2017;185:214-22.https://doi.org/10.1016/j.apenergy.2016.10.092
  99. Lee J, Kim KH, Kwon EE. Biochar as a catalyst. Renewable and Sustainable Energy Reviews. 2017;77:70-79.https://doi.org/10.1016/j.rser.2017.04.002
  100. Jeyasubramanian K, Thangagiri B, Sakthivel A, Raja JD, Seenivasan S, Vallinayagam P, et al. A complete review on biochar: Production, property, multifaceted applications, interaction mechanism and computational approach. Fuel. 2021;292:120243.https://doi.org/10.1016/j.fuel.2021.120243
  101. Leng L, Xiong Q, Yang L, Li H, Zhou Y, Zhang W, et al. An overview on engineering the surface area and porosity of biochar. Science of the Total Environment. 2021;763:144204.https://doi.org/10.1016/j.scitotenv.2020.144204
  102. Hu R, Xiao J, Wang T, Gong Y, Chen G, Chen L, Tian X. Highly concentrated amino-modified biochars using a plasma: Evolution of surface composition and porosity for heavy metal capture. Carbon. 2020;168:515-27.https://doi.org/10.1016/j.carbon.2020.07.012
  103. Weber K, Quicker P. Properties of biochar. Fuel. 2018;217:240-61.https://doi.org/10.1016/j.fuel.2017.12.054
  104. Ortiz LR, Torres E, Zalazar D, Zhang H, Rodriguez R, Mazza G. Influence of pyrolysis temperature and bio-waste composition on biochar characteristics. Renewable Energy. 2020;155:837-47.https://doi.org/10.1016/j.renene.2020.03.181
  105. Sato MK, de Lima HV, Costa AN, Rodrigues S, Pedroso AJ, de Freitas Maia CM. Biochar from Acai agroindustry waste: Study of pyrolysis conditions. Waste Management. 2019;96:158-67.https://doi.org/10.1016/j.wasman.2019.07.022
  106. Li S, Harris S, Anandhi A, Chen G. Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. Journal of Cleaner Production. 2019;215:890-902.https://doi.org/10.1016/j.jclepro.2019.01.106
  107. Teutscherova N, Vazquez E, Masaguer A, Navas M, Scow KM, Schmidt R, Benito M. Comparison of lime-and biochar-mediated pH changes in nitrification and ammonia oxidizers in degraded acid soil. Biology and Fertility of Soils. 2017;53:811-21.https://doi.org/10.1007/s00374-017-1222
  108. Li S, Barreto V, Li R, Chen G, Hsieh YP. Nitrogen retention of biochar derived from different feedstocks at variable pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis. 2018;133:136-46.https://doi.org/10.1016/j.jaap.2018.04.010
  109. Li R, Liang W, Wang JJ, Gaston LA, Huang D, Huang H, et al. Facilitative capture of As (V), Pb (II) and methylene blue from aqueous solutions with MgO hybrid sponge-like carbonaceous composite derived from sugarcane leafy trash. Journal of Environmental Management. 2018;212:77-87.https://doi.org/10.1016/j.jenvman.2017.12.034
  110. Wu D, Senbayram M, Zang H, Ugurlar F, Aydemir S, Brüggemann N, et al. Effect of biochar origin and soil pH on greenhouse gas emissions from sandy and clay soils. Applied Soil Ecology. 2018;129:121-27.https://doi.org/10.1016/j.apsoil.2018.05.009
  111. Chandra S, Bhattacharya J. Influence of temperature and duration of pyrolysis on the property heterogeneity of rice straw biochar and optimization of pyrolysis conditions for its application in soils. Journal of Cleaner Production. 2019;215:1123-39.https://doi.org/10.1016/j.jclepro.2019.01.079
  112. Frankel ML, Bhuiyan TI, Veksha A, Demeter MA, Layzell DB, Helleur RJ, et al. Removal and biodegradation of naphthenic acids by biochar and attached environmental biofilms in the presence of co-contaminating metals. Bioresource Technology. 2016;216:352-61.https://doi.org/10.1016/j.biortech.2016.05.084
  113. Lin JC, Mariuzza D, Volpe M, Fiori L, Ceylan S, Goldfarb JL. Integrated thermochemical conversion process for valorizing mixed agricultural and dairy waste to nutrient-enriched biochars and biofuels. Bioresource Technology. 2021; 328:124765.https://doi.org/10.1016/j.biortech.2021.124765
  114. Wang HT, Ding J, Chi QQ, Li G, Pu Q, Xiao ZF, Xue XM. The effect of biochar on soil-plant-earthworm-bacteria system in metal (loid) contaminated soil. Environmental Pollution. 2020;263:114610.https://doi.org/10.1016/j.envpol.2020.114610
  115. Wang J, Zhao Z, Zhang Y. Enhancing anaerobic digestion of kitchen wastes with biochar: Link between different properties and critical mechanisms of promoting interspecies electron transfer. Renewable Energy. 2021;167:791-99.https://doi.org/10.1016/j.renene.2020.11.153
  116. Zhou Y, Qin S, Verma S, Sar T, Sarsaiya S, Ravindran B, et al. Production and beneficial impact of biochar for environmental application: a comprehensive review. Bioresource Technology. 2021; 337:125451.https://doi.org/10.1016/j.biortech.2021.125451
  117. Tripathi M, Sahu JN, Ganesan P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews. 2016;55:467-81.https://doi.org/10.1016/j.rser.2015.10.122
  118. Wei X, Wang X, Gao B, Zou W, Dong L. Facile ball-milling synthesis of CuO/biochar nanocomposites for efficient removal of reactive red 120. ACS Omega. 2020;5(11):5748-55.https://doi.org/10.1021/acsomega.9b03787
  119. Hassan MF, Sabri MA, Fazal H, Hafeez A, Shezad N, Hussain M. Recent trends in activated carbon fibers production from various precursors and applications—A comparative review. Journal of Analytical and Applied Pyrolysis. 2020;145:104715.https://doi.org/10.1016/j.jaap.2019.104715
  120. de Jesus Duarte S, Glaser B, Pellegrino Cerri CE. Effect of biochar particle size on physical, hydrological and chemical properties of loamy and sandy tropical soils. Agronomy. 2019;9(4):165.https://doi.org/10.3390/agronomy9040165
  121. Behnam H, Firouzi AF. Effects of synthesis method, feedstock type and pyrolysis temperature on physicochemical properties of biochar nanoparticles. Biomass Conversion and Biorefinery. 2023;13(15):13859-69.https://doi.org/10.1007/s13399-021-02108
  122. Hagemann N, Spokas K, Schmidt HP, Kägi R, Böhler MA, Bucheli TD. Activated carbon, biochar and charcoal: linkages and synergies across pyrogenic carbon’s ABC s. Water. 2018;10(2):182.https://doi.org/10.3390/w10020182
  123. Song B, Cao X, Gao W, Aziz S, Gao S, Lam CH, Lin R. Preparation of nanobiochar from conventional biorefineries for high-value applications. Renewable and Sustainable Energy Reviews. 2022;157:112057.https://doi.org/10.1016/j.rser.2021.112057
  124. Yu Y, Qiao N, Wang D, Zhu Q, Fu F, Cao R, et al. Fluffy honeycomb-like activated carbon from popcorn with high surface area and well-developed porosity for ultra-high efficiency adsorption of organic dyes. Bioresource Technology. 2019; 285:121340.https://doi.org/10.1016/j.biortech.2019.121340
  125. Allohverdi T, Mohanty AK, Roy P, Misra M. A review on current status of biochar uses in agriculture. Molecules. 2021;26(18):5584.https://doi.org/10.3390/molecules26185584
  126. Lopes RP, Astruc D. Biochar as a support for nanocatalysts and other reagents: Recent advances and applications. Coordination Chemistry Reviews. 2021;426:213585.https://doi.org/10.1016/j.ccr.2020.213585
  127. Reza MS, Yun CS, Afroze S, Radenahmad N, Bakar MS, Saidur R, et al. Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review. Arab Journal of Basic and Applied Sciences. 2020;27(1):208-38.https://doi.org/10.1080/25765299.2020.1766799
  128. Homagain K, Shahi C, Luckai N, Sharma M. Life cycle cost and economic assessment of biochar-based bioenergy production and biochar land application in Northwestern Ontario, Canada. Forest Ecosystems. 2016;3:1-0.https://doi.org/10.1186/s40663-016-0081-8
  129. Jiang C, Bo J, Xiao X, Zhang S, Wang Z, Yan G, et al. Converting waste lignin into nanobiochar as a renewable substitute of carbon black for reinforcing styrene-butadiene rubber. Waste Management. 2020;102:732-42.https://doi.org/10.1016/j.wasman.2019.11.019
  130. Predoi SA, Ciobanu SC, Chifiriuc CM, Iconaru SL, Predoi D, Negrila CC, et al. Sodium bicarbonate-hydroxyapatite used for removal of lead ions from aqueous solution. Ceramics International. 2024;50(1):1742-55.https://doi.org/10.1016/j.ceramint.2023.10.273
  131. Predoi SA, Ciobanu SC, Chifiriuc MC, Motelica-Heino M, Predoi D, Iconaru SL. Hydroxyapatite nanopowders for effective removal of strontium ions from aqueous solutions. Materials. 2022;16(1):229.https://doi.org/10.3390/ma16010229
  132. Predoi D, Iconaru SL, Predoi MV, Motelica-Heino M. Removal and oxidation of As (III) from water using iron oxide coated CTAB as adsorbent. Polymers. 2020;12(8):1687.https://doi.org/10.3390/polym12081687
  133. Jiang C, Yue F, Li C, Zhou S, Zheng L. Polyethyleneimine-modified lobster shell biochar for the efficient removal of copper ions in aqueous solution: Response surface method optimization and adsorption mechanism. Journal of Environmental Chemical Engineering. 2022; 10(6):108996.https://doi.org/10.1016/j.jece.2022.108996
  134. Chen C, Sun H, Zhang S, Su X. Structure-property relationship and mechanism of peroxymonosulfate activation by nitrogen-doped biochar for organic contaminant oxidation. Applied Surface Science. 2023;609:155294.https://doi.org/10.1016/j.apsusc.2022.155294
