Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. Sp2 (2025): Current Trends in Plant Science and Microbiome for Sustainability

Induction of fungal disease resistance in rice mediated by bacterial endophytes

DOI
https://doi.org/10.14719/pst.4681
Submitted
16 August 2024
Published
25-06-2025

Abstract

Rice crops are being affected by destructive pathogens that cause disease. The climatic variations make the plants more vulnerable to different biotic stresses. Severe limitations are experienced in rice-growing regions due to fungal diseases such as blast and sheath blight. Synthetic chemicals are used extensively to treat plant diseases, which are more harmful to animals, plants and humans. Endophytes are adaptable, beneficial microorganisms that offer environmentally friendly solutions for disease control by symbiotic or mutual associations and live within and between plant cells, helping to increase nutrient availability in plants. The endophytes improve plant growth by production of plant hormones such as indole-3-acetic acid, auxin and gibberellic acid. This also induces systemic resistance by activating the ethylene, jasmonic acid and salicylic acid cycle to increasing peroxidase (PO), polyphenol oxidase (PPO), phenylalanine ammonia-lyase (PAL) and superoxide dismutase (SOD) during abnormal physiological processes which happens during pathogen infestation. It also produces secondary metabolic substances such as iturin, surfactin, zwittermycin A, 2,4 diacetyl phloroglucinol, etc., that have antibacterial and antifungal properties, which help to manage plant diseases. Utilizing bacterial endophytes as bio inputs on a large scale aids in the eco-friendly management of plant diseases, thus increasing productivity. This review paper highlights bacterial endophytes' role in managing rice's emerging fungal diseases by induction of systemic resistance, plant growth promotion, siderophore production, antibiosis, biostimulant and nutrient solubilization activities.

References

  1. 1. Nawaz ME, Malik K, Hassan MN. Rice-associated antagonistic bacteria suppress the Fusarium fujikoroi causing rice bakanae disease. Biocontrol. 2022 Feb;67(1):101–09. https:// doi.org/10.1007/s10526-021-10122-6
  2. 2. Sharma SK, Sharma D, Meena RP, Yadav MK, Hosahatti R, Dubey AK, et al. Recent insights into rice blast disease resistance. Blast Disease of Cereal Crops: Evolution and Adaptation in Context of Climate Change. Cham: Springer; 2021. p. 89–123. https://doi.org/10.1007/978-3-030-60585-8_7
  3. 3. Kabdwal BC, Sharma R, Kumar A, Kumar S, Singh KP, Srivastava RM. Efficacy of different combinations of microbial biocontrol agents against sheath blight of rice caused by Rhizoctonia solani. Egypt J Biol Pest Control. 2023 Mar 12;33(1):29. https://doi.org/10.1186/s41938-023-00671-6
  4. 4. Khaskheli MA, Wu L, Chen G, Chen L, Hussain S, Song D, et al. Isolation and Characterization of Root-Associated Bacterial Endophytes and Their Biocontrol Potential against Major Fungal Phytopathogens of Rice (Oryza sativa L.). Pathogens. 2020; 9(3):172. https://doi.org/10.3390/pathogens9030172 .
