Research Articles
Vol. 12 No. Sp2 (2025): Current Trends in Plant Science and Microbiome for Sustainability
Characterization of spider plant (Cleome gynandra L.) accessions from diverse agroecological regions for morphological and physiological traits associated with nitrogen deficiency tolerance
Department of Crop Production and Agricultural Technologies, University of Namibia, Private Bag 13301, Windhoek, Namibia; Department of Crop and Soil Sciences, Botswana University of Agriculture and Natural Resources, Private bag 27, Gaborone, Botswana
Department of Crop and Soil Sciences, Botswana University of Agriculture and Natural Resources, Private bag 27, Gaborone, Botswana
Bio
Abstract
The selection of indigenous crops that are high-yielding with sub-optimal soil nitrogen fertilizer must be prioritized. This is crucial for attaining sustainable food production since it lessens dependency on chemical fertilizers, reduces their negative effects on the environment and enhances resource use efficiency. These efforts will boost productivity and mitigate against the adverse effects of climate change. The present study evaluated 25 spider plant genotypes for their growth, economic yield and leaf photosynthetic physiological parameters at low and optimum N levels during their vegetative and reproductive growth stages. Through principal component analysis (PCA) using nitrogen stress tolerance indices, genotype ranking using best linear unbiased prediction (BLUP), cluster analysis using dendrogram and Pearson's correlation analysis, the performance of 25 genotypes under low N stress was evaluated. Parameters such as plant height, number of leaves, number of branches, economic yield, fresh weight and leaf photosynthetic physiological indicators were considered as the evaluation criteria for N deficiency tolerance. Although genotypes have shown varying tendencies in growth, yield and leaf photosynthetic indicators under N stress, N-tolerant genotypes (NC05015, ODS15103 and ODS15044) exhibited higher levels of these activities compared to N stress-sensitive genotypes (KSI2407A, ODS15020 and TOT8926). This study offers a reliable and comprehensive method for evaluating nitrogen deficiency tolerance in spider plants and
our data elucidate potential physiological adaptive mechanisms that allow spider plants to withstand N stress. Future studies should explore the genetic and molecular mechanisms underlying nitrogen deficiency tolerance, focusing on key nitrogen uptake and assimilation genes. Incorporating advanced biotechnological tools and multi-environment trials will enhance the development of resilient spider plant genotypes for production in diverse agroecological conditions.
References
- 1. Valin H, Sands RD, van der Mensbrugghe D, Nelson GC, Ahammad H, Blanc E, et al. The future of food demand: Understanding differences in global economic models. Agric Econ. 2014;45(1):51–67. https://doi.org/10.1111/agec.12089
- 2. Mansour E, Desoky ESM, Ali MMA, Abdul-Hamid MI, Ullah H, Attia A, et al. Identifying drought-tolerant genotypes of faba bean and their agro-physiological responses to different water regimes in an arid Mediterranean environment. Agric Water Manag. 2021;247:106754. https://doi.org/10.1016/j.agwat.2021.106754
- 3. Datta S, Hamim I, Jaiswal DK, Sungthong R. Sustainable agriculture. BMC Plant Biol. 2023;23(1):1–3. https://doi.org/10.1186/s12870-023-04626-9
- 4. Tyagi J, Ahmad S, Malik M. Nitrogenous fertilizers: impact on environmental sustainability, mitigation strategies, and challenges. Int J Environ Sci Technol. 2022;19(11):11649–72. https://doi.org/10.1007/s13762-022-04027-9
- 5. Ahmed M, Rauf M, Akhtar M, Mukhtar Z, Saeed NA. Hazards of nitrogen fertilizers and ways to reduce nitrate accumulation in crop plants. Environ Sci Pollut Res. 2020;27(15):17661–70. https://doi.org/10.1007/s11356-020-08236-y
- 6. Manabe S. Role of greenhouse gas in climate change. Tellus A Dyn Meteorol Oceanogr. 2019;71(1):1620078. https://doi.org/10.1080/
- 16000870.2019.1620078
- 7. Hertzberg M, Siddons A, Schreuder H. Role of greenhouse gases in climate change. Energy Environ. 2017;28(4). https://doi.org/10. 1177/0958305X17706177
- 8. Lammerts van BET, Struik PC. Diverse concepts of breeding for nitrogen use efficiency. A review. Agron Sustain Dev. 2017;37(5). https://doi.org/10.1007/s13593-017-0457-3
- 9. Li M, Xu J, Wang X, Fu H, Zhao M, Wang H, et al. Photosynthetic characteristics and metabolic analyses of two soybean genotypes revealed adaptive strategies to low-nitrogen stress. J Plant Physiol. 2018;229:132–41. https://doi.org/10.1016/j.jplph.2018.07.009
- 10. Yadav B, Jogawat A, Lal SK, Lakra N, Mehta S, Shabek N, et al. Plant mineral transport systems and the potential for crop improvement. Planta. 2021;253(2). https://doi.org/10.1007/s00425-020-03551-7
- 11. Qin L, Walk TC, Han P, Chen L, Zhang S, Li Y, et al. Adaption of Roots to Nitrogen Deficiency Revealed by 3D Quantification and Proteomic Analysis. Plant Physiol. 2019;179(1):329–47. https://doi.org/10.1104/pp.18.00716
- 12. Gloser V, Dvorackova M, Mota DH, Petrovic B, Gonzalez P, Geilfus CM. Early changes in nitrate uptake and assimilation under drought in relation to transpiration. Front Plant Sci. 2020;11:602065. https://doi.org/10.3389/fpls.2020.602065
- 13. Mavengahama S. Yield response of bolted spider plant (Cleome gynandra) to deflowering and application of nitrogen top dressing. J Food Agric Environ. 2013;11(3–4):1372–74.
- 14. Mauyo LW, Anjichi VE, Wambugu GW, Omunyini ME. Effect of nitrogen fertilizer levels on fresh leaf yield of spider plant (Cleome gynandra) in Western Kenya. Sci Res Essays. 2008;3(6):240–4. https://www.academicjournals.org/SRE
- 15. Cassman KG, Dobermann A, Walters DT. Agroecosystems, Nitrogen-use Efficiency, and Nitrogen Management. AMBIO. 2002;31(2):132–40. https://doi.org/10.1579/0044-7447-31.2.132
- 16. Nyathi MK, Van Halsema GE, Beletse YG, Annandale JG, Struik PC. Nutritional water productivity of selected leafy vegetables. Agric Water Manag. 2018;209:111–22. https://doi.org/10.1016/j.agwat.2018.07.025
- 17. Ochieng DB, Owaga EE, Njoroge DM. Effect of selected processing methods on the nutritional and anti-nutritional properties of spider plant (Gynandropsis gynandra). J Agric Food Tech. 2018;8(1):1–9.
- 18. Harris J, Beatrice M, Eric C. Nutrient composition of cats' whiskers (Cleome gynandra L.) from different agroecological zones in Malawi. Afr J Food Sci. 2017;11(1):24–29. https://doi.org/10.5897/AJFS2016.1478
- 19. Madumane K, Sewelo LT, Nkane MN, Batlang U, Malambane G. Morphological, physiological, and molecular stomatal responses in local watermelon landraces as drought tolerance mechanisms. Horticulturae. 2024;10(2):123. https://doi.org/10.3390/horticulturae
- 10020123
- 20. Fernandez GCJ. Effective Selection Criteria for Assessing Plant Stress Tolerance. In: Kuo CG, editors. Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress. AVRDC Publication, Tainan; 1992. p. 257–70.
