Skip to main navigation menu Skip to main content Skip to site footer

Special issue on Int Conf Spices

Vol. 11 No. sp3 (2024): International Seminar on Spices KAU - 2024

A comprehensive report on GC-MS profiling, FTIR analysis and HPLC quantification of pharmaceutically vital metabolite thymoquinone from Nigella seeds

DOI
https://doi.org/10.14719/pst.4901
Submitted
31 August 2024
Published
29-12-2024 — Updated on 09-09-2025
Versions

Abstract

The present investigation aimed to gain insights into the structure of bioactive metabolic compounds in Nigella sativa L. seed oil. Initially, spectroscopic methods viz., GC-MS and FTIR were employed to determine functional groups, substituents, and conjugated double bonds in Nigella oil. GC-MS analysis identified 11 different amalgams, with p-cymene, γ-terpinene and α-thujene being the major components. The FTIR spectrum revealed the presence of strong, sharp, and weak peaks, along with critical functional groups corresponding to C-H, O-H, C-C, C≡N, and N-O, indicating the presence of pharmaceutically active constituents of the seed oil in the wavelength range of 400 – 4000 cm-1. HPLC analysis indicated that the percent composition of thymoquinone in the seed extract was reported as 0.90% at a wavelength of 254 nm. In the examined samples, thymoquinone and standard thymoquinone both showed a peak Rf value of 3.656. The study's findings revealed that thymoquinone is a potential phytochemical present in the oil. Furthermore, the identified biomolecules hold promise for use in pharmaceutical applications to enhance health standards.

References

  1. 1 Prasad KV, Ramana PV. Vibrational spectroscopic studies, DFT, and molecular docking investigations of 4-fluoro-3-methyl ben-zophenone. Vib Spectrosc. 2023;126:103532. https://doi.org/10.1016/j.vibspec.2023.103532
  2. 2 Ravi Y, Suryakant KV, Sudharani N, Gokavi N, Sunilkumar MK, Akshay KR. Importance of medicinal plants in the treatment of central nervous system disorders-A review. Res J Environ Sci. 2015;9:140-142.
  3. 3 Randhawa MA, Alghamdi MS. Anticancer activity of Nigella sati-va (black seed)-A review. Am J Chin Med. 2011;39:1075–1091. https://doi.org/10.1142/S0192415X1100941X
  4. 4 Ali BH, Blunden G. Pharmacological and toxicological properties of Nigella sativa. Phytother Res. 2003;17:299–305. https://doi.org/10.1002/ptr.1309
  5. 5 Khan A, Chen H, Tania M, Zhang DZ. Anticancer activities of Nigella sativa (black cumin). Afr J Tradit Comple-ment Altern Med. 2011;8(5):226-232.
  6. 6 Gupta G, Iqbal MS, Pandey B, Srivastava JK. Differential expres-sion of thymoquinone and its localization in different parts of Nigella sativa L. Proc Natl Acad Sci India Sect B Biol Sci. 2021;91:13–9. https://doi.org/10.1007/s40011-020-01190-2
  7. 7 Ismail M, Al-Naqeep G, Chan KW. Nigella sativa thymoquinone-rich fraction greatly improves plasma antioxidant capacity and expression of antioxidant genes in hypercholesterolemic rats. Free Radic Biol Med. 2010;48:664–672. https://doi.org/10.1016/j.freeradbiomed.2009.12.002
  8. 8 Tiwari P, Kumar B, Kaur M, Kaur G, Kaur H. Phytochemical screening and extraction: A review. Int J Pharm Sci. 2011;1:98–106.
  9. 9 Kipouros K, Kachrimanis K, Nikolakakis I, Tserki V, Malamataris S. Simultaneous quantification of carbamazepine crystal forms in ternary mixtures (I, III, and IV) by diffuse reflectance FTIR spectroscopy (DRIFTS) and multivariate calibration. J Pharm Sci. 2006;95:2419–2431. https://doi.org/10.1002/jps.20690
  10. 10 Selvi BP, Prasanna G, Anuradha R. Physicochemical and phyto-chemical analysis of the rhizome of Drynaria quercifolia L. Int J Phytopharmacol. 2016;7:18–22. http://doi.org/10.5958/0974-360X.2020.00408.4
  11. 11 Prasanna G, Anuradha R. Ultraviolet-visible and fourier trans-form-infrared spectroscopic studies on Drynaria quercifolia L. rhizome. Methods. 2016;6:10–15.
  12. 12 Mahesar SA, Kandhro AA, Khaskheli AR, Talpur MY, Sherazi STH. SB-ATR FTIR spectroscopic monitoring of free fatty acids in commercially available Nigella sativa (Kalonji) oil. J Spectrosc. 2014;5:1-5. https://doi.org/10.1155/2014/510890
  13. 13 Aysal P, Ambrus A, Lehotay SJ, Cannavan A. Validation of an efficient method for the determination of pesticide residues in fruits and vegetables using ethyl acetate for extraction. J Envi-ron Sci Health B. 2007;42:481–490. https://doi.org/10.1080/19312450701392490
  14. 14 Ibrahim M, Hameed AJ, Jalbout A. Molecular spectroscopic study of River Nile sediment in the greater Cairo region. Appl Spectrosc.2008;62:306–311. https://doi.org/10.1366/0003702087837597
  15. 15 Pramod S, Andola HC, Rawat MSM, Pant GJN, Purohit VK. Fouri-er transform infrared (FT-IR) spectroscopy in an-overview. Res J Med Plant. 2011;5(2):127–135. https://doi.org/10.3923/rjmp.2011.127.135
  16. 16 Schulz H, Schrader B, Quilitzsch R, Pfeffer S, Krüger H. Rapid classification of basil chemotypes by various vibrational spec-troscopy methods. J Agric Food Chem. 2003;51:2475–2481. https://doi.org/10.1021/jf021139r
  17. 17 Ravi Y, Vethamoni PI, Saxena SN, Raveendran M, Velmurugan S, Santhanakrishnan VP. Extraction and estimation of thymoqui-none (a highly valued metabolite) from Nigella sativa L Int J Phytomed Relat Ind. 2022;14(3):492–498. https://doi.org/10.5958/0975-6892.2022.00054.5
  18. 18 Ketenoglu O, Kiralan SS, Kiralan M, Ozkan G, Ramadan MF. Cold pressed black cumin (Nigella sativa L.) seed oil. In: Ramadan MF, editor. Cold press oils. Cambridge (MA): Elsevier; 2020. p. 53–64. https://doi.org/10.1016/B978-0-12-818188-1.00006-2
  19. 19 Woo CC, Kumar AP, Sethi G, Tan KHB. Thymoquinone: potential cure for inflammatory disorders and cancer. Biochem Pharma-col. 2012;83(4):443–451. https://doi.org/10.1016/j.bcp.2011.09.029
  20. 20 Ravi Y, Vethamoni PI, Saxena SN, Velmurugan S, Santhana-krishnan VP, Raveendran M. Effect of various extraction sol-vents on the bioactive compounds and antioxidant activity of Nigella sativa L. seeds. Med Plants Int J Phytomed. 2023;15(1):1–6. https://doi.org/10.5958/0975-6892.2023.00002.3
  21. 21 Banerjee S, Padhye S, Azmi A, Wang Z, Philip PA, Kucuk O, et al. Review on molecular and therapeutic potential of thymoqui-none in cancer. Nutr Cancer. 2010;62(7):938–946. https://doi.org/10.1080/01635581.2010.509832
  22. 22 Ashly RE, Osheroff N. Natural products as topoisomerase II poi-sons: effects of thymoquinone on DNA cleavage mediated by human topoisomerase IIα. Chem Res Toxicol. 2014;27(5):787–93. https://doi.org/10.1021/tx400453v
  23. 23 Moghimi M, Farzaneh V, Bakhshabadi H. The effect of ultra-sound pretreatment on some selected physicochemical proper-ties of black cumin (Nigella Sativa). Nutrire. 2018;43:18. https://doi.org/10.1186/s41110-018-0077-y
