Skip to main navigation menu Skip to main content Skip to site footer

Special issue on Int Conf Spices

Vol. 11 No. sp3 (2024): International Seminar on Spices KAU - 2024

Exploring Tamarind: A versatile spice and innovative value addition in wine production

DOI
https://doi.org/10.14719/pst.4823
Submitted
26 August 2024
Published
25-12-2024 — Updated on 09-09-2025
Versions

Abstract

Tamarind (Tamarindus indica L.) is a multipurpose ancient spice valued for its tangy-sweet flavor, which is being transformed through innovative post-harvest technologies into wine. The Fruit pulp is highly nutritious and various value-added products have been developed for easier handling, storage and transportation, while extending its shelf life. These products range from Tamarind toffee, Tamarind pickle, Tamarind jam, squash, wine and offering distinct flavors and potential health benefits. Table wine, fermented using tamarind pulp, is widely known for its medicinal properties and applications in the food industries. The must was extracted and fermented with sugar and 2 different strains of Saccharomyces cerevisiae (Red wine yeast and Belgian wit yeast), to produce wine from the pulp of red, sour and sweet varieties of tamarind. Bio-component and sensory analyses were conducted to identify the proximate and organoleptic attributes of the wine. The variation in proximate property values of wine were recorded as alcohol content (8.40 % - 10.62 %), moisture (23 % -29.5 %), pH (2.38 - 3.45), ash (1.3 % - 2.5 %), total soluble solid (3.2 °Brix - 11 °Brix), titrable acidity (1 mg/ml - 5.1 mg/ml), carbohydrate (1.1 % - 3.65 %), vitamin C (10.3 mg/ml - 22.3 mg/ml), and antioxidant (37.1 mMol/l - 75.9 mMol/l). It was found that Belgian wit yeast yielded good production of wine from the sweet Tamarind. It showed optimal values for alcohol (8.14 %), moisture (26 %), pH (3.15), ash (2.1 %), total soluble solid (9.3 °Brix), titrable acidity (2 mg/ml), carbohydrate (3.4 %), vitamin C (22.3 mg/ml), antioxidant (74.6 mMol/l). It also registered the higher organoleptic values for flavor (7.3), color (7.0), aroma (6.5), consistency (7.5), taste (8.5) and overall acceptability (8.5). This research demonstrates a breakthrough in utilizing tamarind (Tamarindus indica) for producing value-added wine with optimal alcohol content (8 %), high antioxidant activity (74.6 mMol/L) and excellent sensory attributes (8.5).