- 21. Etminan A, Pour-Aboughadareh A, Mohammadi R, Shooshtari L, Yousefiazarkhanian M, Moradkhani H. Determining the best drought tolerance indices using artificial neural network (ANN): Insight into application of intelligent agriculture in agronomy and plant breeding. Cereal Res Commun. 2019;47(1). https://doi.org/10.1556/0806.46.2018.057
- 22. Kapoor D, Bhardwaj S, Landi M, Sharma A, Ramakrishnan M, Sharma A. The impact of drought on plant metabolism: How to exploit tolerance mechanisms to increase crop production. Appl Sci. 2020;2020:5692. https://doi.org/10.3390/app10165692
- 23. Sharma N, Schneider-Canny R, Chekhovskiy K, Kwon S, Saha MC. Opportunities for increased nitrogen use efficiency in wheat for forage use. Plants. 2020;9(12):1–16. https://doi.org/10.3390/plants9121738
- 24. Liu C, Gong X, Wang H, Dang K, Deng X, Feng B. Low-nitrogen tolerance comprehensive evaluation and physiological response to nitrogen stress in broomcorn millet (Panicum miliaceum L.) seedling. Plant Physiol Biochem. 2020;151:233–42. https://doi.org/10.1016/ j.plaphy.2020.03.027
- 25. Dehariya P, Mishra DK, Dhakad R, Kumar A. Studies on different levels of nitrogen application on growth and yield of Amaranthus (Amaranthus tricolor L.). Int J Curr Microbiol Appl Sci. 2019;8(4):1423–27. https://doi.org/10.20546/ijcmas.2019.804.165
- 26. Qadir O, Siervo M, Seal CJ, Brandt K. Manipulation of contents of nitrate, phenolic acids, chlorophylls, and carotenoids in Lettuce (Lactuca sativa L.) via contrasting responses to nitrogen fertilizer when grown in a controlled environment. J Agric Food Chem. 2017;65(46):10003–10. https://doi.org/10.1021/acs.jafc.7b03675
- 27. Mahanti NK, Chakraborty SK, Pathare PB. Effect of excess application of nitrogenous fertilizer on postharvest quality of spinach during storage. J Food Qual. 2024;2024(1):5521957. https://doi.org/10.1155/2024/5521957
- 28. Kalaji HM, Račková L, Paganová V, Swoczyna T, Rusinowski S, Sitko K. Can chlorophyll-a fluorescence parameters be used as bio-indicators to distinguish between drought and salinity stress in Tilia cordata Mill? Environ Exp Bot. 2018;152:149–57. https://doi.org/10. 1016/j.envexpbot.2017.11.001
- 29. Jayashri M, Samrudhi K. Estimation of chlorophyll content in young and adult leaves of some selected plants in polluted areas. Int J Adv Res. 2019;5(2):1300–07. www.IJARIIT.com
- 30. Al Imran M, Rahman MH, Rabbani MG, Rahman MA, Imran M, Ikrum M, et al. Effects of planting date and growth hormone on the growth and yield of cauliflower. J Environ Sci Nat Resour. 2016;9(2):143–50. https://doi.org/10.3329/jesnr.v9i2.32185
- 31. Kiebre Z, Traore ER, Kiebre M, Kabore D, Bationo-Kando P, Sawadogo B, et al. Agronomic performances and nutritional composition of three morphotypes of spider plant (Cleome gynandra L.) under different doses of compost. J BioSci Biotechnol. 2019;8(1):25–32. https://editorial.uni-plovdiv.bg/index.php/JBB/article/view/178
- 32. Singh M, Singh VP, Prasad SM. Responses of photosynthesis, nitrogen and proline metabolism to salinity stress in Solanum lycopersicum under different levels of nitrogen supplementation. Plant Physiol Biochem. 2016;109:72–83. https://doi.org/10.1016/j.
- plaphy.2016.08.021
- 33. Kumari S. Effects of nitrogen levels on anatomy, growth, and chlorophyll content in Sunflower (Helianthus annuus L.) leaves. J Agric Sci. 2017;9(8):208. https://doi.org/10.5539/jas.v9n8p208
- 34. Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L, Mantri N, et al. Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci Rep. 2016;6. https://doi.org/10.1038/
- srep19228
- 35. Masetla N, Maila Y, Shadung K. Accumulation of phytochemicals at different growth stages of Cleome gynandra grown under greenhouse and microplot conditions. Res Crops. 2022;23(3):657–65. https://doi.org/10.31830/2454-1761.2022.ROC-862
- 36. Ni L, Wang Z, Fu Z, Liu D, Yin Y, Li H, et al. Genome-wide analysis of basic helix-loop-helix family genes and expression analysis in response to drought and salt stresses in Hibiscus hamabo sieb. et Zucc. Int J Mol Sci. 2021;22(16). https://doi.org/10.3390/ijms22168748
- 37. Ambuko J, Mosenda E, Chemining’wa G, Owino W. Effect of water stress on growth and yield components of selected spider plant accessions. J Med Active Plants. 2020;9(2):81.
- 38. Gonye E, Kujeke GT, Edziwa X, Ncube A, Masekesa RT, Icishahayo D, et al. Field performance of spider plant (Cleome Gynandra L) under different agronomic practices. Afr J Food Agric Nutr Dev. 2017;17(3):12179–97. https://doi.org/10.18697/ajfand.79.15985
- 39. Fallon B, Cavender-Bares J. Leaf-level trade-offs between drought avoidance and desiccation recovery drive elevation stratification in arid oaks. Ecosphere. 2018;9(3):e02149. https://doi.org/10.1002/ecs2.2149
- 40. Ahmed A, Gabr A, AL–Sayed H, Smetanska I. Effect of drought and salinity stress on total phenolic, flavonoids and flavonols contents and antioxidant activity in in vitro sprout cultures of garden cress (Lepidium sativum). J Appl Sci. 2012;8(8):3934–42.
- 41. Liang G, Liu J, Zhang J, Guo J. Effects of drought stress on photosynthetic and physiological parameters of tomato. J Am Soc Hortic Sci. 2020;145(1):12–17. https://doi.org/10.21273/JASHS04725-19
- 42. Mu X, Chen Y. The physiological response of photosynthesis to nitrogen deficiency. Plant Physiol Biochem. 2021;158:76–82. https://doi.org/10.1016/j.plaphy.2020.11.019
- 43. Biemond H. Nitrogen nutrition effects on development, growth and nitrogen accumulation of vegetables. 4th Edition. Vol. 1; 2015. p. 15–37.
- 44. Nakanwagi MJ, Sseremba G, Kabod NP, Masanza M, Kizito EB. Identification of growth stage-specific watering thresholds for drought screening in Solanum aethiopicum Shum. Sci Rep. 2020;10(1):1–11. https://doi.org/10.1038/s41598-020-58035-1
- 45. Ahmad R, Waraich A, Ashraf MY, Ahmad S, Aziz T. Does nitrogen fertilization enhance drought tolerance in sunflower? A review. J Plant Nutr. 2014;37(6):942–63. https://doi.org/10.1080/01904167.2013.868480
- 46. Ivi´civi´c M, Grljuši´cgrljuši´c S, Popovi´cpopovi´c B, Andri´c LA, Plavšin I, Dvojkovi´c KD, et al. Screening of wheat genotypes for nitrogen deficiency tolerance using stress screening indices. Agronomy. 2021;11(8):1544. https://doi.org/10.3390/agronomy11081544
- 47. Stagnari F, Di Bitetto V, Pisante M. Effects of N fertilizers and rates on yield, safety and nutrients in processing spinach genotypes. Sci Hortic. 2007;114(4):225–33. https://doi.org/10.1016/j.scienta.2007.06.016
- 48. Du Y, Zhao Q, Li S, Yao X, Xie F, Zhao M. Shoot/root interactions affect soybean photosynthetic traits and yield formation: A case study of grafting with record-yield cultivars. Front Plant Sci. 2019;10:1–14. https://doi.org/10.3389/fpls.2019.00445
- 49. Naik YD, Sharma VK, Aski MS, Rangari SK, Kumar R, Dikshit HK, et al. Phenotypic profiling of lentil (Lens culinaris Medikus) accessions enabled identification of promising lines for use in breeding for high yield, early flowering and desirable traits. Plant Genet Resour. 2024;1–9. https://doi.org/10.1017/S1479262124000042
- 50. Khan FU, Mohammad F. Application of stress selection indices for assessment of nitrogen tolerance in wheat (Triticum aestivum L.). J Anim Plant Sci. 2016;26(1):201.
- 51. Aghaie P, Hosseini TSA, