Floral fortification: Post-harvest strategies for enhancing flower longevity

Authors

  • B. Pavani Department of Floriculture and Landscape Architecture, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore -641003, Tamil Nadu, India https://orcid.org/0009-0009-2760-4676
  • S. Karthikeyan Department of Floriculture and Landscape Architecture, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore -641003, Tamil Nadu, India https://orcid.org/0000-0001-7416-9982
  • C. Subesh Ranjith Kumar Department of Floriculture and Landscape Architecture, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore -641003, Tamil Nadu, India https://orcid.org/0000-0001-5276-1387
  • N. Sritharan Department of Rice, Tamil Nadu Agricultural University, Coimbatore -641003, Tamil Nadu, India https://orcid.org/0000-0002-4016-7281
  • R. Poorniammal Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore -641003, Tamil Nadu, India https://orcid.org/0000-0003-2159-148X

DOI:

https://doi.org/10.14719/pst.4714

Keywords:

nanoparticles, shelf life, senescence, post-harvest, preservation

Abstract

Due to their perishable nature, the floriculture industry faces significant challenges in preserving the freshness and quality of cut flowers post-harvest. Traditional preservation methods are often inadequate for maintaining flowers' aesthetic and biological value during storage and transport. This review explores the innovative application of nanotechnology in extending the shelf life of cut flowers. Nanoparticles, such as silver and zinc oxide, exhibit unique properties that effectively delay senescence and reduce microbial growth. By examining recent advances and case studies, this review highlights how nanomaterials can enhance water uptake, improve resistance to ethylene, and maintain turgidity in various floral species. Integrating these nanotechnologies promises to revolutionize post-harvest handling, offering significant improvements in flower quality and economic returns for the floriculture sector.

Downloads

Download data is not yet available.

References

Lim JP, Baeg GH, Srinivasan DK, Dheen ST, Bay BH. Potential adverse effects of engineered nanomaterials commonly used in food on the miRNome. Food and Chemical Toxicology. 2017;109:771-9. https://doi.org/10.1016/j.fct.2017.07.030

Babu PJ, Saranya S, Longchar B, Rajasekhar A. Nanobiotechnology-mediated sustainable agriculture and post-harvest management. Current Research in Biotechnology. 2022;4:326-36. https://doi.org/10.1016/j.crbiot.2022.07.004

Sahoo M, Vishwakarma S, Panigrahi C, Kumar J. Nanotechnology: Current applications and future scope in food. Food Frontiers. 2021;2(1):3-22. https://doi.org/10.1002/fft2.58

Salunkhe DK, Bhat NR, Desai BB. Post-harvest biotechnology of flowers and ornamental plants: Springer Science and Business Media; 2012. https://doi.org/10.1007/978-3-642-73803-6

Glover BJ, Martin C. The role of petal cell shape and pigmentation in pollination success in Antirrhinum majus. Heredity. 1998;80(6):778-84. https://doi.org/10.1038/sj.hdy.6883450

Jones ML. Mineral nutrient remobilization during corolla senescence in ethylene-sensitive and insensitive flowers. AoB Plants. 2013;5:plt023. https://doi.org/10.1093/aobpla/plt023

Van Doorn WG, Kamdee C. Flower opening and closure: an update. Journal of experimental botany. 2014;65(20):5749-57. https://doi.org/10.1093/jxb/eru327

Rogers HJ. From models to ornamentals: how is flower senescence regulated? Plant Molecular Biology. 2013;82:563-74. https://doi.org/10.1007/s11103-012-9968-0

Fischer AM. The complex regulation of senescence. Critical Reviews in Plant Sciences. 2012;31(2):124-47. https://doi.org/10.1080/07352689.2011.616065

Lü P, Zhang C, Liu J, Liu X, Jiang G, Jiang X, et al. Rh HB 1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence. The Plant Journal. 2014;78(4):578-90. https://doi.org/10.1080/07352689.2011.616065