  5. 5. AghaKouchak A, Chiang F, Huning LS, Love CA, Mallakpour I, Mazdiyasni O, et al. Climate extremes and compound hazards in a warming world. Annu Rev Earth Planet Sci. 2020 May 30;48(1):519–48. https://doi.org/10.1146/annurev-earth-071719-055228
  6. 6. Jamali H, Sharma A, Roohi N, Srivastava AK. Biocontrol potential of Bacillus subtilis RH5 against sheath blight of rice caused by Rhizoctonia solani. J Basic Microbiol. 2020 Mar;60(3):268–80. https://doi.org/10.1002/jobm.201900347
  7. 7. Pandit MA, Kumar J, Gulati S, Bhandari N, Mehta P, Katyal R, et al. Major biological control strategies for plant pathogens. Pathogens. 2022 Feb 19;11(2):273. https://doi.org/10.3390/pathogens11020273
  8. 8. Shahzad R, Waqas M, Khan AL, Asaf S, Khan MA, Kang SM, et al. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol Biochem. 2016 Sep 1;106:236–43. https://doi.org/10.1016/j.plaphy.2016.05.006
  9. 9. Backman PA, Sikora RA. Endophytes: an emerging tool for biological control. Biological control. 2008 Jul 1;46(1):1–3. https://doi.org/10.1016/j.biocontrol.2008.03.009
  10. 10. Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev. 2015 Sep;79(3):293–320. https://doi.org/10.1128/mmbr.00050-14
  11. 11. Miyake I. Studien ueber die Pilze der Reispflanze in Japan. J Coll Agric Imp Univ Tokyo. 1910;2:237–76.
  12. 12. Singh RS. The rice blast in India. Int J Pest Manag B.. 1968 Oct 1;14(4):361–69. https://doi.org/10.1080/0533184
  13. 6809432314
  14. 13. Chen J, Xuan Y, Yi J, Xiao G, Yuan DP, Li D. Progress in rice sheath blight resistance research. Front Plant Sci. 2023 Mar 24;14:1141697. https://doi.org/10.3389/fpls.2023.1141697
  15. 14. Annegowda DC, Prasannakumar MK, Mahesh HB, Siddabasappa CB, Devanna P, Banakar SN, et al. Rice blast disease in India: present status and future challenges. Integr Adv Rice Res. 2021 Jul 21;21:157–97.
  16. 15. Padmanabhan SY, Chakrabarti NK, Mathur SC, Veeraraghavan J. Identification of pathogenic races of Pyricularia oryzae in India. Phytopathology. 1970 Jan 1;60(11):1574–77. https://doi.org/10.1094/Phyto-60-1574
  17. 16. Sharma TR, Rai AK, Gupta SK, Vijayan J, Devanna BN, Ray S. Rice blast management through host-plant resistance: retrospect and prospects. Agric Res. 2012 Mar;1:37–52. https://doi.org/10.1007/s40003-011-0003-5
  18. 17. Katsantonis D, Kadoglidou K, Dramalis C, Puigdollers P. Rice blast forecasting models and their practical value: a review. Phytopathol Mediterr. 2017 Aug 1:187–216. https://doi.org/10.14601/Phytopathol_Mediterr-18706
  19. 18. Rodriguez PA, Rothballer M, Chowdhury SP, Nussbaumer T, Gutjahr C, Falter-Braun P. Systems biology of plant-microbiome interactions. Mol plant. 2019 Jun 3;12(6):804–21. https://doi.org/10.1016/j.molp.2019.05.006
  20. 19. de Bary A. Morphologie und physiologie der pilze, flechten und myxomyceten. Engelmann; 1866. https://doi.org/
  21. 10.5962/bhl.title.120970
  22. 20. Fisher PJ, Petrini O. Fungal saprobes and pathogens as endophytes of rice (Oryza sativa L.). New Phytol. 1992 Jan;120(1):137–43. https://doi.org/10.1111/j.1469-8137.1992.tb01066.x