  135. Lyu H, Xia S, Tang J, Zhang Y, Gao B, Shen B. Thiol-modified biochar synthesized by a facile ball-milling method for enhanced sorption of inorganic Hg2+ and organic CH3Hg+. Journal of Hazardous Materials. 2020;384:121357.https://doi.org/10.1016/j.jhazmat.2019.121357
  136. Jin J, Li S, Peng X, Liu W, Zhang C, Yang Y, et al. HNO3 modified biochars for uranium (VI) removal from aqueous solution. Bioresource Technology. 2018;256:247-53.https://doi.org/10.1016/j.biortech.2018.02.022
  137. Ghanim B, O’Dwyer TF, Leahy JJ, Willquist K, Courtney R, Pembroke JT, Murnane JG. Application of KOH modified seaweed hydrochar as a biosorbent of vanadium from aqueous solution: Characterisations, mechanisms and regeneration capacity. Journal of Environmental Chemical Engineering. 2020;8(5):104176.https://doi.org/10.1016/j.jece.2020.104176
  138. Guo F, Bao L, Wang H, Larson SL, Ballard JH, Knotek-Smith HM, et al. A simple method for the synthesis of biocharnanodots using hydrothermal reactor. MethodsX. 2020;7:101022.https://doi.org/10.1016/j.mex.2020.101022
  139. Chen L, Chen XL, Zhou CH, Yang HM, Ji SF, Tong DS, Zhong ZK, et al. Environmental-friendly montmorillonite-biochar composites: Facile production and tunable adsorption-release of ammonium and phosphate. Journal of Cleaner Production. 2017;156:648-59.https://doi.org/10.1016/j.jclepro.2017.04.050
  140. Tao Q, Li B, Chen Y, Zhao J, Li Q, Chen Y, et al. An integrated method to produce fermented liquid feed and biologically modified biochar as cadmium adsorbents using corn stalks. Waste Management. 2021;127:112-20.https://doi.org/10.1016/j.wasman.2021.04.027
  141. Naghdi M, Taheran M, Pulicharla R, Rouissi T, Brar SK, Verma M, Surampalli RY. Pine-wood derived nanobiochar for removal of carbamazepine from aqueous media: Adsorption behavior and influential parameters. Arabian Journal of Chemistry. 2019;12(8):5292-301.https://doi.org/10.1016/j.arabjc.2016.12.025
  142. Naghdi M, Taheran M, Brar SK, Kermanshahi-Pour A, Verma M, Surampalli RY. Immobilized laccase on oxygen functionalized nanobiochars through mineral acids treatment for removal of carbamazepine. Science of the Total Environment. 2017;584:393-401.https://doi.org/10.1016/j.scitotenv.2017.01.021
  143. Zhang M, Gao B, Varnoosfaderani S, Hebard A, Yao Y, Inyang M. Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresource Technology. 2013;130:457-62.https://doi.org/10.1016/j.biortech.2012.11.132
  144. Mohan D, Kumar S, Srivastava A. Fluoride removal from ground water using magnetic and nonmagnetic corn stoverbiochars. Ecological Engineering. 2014;73:798-808.https://doi.org/10.1016/j.ecoleng.2014.08.017
  145. Wang S, Gao B, Zimmerman AR, Li Y, Ma L, Harris WG, Migliaccio KW. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresource Technology. 2015;175:391-95.https://doi.org/10.1016/j.biortech.2014.10.104
  146. Zhang M, Gao B, Yao Y, Xue Y, Inyang M. Synthesis, characterization and environmental implications of graphene-coated biochar. Science of the Total Environment. 2012;435:567-72.https://doi.org/10.1016/j.scitotenv.2012.07.038
  147. Yao Y, Gao B, Chen J, Zhang M, Inyang M, Li Y, et al. Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: characterization and phosphate removal potential. Bioresource Technology. 2013;138:8-13.https://doi.org/10.1016/j.biortech.2013.03.057
  148. Yao Y, Gao B, Fang J, Zhang M, Chen H, Zhou Y, et al. Characterization and environmental applications of clay–biochar composites. Chemical Engineering Journal. 2014;242:136-43.https://doi.org/10.1016/j.cej.2013.12.062
  149. Wang H, Gao B, Wang S, Fang J, Xue Y, Yang K. Removal of Pb (II), Cu (II) and Cd (II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Bioresource Technology. 2015;197:356-62.https://doi.org/10.1016/j.biortech.2015.08.132
  150. Wang SY, et al. Regeneration of magnetic biochar derived from eucalyptus leaf residue for lead (II) removal. Bioresource Technology. 2015;186:p. 360-64.https://doi.org/10.1016/j.biortech.2015.03.139
  151. Lian F, Yu W, Zhou Q, Gu S, Wang Z, Xing B. Size matters: nanobiochar triggers decomposition and transformation inhibition of antibiotic resistance genes in aqueous environments. Environmental Science and Technology. 2020;54(14):8821-29.https://doi.org/10.1021/acs.est.0c02227

Downloads

Download data is not yet available.