Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. Sp2 (2025): Current Trends in Plant Science and Microbiome for Sustainability

Exploration of endophytic Bacillus -derived secondary metabolites from mosses through GC-MS profiling

DOI
https://doi.org/10.14719/pst.4667
Submitted
15 August 2024
Published
25-06-2025

Abstract

Bacterial metabolites produced by endophytic bacteria facilitate novel drug development for animals, humans and plants. This study aimed to identify the different secondary metabolites produced by moss-derived endophytic bacteria Bacillus pumilus. Endophytic bacteria were isolated from surface- sterilized mosses, screened for enzymatic activity and identified via 16S rDNA sequencing. Secondary metabolites were extracted, analyzed using FTIR for functional groups and characterized through GC-MS. Morphological, biochemical and molecular (16S rDNA) characterization was carried out for the isolates from three moss species Hymenostylium recurvirostrum, Barbula viennealis and Plagiothecium cavifolium. Each isolate can produce at least two industrially significant enzymes including esterase, cellulase, amylases and proteases. Gas chromatogram mass spectroscopy (GC-MS) of B. pumilus extract demonstrated the occurrence of the compounds such as Pentadecanoic acid, 13 methyl-, methyl ester, Benzoic acid, 2- amino-6- chloro-methyl ester, Molybdenum, tricarbonyl tris (trimethyl phosphite-P)-, 3'H-Cycloprop(1,2)-5- cholest-1-en-3-one, Benzaldehyde,4-methoxy N hexadecanoic acid (Palmitic acid), Tungsten, dicarbonyl-(ü-4-pinocarvone) [1,2-bis (dimethyl phosphine) ethane] Boronic acid, ethyl-, dimethyl ester Phenol, 2,6-bis (1,1-dimethyl ethyl)-, Stigmastan-6,22-dien, 3,5-dihydro, Phthalic acid, 2TMS derivative Prostaglandin D(2), O, O'-bis (trimethylsilyl)-, trimethylsilyl ester. These volatile organic compounds hold the potential as favorable candidates for advancing pharmaceutics and agriculture industries.