  23. 21. Mousavi SS, Karami A. Application of Endophyte microbes for production of secondary metabolites. Application of Microbes in Environmental and Microbial Biotechnology. 2022:1–37. https://doi.org/10.1016/j.micres.2020.126691
  24. 22. Lucero ME, Unc A, Cooke P, Dowd S, Sun S. Endophyte microbiome diversity in micropropagated Atriplex canescens and Atriplex torreyi var griffithsii. PloS one. 2011 Mar 17;6(3):e17693. https://doi.org/10.1371/journal.pone.0017693
  25. 23. Wang W, Zhai Y, Cao L, Tan H, Zhang R. Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L.). Microbiological Research. 2016 Jul 1;188:1–8. https://doi.org/10.1016/j.micres.2016.04.009
  26. 24. Kouzai Y, Akimoto-Tomiyama C. A seed-borne bacterium of rice, Pantoea dispersa BB1, protects rice from the seedling rot caused by the bacterial pathogen Burkholderia glumae. Life. 2022 May 26;12(6):791. https://doi.org/
  27. 10.3390/life12060791
  28. 25. Singh MK, Kushwaha C, Singh RK. Studies on endophytic colonization ability of two upland rice endophytes, Rhizobium sp. and Burkholderia sp., using green fluorescent protein reporter. Curr microbiol. 2009 Sep;59:240–43. https://doi.org/10.1007/s00284-009-9419-6
  29. 26. Mano H, Morisaki H. Endophytic bacteria in the rice plant. Microbes and environments. 2009;24(2):193. https://doi.org/10.1264/jsme2.23.109
  30. 27. Ikeda S, Fuji SI, Sato T, Furuya H, Naito H, Ytow N, et al. Microbial diversity in milled rice as revealed by ribosomal intergenic spacer analysis. Microbes and environments. 2007;22(2):165–74. https://doi.org/10.1264/jsme2.22.165
  31. 28. Walitang DI, Kim CG, Kim K, Kang Y, Kim YK, Sa T. The influence of host genotype and salt stress on the seed endophytic community of salt-sensitive and salt-tolerant rice cultivars. BMC plant biology. 2018 Dec;18:1–6. https://doi.org/10.1186/s12870-018-1261-1
  32. 29. Malfanova N, Lugtenberg BJ, Berg G. Bacterial endophytes: who and where, and what are they doing there? Molecular microbial ecology of the rhizosphere. 2013 May 3;1:391–403. https://doi.org/10.1002/9781118297674.ch36
  33. 30. Leonard S, Hommais F, Nasser W, Reverchon S. Plant–phytopathogen interactions: bacterial responses to environmental and plant stimuli. Environ Microbiol. 2017 May;19(5):1689–716. https://doi.org/10.1111/1462-2920.
  34. 13611
  35. 31. Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria. Annu Rev Microbiol. 2009 63(1):541–56. https://doi.org/10.1146/annurev.micro.62.081307.162918
  36. 32. Barret M, Briand M, Bonneau S, Préveaux A, Valière S, Bouchez O, et al. Emergence shapes the structure of the seed microbiota. Appl Environ Microbiol. 2015 Feb 15;81(4):1257–66. https://doi.org/10.1128/aem.03722-14
  37. 33. Tintjer T, Leuchtmann A, Clay K. Variation in horizontal and vertical transmission of the endophyte Epichloë elymi infecting the grass Elymus hystrix. New Phytol. 2008 Jul;179(1):236–46. https://doi.org/10.1111/j.1469-8137.2008.
