Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. Sp2 (2025): Current Trends in Plant Science and Microbiome for Sustainability

Characterization of spider plant (Cleome gynandra L.) accessions from diverse agroecological regions for morphological and physiological traits associated with nitrogen deficiency tolerance

DOI
https://doi.org/10.14719/pst.4952
Submitted
4 September 2024
Published
27-09-2025

Abstract

The selection of indigenous crops that are high-yielding with sub-optimal soil nitrogen fertilizer must be prioritized. This is crucial for attaining sustainable food production since it lessens dependency on chemical fertilizers, reduces their negative effects on the environment and enhances resource use efficiency. These efforts will boost productivity and mitigate against the adverse effects of climate change. The present study evaluated 25 spider plant genotypes for their growth, economic yield and leaf photosynthetic physiological parameters at low and optimum N levels during their vegetative and reproductive growth stages. Through principal component analysis (PCA) using nitrogen stress tolerance indices, genotype ranking using best linear unbiased prediction (BLUP), cluster analysis using dendrogram and Pearson's correlation analysis, the performance of 25 genotypes under low N stress was evaluated. Parameters such as plant height, number of leaves, number of branches, economic yield, fresh weight and leaf photosynthetic physiological indicators were considered as the evaluation criteria for N deficiency tolerance. Although genotypes have shown varying tendencies in growth, yield and leaf photosynthetic indicators under N stress, N-tolerant genotypes (NC05015, ODS15103 and ODS15044) exhibited higher levels of these activities compared to N stress-sensitive genotypes (KSI2407A, ODS15020 and TOT8926). This study offers a reliable and comprehensive method for evaluating nitrogen deficiency tolerance in spider plants and
our data elucidate potential physiological adaptive mechanisms that allow spider plants to withstand N stress. Future studies should explore the genetic and molecular mechanisms underlying nitrogen deficiency tolerance, focusing on key nitrogen uptake and assimilation genes. Incorporating advanced biotechnological tools and multi-environment trials will enhance the development of resilient spider plant genotypes for production in diverse agroecological conditions.

