Research Articles
Vol. 12 No. Sp2 (2025): Current Trends in Plant Science and Microbiome for Sustainability
Exploration of endophytic Bacillus -derived secondary metabolites from mosses through GC-MS profiling
Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304 022, India
Department of Biotechnology, Institute of Integrated Learning in Management University (IILM), Greater Noida 201 306, India
Bio
Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304 022, India
Abstract
Bacterial metabolites produced by endophytic bacteria facilitate novel drug development for animals, humans and plants. This study aimed to identify the different secondary metabolites produced by moss-derived endophytic bacteria Bacillus pumilus. Endophytic bacteria were isolated from surface- sterilized mosses, screened for enzymatic activity and identified via 16S rDNA sequencing. Secondary metabolites were extracted, analyzed using FTIR for functional groups and characterized through GC-MS. Morphological, biochemical and molecular (16S rDNA) characterization was carried out for the isolates from three moss species Hymenostylium recurvirostrum, Barbula viennealis and Plagiothecium cavifolium. Each isolate can produce at least two industrially significant enzymes including esterase, cellulase, amylases and proteases. Gas chromatogram mass spectroscopy (GC-MS) of B. pumilus extract demonstrated the occurrence of the compounds such as Pentadecanoic acid, 13 methyl-, methyl ester, Benzoic acid, 2- amino-6- chloro-methyl ester, Molybdenum, tricarbonyl tris (trimethyl phosphite-P)-, 3'H-Cycloprop(1,2)-5- cholest-1-en-3-one, Benzaldehyde,4-methoxy N hexadecanoic acid (Palmitic acid), Tungsten, dicarbonyl-(ü-4-pinocarvone) [1,2-bis (dimethyl phosphine) ethane] Boronic acid, ethyl-, dimethyl ester Phenol, 2,6-bis (1,1-dimethyl ethyl)-, Stigmastan-6,22-dien, 3,5-dihydro, Phthalic acid, 2TMS derivative Prostaglandin D(2), O, O'-bis (trimethylsilyl)-, trimethylsilyl ester. These volatile organic compounds hold the potential as favorable candidates for advancing pharmaceutics and agriculture industries.
References
- 1. Tang JY, Ma J, Li XD, Li YH. Illumina sequencing-based community analysis of bacteria associated with different bryophytes collected from Tibet, China. BMC Microbiol. 2016;16:1–5. https://doi.org/10.1186/s12866-016-0892-3
- 2. Stelmasiewicz M, Świątek Ł, Gibbons S, Ludwiczuk A. Bioactive compounds produced by endophytic microorganisms associated with bryophytes—the “bryendophytes”. Molecules. 2023;28:3246. https://doi.org/10.
- 3390/molecules28073246
- 3. Gao H, Li P, Xu X, Zeng Q, Guan W. Research on volatile organic compounds from Bacillus subtilis CF-3: biocontrol effects on fruit fungal pathogens and dynamic changes during fermentation. Front Microbiol. 2018;9:456. https://doi.org/10.3389/fmicb.2018.00456
- 4. Insuk, C, Kuncharoen N, Cheeptham N, Tanasupawat S, Pathom-Aree W. Bryophytes harbor cultivable actinobacteria with plant growth promoting potential. Front Microbiol. 2020;11:2267. https://doi.org/10.3389/fmicb.
- 2020.563047
- 5. Sansinenea E, Ortiz A. Secondary metabolites of soil Bacillus spp. Biotechnol Lett. 2011;33:1523–38. https://doi.org/
- 10.1007/s10529-011-0617-5
- 6. Khalil, R, Djadouni F, Elbahloul Y, Omar S. The influence of cultural and physical conditions on the antimicrobial activity of bacteriocin produced by a newly isolated Bacillus megaterium 22 strain. Afr J Food Sci. 2009;3:011–022. https://doi.org/10.3923/pjn.2009.242.250
- 7. Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris, B, Fickers P. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Fact. 2009;8:1–12. https://doi.org/10.1186/1475-2859-8-63
- 8. Zhang X, Li B, Wang Y, Guo Q, Lu X, Li S, Ma P. Lipopeptides, a novel protein and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1. Appl Microbiol Biotechnol. 2013;97:9525–34. https://doi.org/10.1007/s00253-013-5198-x
- 9. Insuk C, Pongpamorn P, Forsythe A, Matsumoto A, Ōmura S, Pathom-Aree W, et al. Taxonomic and metabolite diversities of moss-associated Actinobacteria from Thailand. Metabolites. 2021;12:22. https://doi.org/10.3390/metabo12010022.
- 10. Dahal RH, Kim J. Fluviicola kyonggii sp. nov., a bacterium isolated from forest soil and emended description of the genus Fluviicola. Int J Syst Evol Microbiol. 2018;68:1885–89. https://doi.org/10.1099/ijsem.0.002759
- 11. Ullah N, Rehman MU, Sarwar A, Nadeem M, Nelofer R, Shakir HA, et al. Purification, characterization and application of alkaline protease enzyme from a locally isolated Bacillus cereus strain. Fermentation. 2022;8:628. https://doi.org/10.3390/fermentation8110628
- 12. Sierra G. A simple method for the detection of lipolytic activity of micro- organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie Van Leeuwenhoek. 1957;23:15–22. https://doi.org/10.1007/BF02545855
- 13. Teather RM, Wood PJ. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol. 1982;43:777–80. https://doi.org/10.1128/aem.
- 43.4.777-780.1982
- 14. Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B. Microbial α-amylases: a biotechnological perspective. Process Biochem. 2003;38:1599–616. https://doi.org/10.1016/S0032-9592(03)00053-0
- 15. Koneman EW, Allen SD, Janda WM, Schreckenberger PC, Woods G. Diagnóstico microbiológico. texto e Atlas Colorido. 5th edn. MEDSI Editora Médica e Científica, Rio de Janeiro 2001. Bazzicalupo M, Fani R. The use of RAPD for generating specific DNA probes for microorganisms. In Species Diagnostics Protocols. Humana Press; 1996. p. 155‒75.