Ma N, Cai L, Lu W, Tan H, Gao J. Exogenous ethylene influences flower opening of cut roses (Rosa hybrida) by regulating the genes encoding ethylene biosynthesis enzymes. Science in China Series C: Life Sciences. 2005;48:434-44. https://doi.org/10.1111/tpj.12494

Ichimura K, Shimizu-Yumoto H, Goto R. Ethylene production by gynoecium and receptacle is associated with sepal abscission in cut Delphinium flowers. Post-harvest biology and technology. 2009;52(3):267-72. https://doi.org/10.1016/j.postharvbio.2008.12.008

Wang H, Chang X, Lin J, Chang Y, et al. Transcriptome profiling reveals regulatory mechanisms underlying corolla senescence in petunia. Horticulture research. 2018;5. https://doi.org/10.1038/s41438-018-0018-1

Ma N, Ma C, Liu Y, Shahid MO, Wang C, Gao J. Petal senescence: a hormone view. Journal of Experimental Botany. 2018;69(4):719-32. https://doi.org/10.1093/jxb/ery009

Reid MS, Jiang CZ. Post-harvest biology and technology of cut flowers and potted plants. Horticultural reviews. 2012;40:1-54. https://doi.org/10.1002/9781118351871.ch1

Rasha S, El-Sheshtawy A. Improving seed germination of Althaea Rosea L. under salt stress by seed soaking with silicon and nano silicon. https://doi.org/10.15258/sst.2015.43.1.06

Kazemi M, Asadi M, Aghdasi S. Post-harvest life of cut lisianthus flowers as affected by silicon, malic acid and acetylsalicylic acid. Research Journal of Soil Biology. 2012;4(1):15-20. https://doi.org/10.3923/rjsb.2012.15.20

Kader HHA. Effects of nanosilver holding and pulse treatments, in comparison with traditional silver nitrate pulse on water relations and vase life and quality of the cut flowers of Rosa hybrida L. cv.'Tineke'. World Applied Sciences Journal. 2012;20(1):130-7. https://doi.org/10.21608/jpp.2017.37812

Raffi M, Hussain F, Bhatti T, Akhter J, et al. Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. Journal of Materials Science and Technology. 2008;24(2):192-6. https://doi.org/10.1007/s13213-010-0015-6

Kim J-H, Lee A-K, Suh J-K, editors. Effect of certain pre-treatment substances on vase life and physiological character in Lilium spp. IX International Symposium on Flower Bulbs 673; 2004. https://doi.org/10.17660/actahortic.2005.673.39

Amin OA. Influence of nanosilver and stevia extract on cut Anthurium inflorescences. Middle East Journal of Applied Sciences. 2017;7(2):299-313. https://doi.org/10.36632/mejas/2022.12.4.35

Nemati SH, Tehranifar A, Esfandiari B, Rezaei A. Improvement of vase life and post-harvest factors of Lilium orientalis' Bouquet’by silver nanoparticles. Notulae Scientia Biologicae. 2013;5(4):490-3. https://doi.org/10.15835/nsb549135

Bahremand S, Razmjoo J, Farahmand H. Effects of nano-silver and sucrose applications on cut flower longevity and quality of tuberose (Polianthus tuberosa). International Journal of Horticultural Science and Technology. 2014;1(1):67-77. https://doi.org/10.1080/14620316.2001.11511362

Deepshikha G, Verma A, Monika T. Application of ZnO nanoparticles in enhancing shelf life of cut flowers with special reference to Gerbera jamesonii. Res J Chem Environ. 2018;22(8). https://doi.org/10.21273/hortsci12299-17

Soriano Melgar L, López-Guerrero A, Cortéz-Mazatan G, Mendoza-Mendoza E, Peralta-Rodríguez R. Zinc oxide and zinc oxide/graphene nanoparticles used in vase solutions on lisianthus (Eustoma grandiflorum) post-harvest life. Agroproductividad. 2018;11(8):137-44. https://doi.org/10.1016/j.scienta.2021.110285