References

  1. 1. Valin H, Sands RD, van der Mensbrugghe D, Nelson GC, Ahammad H, Blanc E, et al. The future of food demand: Understanding differences in global economic models. Agric Econ. 2014;45(1):51–67. https://doi.org/10.1111/agec.12089
  2. 2. Mansour E, Desoky ESM, Ali MMA, Abdul-Hamid MI, Ullah H, Attia A, et al. Identifying drought-tolerant genotypes of faba bean and their agro-physiological responses to different water regimes in an arid Mediterranean environment. Agric Water Manag. 2021;247:106754. https://doi.org/10.1016/j.agwat.2021.106754
  3. 3. Datta S, Hamim I, Jaiswal DK, Sungthong R. Sustainable agriculture. BMC Plant Biol. 2023;23(1):1–3. https://doi.org/10.1186/s12870-023-04626-9
  4. 4. Tyagi J, Ahmad S, Malik M. Nitrogenous fertilizers: impact on environmental sustainability, mitigation strategies, and challenges. Int J Environ Sci Technol. 2022;19(11):11649–72. https://doi.org/10.1007/s13762-022-04027-9
  5. 5. Ahmed M, Rauf M, Akhtar M, Mukhtar Z, Saeed NA. Hazards of nitrogen fertilizers and ways to reduce nitrate accumulation in crop plants. Environ Sci Pollut Res. 2020;27(15):17661–70. https://doi.org/10.1007/s11356-020-08236-y
  6. 6. Manabe S. Role of greenhouse gas in climate change. Tellus A Dyn Meteorol Oceanogr. 2019;71(1):1620078. https://doi.org/10.1080/
  7. 16000870.2019.1620078
  8. 7. Hertzberg M, Siddons A, Schreuder H. Role of greenhouse gases in climate change. Energy Environ. 2017;28(4). https://doi.org/10. 1177/0958305X17706177
  9. 8. Lammerts van BET, Struik PC. Diverse concepts of breeding for nitrogen use efficiency. A review. Agron Sustain Dev. 2017;37(5). https://doi.org/10.1007/s13593-017-0457-3
  10. 9. Li M, Xu J, Wang X, Fu H, Zhao M, Wang H, et al. Photosynthetic characteristics and metabolic analyses of two soybean genotypes revealed adaptive strategies to low-nitrogen stress. J Plant Physiol. 2018;229:132–41. https://doi.org/10.1016/j.jplph.2018.07.009
  11. 10. Yadav B, Jogawat A, Lal SK, Lakra N, Mehta S, Shabek N, et al. Plant mineral transport systems and the potential for crop improvement. Planta. 2021;253(2). https://doi.org/10.1007/s00425-020-03551-7
  12. 11. Qin L, Walk TC, Han P, Chen L, Zhang S, Li Y, et al. Adaption of Roots to Nitrogen Deficiency Revealed by 3D Quantification and Proteomic Analysis. Plant Physiol. 2019;179(1):329–47. https://doi.org/10.1104/pp.18.00716
  13. 12. Gloser V, Dvorackova M, Mota DH, Petrovic B, Gonzalez P, Geilfus CM. Early changes in nitrate uptake and assimilation under drought in relation to transpiration. Front Plant Sci. 2020;11:602065. https://doi.org/10.3389/fpls.2020.602065
  14. 13. Mavengahama S. Yield response of bolted spider plant (Cleome gynandra) to deflowering and application of nitrogen top dressing. J Food Agric Environ. 2013;11(3–4):1372–74.
  15. 14. Mauyo LW, Anjichi VE, Wambugu GW, Omunyini ME. Effect of nitrogen fertilizer levels on fresh leaf yield of spider plant (Cleome gynandra) in Western Kenya. Sci Res Essays. 2008;3(6):240–4. https://www.academicjournals.org/SRE
  16. 15. Cassman KG, Dobermann A, Walters DT. Agroecosystems, Nitrogen-use Efficiency, and Nitrogen Management. AMBIO. 2002;31(2):132–40. https://doi.org/10.1579/0044-7447-31.2.132
  17. 16. Nyathi MK, Van Halsema GE, Beletse YG, Annandale JG, Struik PC. Nutritional water productivity of selected leafy vegetables. Agric Water Manag. 2018;209:111–22. https://doi.org/10.1016/j.agwat.2018.07.025
  18. 17. Ochieng DB, Owaga EE, Njoroge DM. Effect of selected processing methods on the nutritional and anti-nutritional properties of spider plant (Gynandropsis gynandra). J Agric Food Tech. 2018;8(1):1–9.
  19. 18. Harris J, Beatrice M, Eric C. Nutrient composition of cats' whiskers (Cleome gynandra L.) from different agroecological zones in Malawi. Afr J Food Sci. 2017;11(1):24–29. https://doi.org/10.5897/AJFS2016.1478
  20. 19. Madumane K, Sewelo LT, Nkane MN, Batlang U, Malambane G. Morphological, physiological, and molecular stomatal responses in local watermelon landraces as drought tolerance mechanisms. Horticulturae. 2024;10(2):123. https://doi.org/10.3390/horticulturae
  21. 10020123
  22. 20. Fernandez GCJ. Effective Selection Criteria for Assessing Plant Stress Tolerance. In: Kuo CG, editors. Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress. AVRDC Publication, Tainan; 1992. p. 257–70.
  23. 21. Etminan A, Pour-Aboughadareh A, Mohammadi R, Shooshtari L, Yousefiazarkhanian M, Moradkhani H. Determining the best drought tolerance indices using artificial neural network (ANN): Insight into application of intelligent agriculture in agronomy and plant breeding. Cereal Res Commun. 2019;47(1). https://doi.org/10.1556/0806.46.2018.057
  24. 22. Kapoor D, Bhardwaj S, Landi M, Sharma A, Ramakrishnan M, Sharma A. The impact of drought on plant metabolism: How to exploit tolerance mechanisms to increase crop production. Appl Sci. 2020;2020:5692. https://doi.org/10.3390/app10165692
  25. 23. Sharma N, Schneider-Canny R, Chekhovskiy K, Kwon S, Saha MC. Opportunities for increased nitrogen use efficiency in wheat for forage use. Plants. 2020;9(12):1–16. https://doi.org/10.3390/plants9121738
  26. 24. Liu C, Gong X, Wang H, Dang K, Deng X, Feng B. Low-nitrogen tolerance comprehensive evaluation and physiological response to nitrogen stress in broomcorn millet (Panicum miliaceum L.) seedling. Plant Physiol Biochem. 2020;151:233–42. https://doi.org/10.1016/ j.plaphy.2020.03.027
  27. 25. Dehariya P, Mishra DK, Dhakad R, Kumar A. Studies on different levels of nitrogen application on growth and yield of Amaranthus (Amaranthus tricolor L.). Int J Curr Microbiol Appl Sci. 2019;8(4):1423–27. https://doi.org/10.20546/ijcmas.2019.804.165
  28. 26. Qadir O, Siervo M, Seal CJ, Brandt K. Manipulation of contents of nitrate, phenolic acids, chlorophylls, and carotenoids in Lettuce (Lactuca sativa L.) via contrasting responses to nitrogen fertilizer when grown in a controlled environment. J Agric Food Chem. 2017;65(46):10003–10. https://doi.org/10.1021/acs.jafc.7b03675
  29. 27. Mahanti NK, Chakraborty SK, Pathare PB. Effect of excess application of nitrogenous fertilizer on postharvest quality of spinach during storage. J Food Qual. 2024;2024(1):5521957. https://doi.org/10.1155/2024/5521957
  30. 28. Kalaji HM, Račková L, Paganová V, Swoczyna T, Rusinowski S, Sitko K. Can chlorophyll-a fluorescence parameters be used as bio-indicators to distinguish between drought and salinity stress in Tilia cordata Mill? Environ Exp Bot. 2018;152:149–57. https://doi.org/10. 1016/j.envexpbot.2017.11.001
  31. 29. Jayashri M, Samrudhi K. Estimation of chlorophyll content in young and adult leaves of some selected plants in polluted areas. Int J Adv Res. 2019;5(2):1300–07. www.IJARIIT.com
  32. 30. Al Imran M, Rahman MH, Rabbani MG, Rahman MA, Imran M, Ikrum M, et al. Effects of planting date and growth hormone on the growth and yield of cauliflower. J Environ Sci Nat Resour. 2016;9(2):143–50. https://doi.org/10.3329/jesnr.v9i2.32185
  33. 31. Kiebre Z, Traore ER, Kiebre M, Kabore D, Bationo-Kando P, Sawadogo B, et al. Agronomic performances and nutritional composition of three morphotypes of spider plant (Cleome gynandra L.) under different doses of compost. J BioSci Biotechnol. 2019;8(1):25–32. https://editorial.uni-plovdiv.bg/index.php/JBB/article/view/178
  34. 32. Singh M, Singh VP, Prasad SM. Responses of photosynthesis, nitrogen and proline metabolism to salinity stress in Solanum lycopersicum under different levels of nitrogen supplementation. Plant Physiol Biochem. 2016;109:72–83. https://doi.org/10.1016/j.
  35. plaphy.2016.08.021
  36. 33. Kumari S. Effects of nitrogen levels on anatomy, growth, and chlorophyll content in Sunflower (Helianthus annuus L.) leaves. J Agric Sci. 2017;9(8):208. https://doi.org/10.5539/jas.v9n8p208
  37. 34. Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L, Mantri N, et al. Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci Rep. 2016;6. https://doi.org/10.1038/
  38. srep19228
  39. 35. Masetla N, Maila Y, Shadung K. Accumulation of phytochemicals at different growth stages of Cleome gynandra grown under greenhouse and microplot conditions. Res Crops. 2022;23(3):657–65. https://doi.org/10.31830/2454-1761.2022.ROC-862
  40. 36. Ni L, Wang Z, Fu Z, Liu D, Yin Y, Li H, et al. Genome-wide analysis of basic helix-loop-helix family genes and expression analysis in response to drought and salt stresses in Hibiscus hamabo sieb. et Zucc. Int J Mol Sci. 2021;22(16). https://doi.org/10.3390/ijms22168748
  41. 37. Ambuko J, Mosenda E, Chemining’wa G, Owino W. Effect of water stress on growth and yield components of selected spider plant accessions. J Med Active Plants. 2020;9(2):81.
  42. 38. Gonye E, Kujeke GT, Edziwa X, Ncube A, Masekesa RT, Icishahayo D, et al. Field performance of spider plant (Cleome Gynandra L) under different agronomic practices. Afr J Food Agric Nutr Dev. 2017;17(3):12179–97. https://doi.org/10.18697/ajfand.79.15985
  43. 39. Fallon B, Cavender-Bares J. Leaf-level trade-offs between drought avoidance and desiccation recovery drive elevation stratification in arid oaks. Ecosphere. 2018;9(3):e02149. https://doi.org/10.1002/ecs2.2149
  44. 40. Ahmed A, Gabr A, AL–Sayed H, Smetanska I. Effect of drought and salinity stress on total phenolic, flavonoids and flavonols contents and antioxidant activity in in vitro sprout cultures of garden cress (Lepidium sativum). J Appl Sci. 2012;8(8):3934–42.
  45. 41. Liang G, Liu J, Zhang J, Guo J. Effects of drought stress on photosynthetic and physiological parameters of tomato. J Am Soc Hortic Sci. 2020;145(1):12–17. https://doi.org/10.21273/JASHS04725-19
  46. 42. Mu X, Chen Y. The physiological response of photosynthesis to nitrogen deficiency. Plant Physiol Biochem. 2021;158:76–82. https://doi.org/10.1016/j.plaphy.2020.11.019
  47. 43. Biemond H. Nitrogen nutrition effects on development, growth and nitrogen accumulation of vegetables. 4th Edition. Vol. 1; 2015. p. 15–37.
  48. 44. Nakanwagi MJ, Sseremba G, Kabod NP, Masanza M, Kizito EB. Identification of growth stage-specific watering thresholds for drought screening in Solanum aethiopicum Shum. Sci Rep. 2020;10(1):1–11. https://doi.org/10.1038/s41598-020-58035-1
  49. 45. Ahmad R, Waraich A, Ashraf MY, Ahmad S, Aziz T. Does nitrogen fertilization enhance drought tolerance in sunflower? A review. J Plant Nutr. 2014;37(6):942–63. https://doi.org/10.1080/01904167.2013.868480
  50. 46. Ivi´civi´c M, Grljuši´cgrljuši´c S, Popovi´cpopovi´c B, Andri´c LA, Plavšin I, Dvojkovi´c KD, et al. Screening of wheat genotypes for nitrogen deficiency tolerance using stress screening indices. Agronomy. 2021;11(8):1544. https://doi.org/10.3390/agronomy11081544
  51. 47. Stagnari F, Di Bitetto V, Pisante M. Effects of N fertilizers and rates on yield, safety and nutrients in processing spinach genotypes. Sci Hortic. 2007;114(4):225–33. https://doi.org/10.1016/j.scienta.2007.06.016
  52. 48. Du Y, Zhao Q, Li S, Yao X, Xie F, Zhao M. Shoot/root interactions affect soybean photosynthetic traits and yield formation: A case study of grafting with record-yield cultivars. Front Plant Sci. 2019;10:1–14. https://doi.org/10.3389/fpls.2019.00445
  53. 49. Naik YD, Sharma VK, Aski MS, Rangari SK, Kumar R, Dikshit HK, et al. Phenotypic profiling of lentil (Lens culinaris Medikus) accessions enabled identification of promising lines for use in breeding for high yield, early flowering and desirable traits. Plant Genet Resour. 2024;1–9. https://doi.org/10.1017/S1479262124000042
  54. 50. Khan FU, Mohammad F. Application of stress selection indices for assessment of nitrogen tolerance in wheat (Triticum aestivum L.). J Anim Plant Sci. 2016;26(1):201.
  55. 51. Aghaie P, Hosseini TSA, Ebrahimi MA, Haerinasab M. Tolerance evaluation and clustering of fourteen tomato cultivars grown under mild and severe drought conditions. Sci Hortic. 2018;232:1–12. https://doi.org/10.1016/j.scienta.2017.12.041
  56. 52. Parkash V, Singh S. A Review on potential plant-based water stress indicators for vegetable crops. Sustainability. 2020;12(10):3945. https://doi.org/10.3390/su12103945
  57. 53. Tantray AY, Bashir SS, Ahmad A. Low nitrogen stress regulates chlorophyll fluorescence in coordination with photosynthesis and Rubisco efficiency of rice. Physiol Mol Biol Plants. 2020;26(1):83. https://doi.org/10.1007/s12298-019-00721-0
  58. 54. Jin X, Yang G, Tan C, Zhao C. Effects of nitrogen stress on the photosynthetic CO2 assimilation, chlorophyll fluorescence and sugar-nitrogen ratio in corn. Sci Rep. 2015;5(1):1–9. https://doi.org/10.1038/srep09311
  59. 55. Du Y, Zhao Q, Chen L, Yao X, Xie F. Effect of drought stress at reproductive stages on growth and nitrogen metabolism in soybean. Agronomy 2020;10(2):302. https://doi.org/10.3390/agronomy10020302
  60. 56. Mu X, Chen Y. The physiological response of photosynthesis to nitrogen deficiency. Plant Physiol Biochem. 2021;158:76–82. https://doi.org/10.1016/j.plaphy.2020.11.019
  61. 57. Xue L, Yang L. Deriving leaf chlorophyll content of green-leafy vegetables from hyperspectral reflectance. ISPRS J Photogramm Remote Sens. 2009;64(1):97–106. https://doi.org/10.1016/j.isprsjprs.2008.06.002

Downloads

Download data is not yet available.