  38. 02441.x
  39. 34. Hardoim PR, Hardoim CC, van Overbeek LS, van Elsas JD. Dynamics of seed-borne rice endophytes on early plant growth stages. PloS one. 2012 Feb 17;7(2):e30438. https://doi.org/10.1371/journal.pone.0030438
  40. 35. Rothman JA, Andrikopoulos C, Cox-Foster D, McFrederick QS. Floral and foliar sources affect the bee nest microbial community. Microb Ecol. 2019 Aug 15;78:506–16. https://doi.org/10.1007/s00248-018-1300-3
  41. 36. Kong Z, Liu H. Modification of Rhizosphere Microbial Communities: A Possible Mechanism of Plant Growth Promoting Rhizobacteria Enhancing Plant Growth and Fitness. Front Plant Sci. 2022 May 26;13. https://doi.org/
  42. 10.3389/fpls.2022.920813
  43. 37. Kumar V, Nautiyal CS. Plant abiotic and biotic stress alleviation: From an endophytic microbial perspective. Curr Microbiol. 2022 Oct;79(10):311. https://doi.org/10.1007/s00284-022-03012-2
  44. 38. Compant S, Cambon MC, Vacher C, Mitter B, Samad A, Sessitsch A. The plant endosphere world–bacterial life within plants. Environ Microbiol. 2021 Apr;23(4):1812–29. https://doi.org/10.1111/1462-2920.15240
  45. 39. Awais M, Tariq M, Ali A, Ali Q, Khan A, Tabassum B, et al. Isolation, characterization and inter-relationship of phosphate-solubilizing bacteria from the rhizosphere of sugarcane and rice. Biocatal Agric Biotechnol. 2017 Jul 1;11:312–21. https://doi.org/10.1016/j.bcab.2017.07.018
  46. 40. Madhaiyan M, Poonguzhali S, Kwon SW, Sa TM. Bacillus methylotrophicus sp. nov., a methanol-utilizing, plant-growth-promoting bacterium isolated from rice rhizosphere soil. Int J Syst Evol Microbiol. 2010 Oct;60(10):2490–95. https://doi.org/10.1099/ijs.0.015487-0
  47. 41.Devi PA, Magesh M, Rajappan K, Ravi V. Biosynthetic potential of endophytic Pseudomonas fluorescens against cotton wilt pathogen. Adv Appl Res. 2018;10(2):120–28. https:// doi.org/10.5958/2349-2104.2018.00020.7
  48. 42. Maela MP, Serepa-Dlamini MH. Genome sequence and characterisation of Peribacillus sp. strain AS_2, a bacterial endophyte isolated from Alectra sessiliflora. Microbiol Res. 2023 Dec 21;15(1):50–65. https://doi.org/10.3390/microbiolres15010004
  49. 43. Kaur H, Ranjan R, Singh P, Salvi P. Genomic and biotechnological interventions for the concurrent improvement of stress resilience and seed-associated traits in crops. Front Plant Sci. 2024 Jan 8;14:1359918. https://doi.org/10.
  50. 3389/fpls.2023.1359918
  51. 44. Danish M, Shahid M, Altaf M, Tyagi A, Ali S. Plant growth-promoting rhizobacteria and biocontrol agents triggered plant defence responses against phytopathogenic fungi and improved rice growth. Physiol Mol Plant Pathol. 2024 Jun 12:102337. https://doi.org/10.1016/j.pmpp.2024.102337
  52. 45. Satapute P, Paidi MK, Kurjogi M, Jogaiah S. Physiological adaptation and spectral annotation of Arsenic and Cadmium heavy metal-resistant and susceptible strain Pseudomonas taiwanensis. Environmental Pollut. 2019 Aug 1;251:555–63. https://doi.org/10.1016/j.envpol.2019.05.054
  53. 46. Jiao X, Takishita Y, Zhou G, Smith DL. Plant Associated Rhizobacteria for Biocontrol and Plant Growth Enhancement. Front Plant Sci. 2021 Mar 17;12. https://doi.org/10.3389/fpls.2021.634796
  54. 47. Dimkpa C, Weinand T, Asch F. Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant, cell Environ. 2009 Dec;32(12):1682–94. https://doi.org/10.1111/j.1365-3040.2009.02028.x
  55. 48. Tian F, Ding Y, Zhu H, Yao L, Du B. Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere.
  56. Braz J Microbiol. 2009 Apr;40(2):276–84. https://doi.org/10.1590/S1517-838220090002000013
  57. 49. Miethke M, Hou J, Marahiel MA. The siderophore-interacting protein YqjH acts as a ferric reductase in different iron assimilation pathways of Escherichia coli. Biochemistry. 2011 Dec 20;50(50):10951–64. https://doi.org/10.1021/bi201517h
  58. 50. Nagarajkumar M, Bhaskaran R, Velazhahan R. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol Res. 2004 Apr 30;159(1):73–81. https://doi.org/10.1016/j.micres.2004.01.005
  59. 51. Liu Y, Dai C, Zuo Y, Qiao J, Shen J, Yin X, et al. Characterization of Siderophores Produced by Bacillus velezensis YL2021 and Its Application in Controlling Rice Sheath Blight and Rice Blast. Phytopathology. 2024 Dec 17;114(12):2491–501. https://doi.org/10.1094/PHYTO-04-24-0148-R
  60. 52. Zeng J, Xu T, Cao L, Tong C, Zhang X, Luo D, et al. The role of iron competition in the antagonistic action of the rice endophyte Streptomyces sporocinereus OsiSh-2 against the pathogen Magnaporthe oryzae. Microb Ecol. 2018 Nov;76:1021–29. https://doi.org/10.1094/PHYTO-04-24-0148-R
  61. 53. Kumar V, Jain L, Jain SK, Chaturvedi S, Kaushal P. Bacterial endophytes of rice (Oryza sativa L.) and their potential for plant growth promotion and antagonistic activities. S. Afr. J. Bot. 2020 Nov 1;134:50–63. https://doi.org/10.1016/j.sajb.2020.02.017
  62. 54. Ashajyothi M, Velmurugan S, Kundu A, Balamurugan A, Chouhan V, Kumar A. Hydroxamate siderophores secreted by plant endophytic Pseudomonas putida elicit defense against blast disease in rice incited by Magnaporthe oryzae. Lett. Appl. Microbiol. 2023 Dec;76(12):ovad139. https://doi.org/10.1093/lambio/ovad139
  63. 55. Tu CK, Huang WD, Wang PH, Lin WL, Chen HY, Rau ST, et al. The rice endophytic bacterium Bacillus velezensis LS123N provides protection against multiple pathogens and enhances rice resistance to wind with an increase in yield. Biological Control. 2024 May 1;192:105507. https://doi.org/10.1016/j.biocontrol.2024.105507
  64. 56. Bonaterra A, Badosa E, Daranas N, Francés J, Roselló G, Montesinos E. Bacteria as biological control agents of plant diseases. Microorganisms. 2022 Aug 31;10(9):1759. https://doi.org/10.3390/microorganisms10091759
  65. 57. Singh R, Tandon V. Antibiotics: Past, Present, Future, and Clinical Pipeline. In: Recent Adv. Pharm. Innov. Res. 2023 Sep 12 (pp. 583–619). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-2302-1_24
  66. 58. Kumar M, Jaiswal S, Sodhi KK, Shree P, Singh DK, Agrawal PK, et al. Antibiotics bioremediation: perspectives on its ecotoxicity and resistance. Environ. Int. 2019 Mar 1;124:448–61. https://doi.org/10.1016/j.envint.2018.12.065
  67. 59. Joo HS, Otto M. Mechanisms of resistance to antimicrobial peptides in Staphylococci. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2015 Nov 1;1848(11):3055–61. https://doi.org/10.1016/j.bbamem.2015.02.009
  68. 60. Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiology Ecology. 2005 Jan 1;51(2):215–29. https://doi.org/10.1016/j.femsec.2004.08.006
  69. 61. Sirivella N, Gopalakrishnan C, Kannan R, Pushpam R, Uma D, Raveendran M, et al. Analysis of Bioactive Secondary Metabolites Produced by Endophytic Bacillus amyloliquefaciens against Rice Sheath Blight Pathogen Rhizoctonia solani. Agric Sci Dig. 2024. https:// doi.org/10.18805/ag.D-5984
  70. 62. Mishra R, Kushveer JS, Revanthbabu P, Sarma VV. Endophytic fungi and their enzymatic potential. Advances in endophytic fungal research: present status and future challenges. 2019:283–337. https://doi.org/10.1007/978-3-030-
  71. 03589-1_14
  72. 63. El-Tarabily KA, Sivasithamparam K. Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol Biochem. 2006 Jul 1;38(7):1505–20. https://doi.org/10.
  73. 1016/j.soilbio.2005.12.017
  74. 64. Bouizgarne B. Bacteria for plant growth promotion and disease management. In: Bacteria in agrobiology: disease management 2012 Nov 30 (pp. 15–47). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.
  75. 1007/978-3-642-33639-3_2
  76. 65. Deb L, Dutta P, Tombisana Devi RK, Thakuria D, Majumder D. Endophytic Beauveria bassiana can protect the rice plant from sheath blight of rice caused by Rhizoctonia solani and enhance plant growth parameters. Arch Microbiol. 2022 Sep;204(9):587. https://doi.org/10.1007/s00203-022-03211-2
  77. 66. Panicker S, Sayyed RZ. Hydrolytic enzymes from PGPR against plant fungal pathogens. In: Antifungal Metabolites of Rhizobacteria for Sustainable Agriculture 2022 Aug 28 (pp. 211–238). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-04805-0_10
  78. 67. Siddiqui IA, Shaukat SS, Sheikh IH, Khan A. Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J. Microbiol. Biotechnol. 2006 Jun;22:641–50. https://doi.org/10.1007/s11274-005-9084-2
  79. 68. Shabanamol S, Thampi M, Sajana P, Varghese S, Karthika S, George TK, et al. Characterization of the major antifungal extrolite from rice endophyte Lysinibacillus sphaericus against Rhizoctonia solani. Arch Microbiol. 2021 Jul;203(5):2605–13. https://doi.org/10.1007/s00203-021-02229-2
  80. 69. Nagendran K, Karthikeyan G, Mohammed Faisal P, Kalaiselvi P, Raveendran M, Prabakar K, et al. Exploiting endophytic bacteria for the management of sheath blight disease in rice. Biol Agric Hortic. 2014 Jan 2;30(1):8–23. https://doi.org/10.1080/01448765.2013.841099
  81. 70. Parveen S, Mohiddin FA, Bhat MA, Baba ZA, Jeelani F, Bhat MA, et al. Characterization of Endophytic Microorganisms of Rice (Oryza sativa L.) Potential for Blast Disease Biocontrol and Plant Growth Promoting Agents. Phyton (0031–9457). 2023 Nov 1;92(11). https://doi.org/10.32604/phyton.2023.030921
  82. 71. Saleh MM. Evaluation of endophytes isolated from rice leaves for their antifungal activities against Pyricularia oryzae causative blast disease. Egypt. J. Phytopathol. 2018 Jun 15;46(1):193–214. https://doi.org/10.21608/ejp.2018.
  83. 87788
  84. 72. Patel A, Sahu KP, Mehta S, Javed M, Balamurugan A, Ashajyothi M, et al. New Insights on Endophytic Microbacterium-Assisted Blast Disease Suppression and Growth Promotion in Rice: Revelation by Polyphasic Functional Characterization and Transcriptomics. Microorganisms. 2023 Jan 31;11(2):362. https://doi.org/10.3390/microorganisms11020362
  85. 73. Velmurugan S, Ashajyothi M, Charishma K, Kumar S, Balamurugan A, Javed M, et al. Enhancing defense against rice blast disease: unveiling the role of leaf endophytic firmicutes in antifungal antibiosis and induced systemic resistance. Microb. Pathog. 2023 Nov 1;184:106326. https://doi.org/10.1016/j.micpath.2023.106326
  86. 74. Jing R, Li N, Wang W, Liu Y. An endophytic strain JK of genus Bacillus isolated from the seeds of super hybrid rice (Oryza sativa L, Shenliangyou 5814) has antagonistic activity against rice blast pathogen. Microb Pathog. 2020 Oct 1;147:104422. https://doi.org/10.1016/j.micpath.2020.104422
  87. 75. Rong S, Xu H, Li L, Chen R, Gao X, Xu Z. Antifungal activity of endophytic Bacillus safensis B21 and its potential application as a biopesticide to control rice blast. Pest Biochem Physiol. 2020 Jan 1;162:69–77.