References

  1. 1. Tang JY, Ma J, Li XD, Li YH. Illumina sequencing-based community analysis of bacteria associated with different bryophytes collected from Tibet, China. BMC Microbiol. 2016;16:1–5. https://doi.org/10.1186/s12866-016-0892-3
  2. 2. Stelmasiewicz M, Świątek Ł, Gibbons S, Ludwiczuk A. Bioactive compounds produced by endophytic microorganisms associated with bryophytes—the “bryendophytes”. Molecules. 2023;28:3246. https://doi.org/10.
  3. 3390/molecules28073246
  4. 3. Gao H, Li P, Xu X, Zeng Q, Guan W. Research on volatile organic compounds from Bacillus subtilis CF-3: biocontrol effects on fruit fungal pathogens and dynamic changes during fermentation. Front Microbiol. 2018;9:456. https://doi.org/10.3389/fmicb.2018.00456
  5. 4. Insuk, C, Kuncharoen N, Cheeptham N, Tanasupawat S, Pathom-Aree W. Bryophytes harbor cultivable actinobacteria with plant growth promoting potential. Front Microbiol. 2020;11:2267. https://doi.org/10.3389/fmicb.
  6. 2020.563047
  7. 5. Sansinenea E, Ortiz A. Secondary metabolites of soil Bacillus spp. Biotechnol Lett. 2011;33:1523–38. https://doi.org/
  8. 10.1007/s10529-011-0617-5
  9. 6. Khalil, R, Djadouni F, Elbahloul Y, Omar S. The influence of cultural and physical conditions on the antimicrobial activity of bacteriocin produced by a newly isolated Bacillus megaterium 22 strain. Afr J Food Sci. 2009;3:011–022. https://doi.org/10.3923/pjn.2009.242.250
  10. 7. Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris, B, Fickers P. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Fact. 2009;8:1–12. https://doi.org/10.1186/1475-2859-8-63
  11. 8. Zhang X, Li B, Wang Y, Guo Q, Lu X, Li S, Ma P. Lipopeptides, a novel protein and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1. Appl Microbiol Biotechnol. 2013;97:9525–34. https://doi.org/10.1007/s00253-013-5198-x
  12. 9. Insuk C, Pongpamorn P, Forsythe A, Matsumoto A, Ōmura S, Pathom-Aree W, et al. Taxonomic and metabolite diversities of moss-associated Actinobacteria from Thailand. Metabolites. 2021;12:22. https://doi.org/10.3390/metabo12010022.
  13. 10. Dahal RH, Kim J. Fluviicola kyonggii sp. nov., a bacterium isolated from forest soil and emended description of the genus Fluviicola. Int J Syst Evol Microbiol. 2018;68:1885–89. https://doi.org/10.1099/ijsem.0.002759
  14. 11. Ullah N, Rehman MU, Sarwar A, Nadeem M, Nelofer R, Shakir HA, et al. Purification, characterization and application of alkaline protease enzyme from a locally isolated Bacillus cereus strain. Fermentation. 2022;8:628. https://doi.org/10.3390/fermentation8110628
  15. 12. Sierra G. A simple method for the detection of lipolytic activity of micro- organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie Van Leeuwenhoek. 1957;23:15–22. https://doi.org/10.1007/BF02545855
  16. 13. Teather RM, Wood PJ. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol. 1982;43:777–80. https://doi.org/10.1128/aem.
  17. 43.4.777-780.1982
  18. 14. Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B. Microbial α-amylases: a biotechnological perspective. Process Biochem. 2003;38:1599–616. https://doi.org/10.1016/S0032-9592(03)00053-0
  19. 15. Koneman EW, Allen SD, Janda WM, Schreckenberger PC, Woods G. Diagnóstico microbiológico. texto e Atlas Colorido. 5th edn. MEDSI Editora Médica e Científica, Rio de Janeiro 2001. Bazzicalupo M, Fani R. The use of RAPD for generating specific DNA probes for microorganisms. In Species Diagnostics Protocols. Humana Press; 1996. p. 155‒75.
  20. 16. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38:3022–27. https://doi.org/10.1093/molbev/msab120
  21. 17. Prasher IB, Dhanda RK. GC-MS analysis of secondary metabolites of endophytic Nigrospora sphaerica isolated from Parthenium hysterophorus. Int J Pharm Sci Rev Res. 2017;44:217–23.
  22. 18. Lone AS, Ravindran KC, Jeandet P. Evaluation of antimicrobial activity and bioactive compound analysis of Verbascum thapsus L. A folklore medicinal plant. Phytomed. 2024;4:100560. https://doi.org/10.1016/j.phyplu.2024.
  23. 100560
  24. 19. Pandey S, Pandey S, Alam A. Isolation and characterization of endophytic bacteria associated with gametophytes of bryophytes in Mount Abu (Rajasthan). Rhizosphere 2022;24:100592. https://doi.org/10.1016/j.rhisph.2022.100592
  25. 20. Bragina A, Berg C, Müller H, Moser D, Berg G. Insights into functional bacterial diversity and its effects on Alpine bog ecosystem functioning. Sci Rep. 2013;3:1955. https://doi.org/10.1038/srep01955
  26. 21. Koua FHM, Kimbara K, Tani A. Bacterial-biota dynamics of eight bryophyte species from different ecosystems. Saudi J Biol Sci. 2015;22:204–10. https://doi.org/10.1016/j.sjbs.2014.07.009
  27. 22. Dangar BV, Chavada P, Bhatt PJ, Raviya R. Reviewing bryophyte-microorganism association: insights into environmental optimization. Front Microbiol. 2024;15:1407391. https://doi.org/10.3389/fmicb.2024.1407391
  28. 23. El-Deeb B, Bazaid S, Gherbawy Y, Elhariry H. Characterization of endophytic bacteria associated with rose plant (Rosa damascena trigintipeta) during flowering stage and their plant growth promoting traits. J Plant Interact. 2017;7:248–53. https://doi.org/10.1080/17429145.2011.637161
  29. 24. Carro L, Menéndez E. Knock, knock-let the bacteria. In: enzymatic potential of plant-associated bacteria. In: Sharma V, Salwan R, Tawfeeq Al-Ani L, editors. Molecular aspects of plant beneficial microbes in agriculture. Academic Press; 2020. p. 169–78. https://doi.org/10.1016/B978-0-12-818469-1.00014-6
  30. 25. Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Barka AE. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol. 2005;71:1685–93. https://doi.org/10.1128/AEM.71.4.1685-1693.2005
  31. 26. Bahadir PS, Liaqat F, Eltem R. Plant growth promoting properties of phosphate solubilizing Bacillus species isolated from the Aegean Region of Turkey. Turk J Bot. 2018;42:183–96. https://doi.org/10.3906/bot-1706-51
  32. 27. Danilova I, Sharipova M. The practical potential of Bacilli and their enzymes for industrial production. Front Microbiol. 2018;11:1782. https://doi.org/10.3389/fmicb.2020.01782
  33. 28. Miller RA, Beno SM, Kent DJ, Carroll LM, Martin NH, Boor KJ, Kovac J. Bacillus wiedmannii sp. nov., a psychrotolerant and cytotoxic Bacillus cereus group species isolated from dairy foods and dairy environments. Int J Syst Evol Microbiol. 2016;66:4744. https://doi.org/10.1099/ijsem.0.001421
  34. 29. Fu X, Gong L, Liu Y, Lai Q, Li G, Shao Z. Bacillus pumilus group comparative genomics: toward pangenome features, diversity and marine environmental adaptation. Front Microbiol. 2021;12:571212. https://doi.org/10.3389/fmicb.2021.571212
  35. 30. Fan B, Blom J, Klenk HP, Borriss R. Bacillus amyloliquefaciens, Bacillus velezensis and Bacillus siamensis form an “operational group B. amyloliquefaciens” within the B. subtilis species complex. Front Microbiol. 2017;8:22. https://doi.org/10.3389/fmicb.2017.00022
  36. 31. Al-Ajlani MM, Hasnain S. Bacteria exhibiting antimicrobial activities; screening for antibiotics and the associated genetic studies. Open Conf Proc J. 2010;1:230–38. https://doi.org/10.2174/2210289201001010230
  37. 32. Ortiz A, Sansinenea E. Chemical compounds produced by Bacillus sp. factories and their role in nature. Mini Rev Med Chem. 2019;19:373–80. https://doi.org/10.2174/1389557518666180829113612
  38. 33. Akpor OB, Okonkwo MA, Ogunnusi TA, Oluba OM. Production, characterization and growth inhibitory potential of metabolites produced by Pseudomonas and Bacillus species. Sci Afr. 2022;15:e01085. https://doi.org/10.1016/j.sciaf.
  39. 2021.e01085
  40. 34. Nas F, Aissaoui N, Mahjoubi M, Mosbah A, Arab M, Abdelwahed S, et al. A comparative GC–MS analysis of bioactive secondary metabolites produced by halotolerant Bacillus spp. isolated from the Great Sebkha of Oran. Int Microbiol. 2021;24:455–70. https://doi.org/10.1007/s10123-021-00185-x
  41. 35. Munjal V, Nadakkakath AV, Sheoran N, Kundu A, Venugopal V, Subaharan K, et al. Genotyping and identification of broad-spectrum antimicrobial volatiles in black pepper root endophytic biocontrol agent, Bacillus megaterium BP17. Biol Control. 2016;96:66–76. https://doi.org/10.1016/j.biocontrol.2015.09.005

Downloads

Download data is not yet available.