References

  1. 1. Jung A, Jung H, Auwarter V, Pollak S, Farr AM, Hecser L, et al. Volatile congeners in alcoholic beverages: analysis and forensic significance. Roman Soc Leg Med. 2010;18(4):265–70. http://www.rjlm.ro/system/revista/16/265-270.pdf
  2. 2. Potter NN, Hotchkiss JH, Food science. CBS Publishers, Delhi 1995;385-89
  3. 3. Mbaeyi Nwaoha IE, Ajumobi CN. Production and microbial evaluation of table wine from tamarind (Tamarindus indica) and soursop (Annona muricata). J Food Sci Technol. 2015;52:105–16. https://doi.org/10.1007/s13197-013-0972-4
  4. 4. Maldonado RR, de Oliveira DS, Alves VD, Oliveira EA, Kamimura ES. Application of tamarind pulp for wine production. J Biotechnol Biodivers. 2021;9(2):163–69. https://doi.org/10.20873/jbb.uft.cemaf.v9n2.maldonaro
  5. 5. Fleet GH. Yeast interaction and wine flavour. Int J Food Microbiol. 2003;86(1):11–24. https://doi.org/10.1016/S0168-1605(03)00245-9
  6. 6. Duarte WF, Dias DR, Oliveira JM, Teixeira JA, e Silva JB, Schwan RF. Characterization of different fruit wines made from cacao, cupuassu, gabiroba, jaboticaba and umbu. LWT Food Sci Technol. 2010;43(10):1 564–72. https://doi.org/10.1016/j.lwt.2010.03.010
  7. 7. Isitua CC, Ibeh IN. Novel method of wine production from banana (Musca cuminata) and pineapple (Ananas cosmosus) waste. Afr J Biotechnol. 2010;9(44):7 521–24. https://doi.org/10.5897/AJB10.999
  8. 8. Queipo Ortuno ML. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am J Clin Nutr. 2012;95(6):1 323–34. https://doi.org/10.3945/ajcn.111.027847
  9. 9. Moreno Rojas JM, Cosofret S, Reniero F. Control of oenological products: discrimination between different botanical sources of L-tartaric acid by isotope ratio mass spectrometry. Rapid Commun Mass Spectrom. 2007;21:2 447–50. https://doi.org/10.1002/rcm.3105
  10. 10. Etape EP, Akumbom PA, Namondo BV, D Ngole EN, Foba Tendo J, Ekaney LEA. Tamarind local variety from Garoua, Cameroon: physicochemical characterization, fruit pulp fermentation and extraction of tartaric acid from the fruit pulp winery waste. J Mod Agric Biotechnol. 2021;1(4):22. https://doi.org/10.53964/jmab.2022022
  11. 11. Fruit WH. Vegetables for Health. In: Report of a joint FAO/WHO workshop; 2004. p.1 1–3.
  12. 12. Narina SS, Catanzaro C, Gilani AH. Moringa and tamarind: potential drought tolerant perennial crops. In: Handbook of Plant and Crop Stress. 2019;4:813–31.
  13. 13. Senthilkumar N, Sumathi R, Lenora LMD, Divya G. Phytochemical properties and antioxidant activity of natural colourant extracted from red tamarind (Tamarindus indica var. rhodocarpa) in Tamil Nadu. Res J Chem Environ. 2021;25(3):79–88.
  14. 14. De Caluwe E, Halamoua K, Van Damme P. Tamarindus indica L.—A review of traditional uses, phytochemistry and pharmacology. Afrika Focus. 2010;23(1):53–83. https://doi.org/10.21825/af.v23i1.5039
  15. 15. Reis PMCL, Dariva C, Vieira GAB, Hense H. Extraction and evaluation of antioxidant potential of the extracts obtained from tamarind seeds (Tamarindus indica), sweet variety. J Food Eng. 2016;173:116–23. https://doi.org/10.1016/j.jfoodeng.2015.11.001
  16. 16. Lutchmedial M, Ramlal R, Badrie N, Chang Yen I. Nutritional and sensory quality of stirred soursop (Annona muricata L.) yoghurt. Int J Food Sci Nutr. 2004;55(5):407–14. https://doi.org/10.1080/09637480400002800
  17. 17. Mani A, Prasanna VSSV, Praveena J, Yadav A. Importance, cultivation and value added products of tamarind: a wondrous tree legume. Int J Agric Sci. 2020;12(9):9 789–93.
  18. 18. Dharmadhikari M. Oak aging of red wine. 2002. Available from: http://www.extensioniowastate.edu/wine/resources/oakagingofredwine
  19. 19. Lichine A. Alexis Lichine’s Encyclopedia of Wines and Spirits. London: Cassell and Company Ltd.; 1967. p.428.
  20. 20. Ranganna S. Manual of analysis of fruit and vegetable products. New Delhi: Tata McGraw Hill; 1977.
  21. 21. Garcia Amezquita LE, Tejada Ortigoza V, Heredia Olea E, Serna Saldivar SO, Welti Chanes J. Differences in the dietary fiber content of fruits and their by products quantified by conventional and integrated AOAC official methodologies. J Food Comp Anal. 2018;67:77–85. https://doi.org/10.1016/j.jfca.2018.01.004