  88. https://doi.org/10.1016/j.pestbp.2019.09.003
  89. 76. Do QT. Antagonistic activities of endophytic bacteria isolated from rice roots against the fungus Magnaporthe oryzae, a causal of rice blast disease. Egypt J Biol Pest Control. 2022 Jun 19;32(1):69. https://doi.org/10.1186/s41938-022-00571-1
  90. 77. Xu T, Li Y, Zeng X, Yang X, Yang Y, Yuan S, et al. Isolation and evaluation of endophytic Streptomyces endus OsiSh‐2 with potential application for biocontrol of rice blast disease. J Sci Food Agric. 2017 Mar;97(4):1149–57. https://doi.org/10.1002/jsfa.7841
  91. 78. Eid AM, Fouda A, Abdel-Rahman MA, Salem SS, Elsaied A, Oelmüller R, et al. Harnessing bacterial endophytes for promotion of plant growth and biotechnological applications: An overview. Plants. 2021 May 7;10(5):935. https://doi.org/10.3390/plants10050935
  92. 79. Jana SK, Islam MM, Mandal S. Endophytic microbiota of rice and their collective impact on host fitness. Curr Microbiol. 2022 Feb;79(2):37. https://doi.org/10.1007/s00284-021-02737-w
  93. 80. Arora NK, editor. Plant microbe symbiosis: fundamentals and advances. Springer India; 2013 Aug 15. https://doi.org/10.1007/978-81-322-1287-4_4
  94. 81. Borah M, Das S, Bora SS, Boro RC, Barooah M. Comparative assessment of multi-trait plant growth-promoting endophytes associated with cultivated and wild Oryza germplasm of Assam, India. ArchMicrobiol. 2021 Jul;203:2007–28. https://doi.org/10.1007/s00203-020-02153-x
  95. 82. Gamalero E, Favale N, Bona E, Novello G, Cesaro P, Massa N, et al. Screening of bacterial endophytes able to promote plant growth and increase salinity tolerance. Appl Sci. 2020 Aug 20;10(17):5767. https://doi.org/10.3390/app10175767
  96. 83. Avis TJ, Gravel V, Antoun H, Tweddell RJ. Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem. 2008 Jul 1;40(7):1733–40. https://doi.org/10.1016/j.soilbio.2008.02.013
  97. 84. Löwe M, Jürgens K, Zeier T, Hartmann M, Gruner K, Müller S, et al. N-hydroxypipecolic acid primes plants for enhanced microbial pattern-induced responses. Front Plant Sci. 2023 Aug 14;14:1217771. https://doi.org/10.3389/fpls.2023.1217771
  98. 85. Rais A, Shakeel M, Malik K, Hafeez FY, Yasmin H, Mumtaz S, et al. Antagonistic Bacillus spp. reduce blast incidence on rice and increase grain yield under field conditions. Microbiol Res. 2018 Mar 1;208:54–62. https://doi.org/10.1016/j.micres.2018.01.009
  99. 86. Cheng T, Yao XZ, Wu CY, Zhang W, He W, Dai CC. Endophytic Bacillus megaterium triggers salicylic acid-dependent resistance and improves the rhizosphere bacterial community to mitigate rice spikelet rot disease. Appl Soil Ecol. 2020 Dec 1;156:103710. https://doi.org/10.1016/j.apsoil.2020.103710
  100. 87. Silva LI, Pereira MC, Carvalho AM, Buttrós VH, Pasqual M, Dória J. Phosphorus-solubilizing microorganisms: a key to sustainable agriculture. Agriculture. 2023 Feb 15;13(2):462. https:// doi.org/10.3390/agriculture13020462
  101. 88. Mengel K, Kirkby EA. Principles of plant nutrition. 1987. https://doi.org/10.1007/978-94-010-1009-2.