- 16. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38:3022–27. https://doi.org/10.1093/molbev/msab120
- 17. Prasher IB, Dhanda RK. GC-MS analysis of secondary metabolites of endophytic Nigrospora sphaerica isolated from Parthenium hysterophorus. Int J Pharm Sci Rev Res. 2017;44:217–23.
- 18. Lone AS, Ravindran KC, Jeandet P. Evaluation of antimicrobial activity and bioactive compound analysis of Verbascum thapsus L. A folklore medicinal plant. Phytomed. 2024;4:100560. https://doi.org/10.1016/j.phyplu.2024.
- 100560
- 19. Pandey S, Pandey S, Alam A. Isolation and characterization of endophytic bacteria associated with gametophytes of bryophytes in Mount Abu (Rajasthan). Rhizosphere 2022;24:100592. https://doi.org/10.1016/j.rhisph.2022.100592
- 20. Bragina A, Berg C, Müller H, Moser D, Berg G. Insights into functional bacterial diversity and its effects on Alpine bog ecosystem functioning. Sci Rep. 2013;3:1955. https://doi.org/10.1038/srep01955
- 21. Koua FHM, Kimbara K, Tani A. Bacterial-biota dynamics of eight bryophyte species from different ecosystems. Saudi J Biol Sci. 2015;22:204–10. https://doi.org/10.1016/j.sjbs.2014.07.009
- 22. Dangar BV, Chavada P, Bhatt PJ, Raviya R. Reviewing bryophyte-microorganism association: insights into environmental optimization. Front Microbiol. 2024;15:1407391. https://doi.org/10.3389/fmicb.2024.1407391
- 23. El-Deeb B, Bazaid S, Gherbawy Y, Elhariry H. Characterization of endophytic bacteria associated with rose plant (Rosa damascena trigintipeta) during flowering stage and their plant growth promoting traits. J Plant Interact. 2017;7:248–53. https://doi.org/10.1080/17429145.2011.637161
- 24. Carro L, Menéndez E. Knock, knock-let the bacteria. In: enzymatic potential of plant-associated bacteria. In: Sharma V, Salwan R, Tawfeeq Al-Ani L, editors. Molecular aspects of plant beneficial microbes in agriculture. Academic Press; 2020. p. 169–78. https://doi.org/10.1016/B978-0-12-818469-1.00014-6
- 25. Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Barka AE. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol. 2005;71:1685–93. https://doi.org/10.1128/AEM.71.4.1685-1693.2005
- 26. Bahadir PS, Liaqat F, Eltem R. Plant growth promoting properties of phosphate solubilizing Bacillus species isolated from the Aegean Region of Turkey. Turk J Bot. 2018;42:183–96. https://doi.org/10.3906/bot-1706-51
- 27. Danilova I, Sharipova M. The practical potential of Bacilli and their enzymes for industrial production. Front Microbiol. 2018;11:1782. https://doi.org/10.3389/fmicb.2020.01782
- 28. Miller RA, Beno SM, Kent DJ, Carroll LM, Martin NH, Boor KJ, Kovac J. Bacillus wiedmannii sp. nov., a psychrotolerant and cytotoxic Bacillus cereus group species isolated from dairy foods and dairy environments. Int J Syst Evol Microbiol. 2016;66:4744. https://doi.org/10.1099/ijsem.0.001421
- 29. Fu X, Gong L, Liu Y, Lai Q, Li G, Shao Z. Bacillus pumilus group comparative genomics: toward pangenome features, diversity and marine environmental adaptation. Front Microbiol. 2021;12:571212. https://doi.org/10.3389/fmicb.2021.571212
- 30. Fan B, Blom J, Klenk HP, Borriss R. Bacillus amyloliquefaciens, Bacillus velezensis and Bacillus siamensis form an “operational group B. amyloliquefaciens” within the B. subtilis species complex. Front Microbiol. 2017;8:22. https://doi.org/10.3389/fmicb.2017.00022
- 31. Al-Ajlani MM, Hasnain S. Bacteria exhibiting antimicrobial activities; screening for antibiotics and the associated genetic studies. Open Conf Proc J. 2010;1:230–38. https://doi.org/10.2174/2210289201001010230
- 32. Ortiz A, Sansinenea E. Chemical compounds produced by Bacillus sp. factories and their role in nature. Mini Rev Med Chem. 2019;19:373–80. https://doi.org/10.2174/1389557518666180829113612
- 33. Akpor OB, Okonkwo MA, Ogunnusi TA, Oluba OM. Production, characterization and growth inhibitory potential of metabolites produced by Pseudomonas and Bacillus species. Sci Afr. 2022;15:e01085. https://doi.org/10.1016/j.sciaf.
- 2021.e01085
- 34. Nas F, Aissaoui N, Mahjoubi M, Mosbah A, Arab M, Abdelwahed S, et al. A comparative GC–MS analysis of bioactive secondary metabolites produced by halotolerant Bacillus spp. isolated from the Great Sebkha of Oran. Int Microbiol. 2021;24:455–70. https://doi.org/10.1007/s10123-021-00185-x
- 35. Munjal V, Nadakkakath AV, Sheoran N, Kundu A, Venugopal V, Subaharan K, et al. Genotyping and identification of broad-spectrum antimicrobial volatiles in black pepper root endophytic biocontrol agent, Bacillus megaterium BP17. Biol Control. 2016;96:66–76. https://doi.org/10.1016/j.biocontrol.2015.09.005
Downloads
Download data is not yet available.