  22. 22. Pearson D. The Chemical Analysis of Foods. 7th ed. New York: Churchill and Livingstone; 1976.
  23. 23. Maragatham C, Panneerselvam A. Isolation, identification and characterization of wine yeast from rotten papaya fruits for wine production. Adv Appl Sci. 2011;2:93–98.
  24. 24. Clemente Jimenez JM, Mingorance Cazorla L, Martinez Rodriguez S, Heras Vazquez FJL, Rodriguez Vico F. Influence of sequential yeast mixtures wine fermentation. Int J Microbiol. 2005;98:301–8.
  25. 25. Ifie I, Olurin TO, Aina JO. Production and quality attributes of vegetable wine from Hibiscus sabdariffa Linn. Afr J Food Sci. 2012;6(7):212–15 http://www.academicjournals.org/AJFS
  26. 26. Panda SK, Sahu UC, Behera SK, Ray RC. Bio processing of bael (Aegle marmelos L.) fruits into wine with antioxidants. Food Biosci. 2012;5:34–41. https://doi.org/10.1016/j.fbio.2013.10.005
  27. 27. Mbaeyi Nwaoha IE, Floraezenwegbu N. Assessment of quality characteristics of table wine from tamarind (Tamarindus indica) and passion fruit (Passiflora edulis). Proceeding Books. 2022;78–100.
  28. 28. Greizerstein HB. Congener contents of alcoholic beverages. J Stud Alcohol. 1981;42(11):1 030–37. https://doi.org/10.15288/jsa.1981.42.1030
  29. 29. Hernandez A, Martinez J, Sanchez L. Moisture content in strawberry wine. J Fruit Ferment. 2018;14(4):95 95–102. 30. Oliveira LP, Maeda RN, Andrade JD, Junior NP, Carvalho SM. Processo fermentativo para producao de bebida alcoolica de pupunha (Bactris gasipaes Kunth). Vol 3, No 19. 2001;3(19):50–54.
  30. 31. Morton J. Tamarind. In: Morton JF, editor. Fruits of warm climates. Miami, FL: Creative Resource Systems; 1987. p. 115–21.
  31. 32. Chawafambira A. The effect of incorporating herbal (Lippia javanica) infusion on the phenolic, physicochemical and sensorial properties of fruit wine. Food Sci Nutr. 2021;9(8):4 539–49. https://doi.org/10.1002/fsn3.2432
  32. 33. Sumaiya K, Jahurul MHA, Zaman W. Evaluation of biochemical and bioactive properties of native and imported pomegranate (Punica granatum l.) cultivars found in Bangladesh. International Food Research Journal. 2018;5(2):737-46.
  33. 34. Nwe AA, Haling NN. Preparation, characterization of orange wine and comparison of some physical parameters of different wines. Myanmar Korea Conf Res J. 2020;3(4):1 227–35.
  34. 35. Okafor N. Modern industrial microbiology and biotechnology. Science Publishers; 2007. p.530.
  35. 36. Forino M, Picariello L, Rinaldi A, Moio L, Gambuti A. How must pH affects the level of red wine phenols. LWT. 2020;129:109546. https://doi.org/10.1016/j.lwt.2020.109546
  36. 37. Reddy LVA, Reddy OVS. Production and characterization of wine from mango fruit (Mangifera indica L.). World J Microbiol Biotechnol. 2005;21:1 345–50. https://doi.org/10.1201/b12055-18
  37. 38. Joshi VK, Gill A, Kumar V, Chauhan A. Preparation of plum wine with reduced alcohol content: effect of must treatment and blending with sand pear juice on physico chemical and sensory quality. Indian J Nat Prod Resour. 2014;5(1):67–74.
  38. 39. Patel V, Tripathi AD, Adhikari KS, Srivastava A. Screening of physicochemical and functional attributes of fermented beverage (wine) produced from local mango (Mangifera indica) varieties of Uttar Pradesh using novel Saccharomyces strain. J Food Sci Technol. 2021;58:2206–15 https://doi.org/10.1007/s13197-020-04731-9
  39. 40. Idise OE. Studies on wine production from orange (Citrus sinensis). Niger J Sci Environ. 2011;10(3):91–5.
  40. 41. Alobo AP, Offonry SU. Characteristics of colored wine produced from roselle (Hibiscus sabdariffa) calyx extract. J Inst Brew. 2009;115(2):91–4. https://doi.org/10.1002/j.2050-0416.2009.tb00351.x
  41. 42. Peng B, Ge N, Cui L, Zhao H. Monitoring of alcohol strength and titratable acidity of apple wine during fermentation using near-infrared spectroscopy. LWT Food Sci Technol. 2016;66:86–92. https://doi.org/10.1016/j.lwt.2015.10.018