  102. 89. Musa SI, Ikhajiagbe B. Seed bio-priming with phosphate-solubilizing bacteria strains to improve rice (Oryza sativa L. var. FARO 44) growth under ferruginous ultisol conditions. BioTechnologia. 2023;104(1):33. https://doi.org/10.
  103. 5114/bta.2023.125084
  104. 90. Huang WJ, Zhou GY, Liu JX. Nitrogen and phosphorus status and their influence on aboveground production under increasing nitrogen deposition in three successional forests. Acta Oecologica. 2012 Oct 1;44:20–27. https://doi.org/10.1016/j.actao.2011.06.005
  105. 91. Castro MA, Martínez CV. The refeeding syndrome. The importance of phosphorus. Medicina Clínica (English Edition). 2018 Jun 22;150(12):472–78. https://doi.org/10.1016/j.medcle.2018.03.018
  106. 92. Anandham R, Gandhi PI, Madhaiyan M, Sa T. Potential plant growth promoting traits and bioacidulation of rock phosphate by thiosulfate-oxidizing bacteria isolated from crop plants. J B Microbiol. 2008 Dec;48(6):439–47. https://doi.org/10.1002/jobm.200700380
  107. 93. Kaur G, Sharma P, Chhabra D, Chand K, Mangat GS. Exploitation of endophytic Pseudomonas sp. for plant growth promotion and colonization in rice. J Appl Nat Sci. 2017 Sep 1;9(3):1310–16. https://doi.org/10.31018/jans.v9i3.1359
  108. 94. Hameed A, Yeh MW, Hsieh YT, Chung WC, Lo CT, Young LS. Diversity and functional characterization of bacterial endophytes dwelling in various rice (Oryza sativa L.) tissues and their seed-borne dissemination into rhizosphere under gnotobiotic P-stress. Plant and soil. 2015 Sep;394:177–97. https://doi.org/10.1007/s11104-015-2506-5
  109. 95. Prakamhang J, Boonkerd N, Teaumroong N. Rice endophytic diazotrophic bacteria. Plant Growth and Health Promoting Bacteria. 2011:317–32. https://doi.org/10.1007/978-3-642-13612-2_14
  110. 96. Shabanamol S, Divya K, George TK, Rishad KS, Sreekumar TS, Jisha MS. Characterization and in planta nitrogen fixation of plant growth promoting endophytic diazotrophic Lysinibacillus sphaericus isolated from rice (Oryza sativa). Physiological and Molecular Plant Pathology. 2018 Apr 1;102:46–54. https://doi.org/10.1016/j.pmpp.2017.
  111. 11.003
  112. 97. Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, et al. Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Applied and environmental microbiology. 2001 Nov 1;67(11):5285–93. https://doi.org/10.1128/AEM.67.11.5285-5293.2001
  113. 98. Warzatullisna W, Fitri L, Ismail YS. Potential of endophytic bacteria from rice root as potassium solvent. Biodiversitas J Biol Divers. 2019 Apr 23;20(5). https://doi.org/10.13057/biodiv/d200520
  114. 99. Lu L, Chang M, Han X, Wang Q, Wang J, Yang H, et al. Beneficial effects of endophytic Pantoea ananatis with the ability to promote rice growth under saline stress. J Appl Microbiol. 2021 Oct 1;131(4):1919–31. https://doi.org/10.
  115. 1111/jam.15082
  116. 100. Hernández I, Taulé C, Pérez-Pérez R, Battistoni F, Fabiano E, Villanueva-Guerrero A, et al. Endophytic seed-associated bacteria as plant growth promoters of Cuban rice (Oryza sativa L.). Microorganisms. 2023 Sep 14;11(9):2317. https://doi.org/10.3390/microorganisms11092317

Downloads

Download data is not yet available.