  24. 24 Mechraoui O, Ladjel S, Nedjimi MS, Belfar ML, Moussaoui Y. De-termination of polyphenols content, antioxidant and antibacte-rial activity of Nigella sativa L. seed phenolic extracts. Sci Stud Res. 2018;19(4):411-421.
  25. 25 Mahendiran R, Subramanian P, Karthikeyan S, Surendrakumar A, Ravi Y, Choudhary S, et al. Instrumental evidence for biodeg-radation of tannery fleshings during anaerobic digestion and proteolytic enzyme hydrolysate study. Vib Spectrosc. 2023;126: 103530. https://doi.org/10.1016/j.vibspec.2023.103530
  26. 26 Hadad GM, Abdel Salam RA, Soliman RM, Mesbah MK. HPLC–DAD determination of seven antioxidants and caffeine in differ-ent phytopharmaceuticals. J Chromatogr Sci. 2014;52(7):617–623. https://doi.org/10.1093/chromsci/bmt086
  27. 27 Burnaz NA. Evaluation of Ultrasonication and Agitation Extrac-tion Methods at Different Conditions on the phenolic composi-tion and antioxidant activities of Mammillaria prolifera. Indian J Pharm Sci. 2021;83(5):963–973. https://doi.org/10.36468/pharmaceutical-sciences.849
  28. 28 Khalaf NA, Shakya AK, Al-Othman A, El-Agbar, Farah H. Antioxi-dant activity of some common plants. Turk J Biol. 2008;3(1):251–255.
  29. 29 Sumner LW, Duran AL, Huhman DV, Smith JT. Metabolomics: a developing and integral component in functional genomic stud-ies of Medicago truncatula. In: Romeo JT, editor. Recent ad-vances in phytochemistry. Vol. 36. New York: Springer; 2002. p. 31–61. https://doi.org/10.1016/S0079-9920(02)80019-3
  30. 30 Robertson DG. Metabonomics in toxicology: A review. Toxicol Sci. 2005;85(2):809–822. https://doi.org/10.1093/toxsci/kfi102
  31. 31 Wink M. Phytochemical diversity of secondary metabolites. In: Goodman RM, editor. Encyclopedia of plant & crop science. New York: Marcel Dekker; 2004. p. 915–9. https://doi.org/10.1002/9780470015902.a0001922.pub2
  32. 32 Khalid KA, Shedeed MR. Yield and chemical composition of Ni-gella sativa L. essential oil produced under kinetin treatments. Essent Oil-Bear Plants. 2016;19(7):1740–1746.
  33. 33 Verruck S, Balthazar CF, Rocha RS, Silva R, Esmerino EA, Pimen-tel TC, et al. Dairy foods and positive impact on the consumer’s health. Adv Food Nutr Res. 2019;89:95-164. https://doi.org/10.1016/bs.afnr.2019.03.002
  34. 34 Legrand P, Rioux V. Specific roles of saturated fatty acids: be-yond epidemiological data. Eur J Lipid Sci Technol. 2015;117(1):1489–1499. https://doi.org/10.1002/ejlt.201400514
  35. 35 Dabadie H, Peuchant E, Bernard M, Le Ruyet P, Mendy K. Moder-ate intake of myristic acid in sn-2 position has beneficial lipidic effects and enhances DHA of cholesteryl esters in an interven-tional study. J Nutr Biochem. 2005;16(6):375–382. https://doi.org/10.1016/j.jnutbio.2005.01.010
  36. 36 Saxena SN, Rathore SS, Diwakar Y, Kakani RK, Kant K, Dubey PN, et al. Genetic diversity in fatty acid composition and antioxidant capacity of Nigella sativa L. genotypes. LWT Food Sci Technol. 2017;78:198–207. http://dx.doi.org/10.1016/j.lwt.2016.12.033
  37. 37 Rohman A. Ariani R. Authentication of Nigella sativa seed oil in binary and ternary mixtures with corn oil and soybean oil using FTIR spectroscopy coupled with partial least square. Sci World J. 2013; 2013(1):740142 https://doi.org/10.1155/2013/740142
  38. 38 Sangeetha S, Archit R, SathiaVelu A. Phytochemical testing, antioxidant activity, HPTLC and FTIR analysis of antidiabetic plants Nigella sativa, Eugenia jambolana, Andrographis panicu-lata and Gymnema sylvestre. Res J Biotechnol. 2014;9(9):65–72.
  39. 39 Bruce SO, Nwafor OI, Omoirri MA, Adione NM, Onyeka IP, Ezeoru VC. GC-MS, FTIR and antiulcer screening of aqueous seed extract and oil of Nigella sativa in Wistar rats. J Drug Deliv Ther. 2021;11(6):48–60. https://doi.org/10.22270/jddt.v11i6.5036
  40. 40 Baltacıoglu H, Baltacıoglu C, Okur I, Tanrıvermis A, Yalıc M. Opti-mization of microwave-assisted extraction of phenolic com-pounds from tomato: Characterization by FTIR and HPLC and comparison with conventional solvent extraction. Vib Spec-trosc. 2021;113:113103204. https://doi.org/10.1016/j.vibspec.2020.103204
  41. 41 Selvaraj S, Rajkumar P, Kesavan M, Gunasekaran S, Kumaresan S. Experimental and theoretical analyzes on structural and spectroscopic properties of monomer and dimeric form of (S)-Piperidine-2-Carboxylic acid: An attempt on medicinal plant. Vib Spectrosc. 2019;100:30–39. https://doi.org/10.1016/j.vibspec.2018.10.008
  42. 42 Selin I, Kartal M, Erdem SA. Quantitative analysis of thymoqui-none in Nigella sativa L.(Black Cumin) seeds and commercial seed oils and seed oil capsules from Turkey. Ankara Univ Ecz Fak Derg.2017;41(1):34-41.
  43. 43 Eid SM, Soliman SS, Elghobashy MR, Abdalla OM. ATR-FTIR cou-pled with chemometrics for quantification of vildagliptin and metformin in pharmaceutical combinations having diverged concentration ranges. Vib Spectrosc. 2020;106(1):102995. https://doi.org/10.1016/j.vibspec.2019.102995
  44. 44 Paravar A, Farahani SM, Rezazadeh A. Lallemantia species re-sponse to drought stress and Arbuscular mycorrhizal fungi ap-plication. Ind Crops Prod. 2021;172(15):114002. https://doi.org/10.1016/j.indcrop.2021.114002

Downloads

Download data is not yet available.