Sunpapao A, Wonglom P, Satoh S, Takeda S, Kaewsuksaeng S. Pulsing with magnesium oxide nanoparticles maintains post-harvest quality of cut lotus flowers (Nelumbo nucifera Gaertn)‘Sattabongkot’and ‘Saddhabutra’. The Horticulture Journal. 2019;88(3):420-6. https://doi.org/10.2503/hortj.utd-087

Hashemabadi D, Kaviani B, Shirinpour A, Zahiri S. Effects of copper nanoparticles (CNPs) on vase life of cut flowers chrysanthemum (Chrysanthemum morifolium L.‘White’). European Journal of Experimental Biology. 2013;3(6):153-5. https://doi.org/10.21608/jpp.2000.258801

Rashidiani N, Nazari F, Javadi T, Samadi S. Copper nanoparticles (CuNPs) increase the vase life of cut carnation and chrysanthemum flowers: antimicrobial ability and morphophysiological improvements. Ornamental Horticulture. 2020;26:225-35. https://doi.org/10.1590/2447-536x.v26i2.2156

Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K. Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2011;79(3):594-8. https://doi.org/10.1016/j.saa.2011.03.040

Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science. 2004;275(1):177-82. https://doi.org/10.1016/j.jcis.2004.02.012

Nabikhan A, Kandasamy K, Raj A, Alikunhi NM. Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids and surfaces B: Biointerfaces. 2010;79(2):488-93. https://doi.org/10.1016/j.colsurfb.2010.05.018

Monteiro D, Silva S, Negri M, Gorup L, De Camargo E, Oliveira R, et al. Silver nanoparticles: influence of stabilizing agent and diameter on antifungal activity against Candida albicans and Candida glabrata biofilms. Letters in Applied Microbiology. 2012;54(5):383-91. https://doi.org/10.1111/j.1472-765x.2012.03219.x

Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan P. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2012;93:95-9. https://doi.org/10.1016/j.saa.2012.03.002

Gopinath V, Velusamy P. Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013;106:170-4. https://doi.org/10.1016/j.saa.2012.12.087

Mishra S, Singh BR, Singh A, Keswani C, et al. Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. Plos one. 2014;9(5). https://doi.org/10.1371/journal.pone.0097881

Ogar A, Tylko G, Turnau K. Antifungal properties of silver nanoparticles against indoor mould growth. Science of the Total Environment. 2015;521:305-14. https://doi.org/10.1016/j.scitotenv.2015.03.101

Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):2346. https://doi.org/10.1088/0957-4484/16/10/059

Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of proteome research. 2006;5(4):916-24. https://doi.org/10.1021/pr0504079

Elbeshehy EK, Elazzazy AM, Aggelis G. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Frontiers in microbiology. 2015;6:453. https://doi.org/10.3389/fmicb.2015.00453

Sudaria MA, Uthairatanakij A, Nguyen HT. Post-harvest quality effects of different vaselife solutions on cut rose (Rosa hybrida L.). International Journal of Agriculture Forestry and Life Sciences. 2017;1(1):12-20. https://doi.org/10.5539/jas.v4n12p174

Skutnik E, J?drzejuk A, Rabiza-?wider J, Rochala-Wojciechowska J, et al. Nanosilver as a novel biocide for control of senescence in garden cosmos. Scientific Reports. 2020;10(1):10274. https://doi.org/10.1038/s41598-020-67098-z

Liu J, Zhang Z, Li H, Lin X, Lin S, Joyce DC, et al. Alleviation of effects of exogenous ethylene on cut ‘Master’carnation flowers with nano-silver and silver thiosulfate. Post-harvest Biology and Technology. 2018;143:86-91. https://doi.org/10.1038/s41598-020-67098-zSS

Published

24-10-2024

How to Cite

1.
B. Pavani, S. Karthikeyan, C. Subesh Ranjith Kumar, N. Sritharan, R. Poorniammal. Floral fortification: Post-harvest strategies for enhancing flower longevity. Plant Sci. Today [Internet]. 2024 Oct. 24 [cited 2024 Dec. 22];11(sp4). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/4714

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.