  42. 43. Sharma S, Joshi VK, Abrol G. An overview on strawberry (Fragaria × ananassa (Weston) Duchesne ex Rozier) wine production technology, composition, maturation and quality evaluation. Indian J Nat Prod Resour. 2009; 356–65.
  43. 44. Satora P, Tarko T, Sroka P, Blaszczyk U. The influence of Wickerhamomyces anomalus killer yeast on the fermentation and chemical composition of apple wines. FEMS Yeast Res. 2014;14(5):729–40. https://doi.org/10.1111/1567-1364.12159
  44. 45. Chen L, Wang Y, Zhang H. Carbohydrate levels in apple wine. J Fruit Ferment. 2018;13(3):65–72.
  45. 46. Diaz C, Molina A, Nahring J, Fischer R. Characterization and dynamic behavior of wild yeast during spontaneous wine fermentation in steel tanks and amphorae. Biomed Res Int. 2013;2013:540465. https://doi.org/10.1155/2013/540465
  46. 47. Callaghan CM, Leggett RE, Levin RM. A comparison of the antioxidants and carbohydrates in common wines and grape juices. Free Radic Antioxid. 2017;7(1):86–9. https://doi.org/10.5530/fra.2017.1.13
  47. 48. Bankefa OE, Oladeji SJ, Gabriel Ajobiewe RA, Akinyele HA, Samuel SM. Harnessing the nutritional quality of pawpaw and pineapple fruits for pilot scale production of wine. J Microbiol Biotechnol Food Sci. 2021;10(4):663–8. https://doi.org/10.15414/jmbfs.2021.10.4.663-668
  48. 49. Quan Q, Liu W, Guo J, Ye M, Zhang J. Effect of six lactic acid bacteria strains on physicochemical characteristics, antioxidant activities and sensory properties of fermented orange juices. Foods. 2022;11(13):1920. https://doi.org/10.3390/foods11131920
  49. 50. Nehra KS, Sachdeva H, Kumar P, Jangra MR, Jangra S. Production technology and analysis of quality parameters of strawberry wine. Plant Cell Biotechnol Mol Biol. 2021;22(42):40–6.
  50. 51. Elez Garofulic I, Kovacevic Ganic K, Galic I, Dragovic Uzelac V, Savic Z. The influence of processing on physico chemical parameters, phenolics, antioxidant activity and sensory attributes of elderberry (Sambucus nigra L.) fruit wine. Hrvatski casopis za prehrambenu tehnologiju, biotehnologiju i nutritcionizam. 2012;7:9–13.
  51. 52. Prvulovic D, Popovic M, Malencic D, Ljubojevic M, Ognjanov V. Phenolic compounds in sweet cherry (Prunus avium L.) petioles and their antioxidant properties. Res J Agric Sci. 2011;43(2):198–202.
  52. 53. Schmitzer V, Veberic R, Slatnar A, Stampar F. Elderberry (Sambucus nigra L.) wine—a product rich in health promoting compounds. J Agric Food Chem. 2010;58(18):10 143–6.https://doi.org/10.1021/jf102083s
  53. 54. Panda SK, Swain MR, Singh S, Ray RC. Proximate compositions of a herbal purple sweet potato (Ipomoea batatas L.) wine. J Food Process Preserv. 2013;37(5):596–604. https://doi.org/10.1111/j.1745-4549.2012.00681.x
  54. 55. Britz TJ, Tracey RP. The combined effect of pH, SO₂, ethanol and temperature on the growth of Leuconostoc oenos. J Appl Bacteriol. 1990;68:23–31.. https://doi.org/10.1111/j.1365-2672.1990.tb02544.x
  55. 56. Sevda SB, Rodrigues L. Fermentative behavior of Saccharomyces strains during guava (Psidium guajava L.) must fermentation and optimization of guava wine production. Food Process Technol. 2011;2:118–27. https://doi.org/10.4172/2157-7110.1000118
  56. 57. Peppler HJ, Perlman D. Microbial Technology: Fermentation Technology. 2nd ed. Academic Press; 2014.
  57. 58. Pongkan S, Tilarux P, Charoensuk K, Ochaikul D, Suwanposri A. Production and quality improvement of the tropical fruit tamarind (Tamarindus indica Linn.) wine. Int J Agric Technol. 2018;14(3):341–50.
  58. 59. Cui Y, van Esch P, Spence C. Multisensory technology in the wine industry: where the senses meet technology. J Wine Res. 2024;35(2):75–84. https://doi.org/10.1080/09571264.2024.2351687
  59. 60. Kechinski CP, Guimaraes PVR, Norena CPZ, Tessaro IC, Marczak LDF. Degradation kinetics of anthocyanin in blueberry juice during thermal treatment. J Food Sci. 2010;75(2):C173–6. https://doi.org/10.1111/j.1750-3841.2009.01479.x
  60. 61. Jayaprakasha GK, Tamil Selvi KK. Sakariah. Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Food Res Int. 2003;36:117–22.

Downloads

Download data is not yet available.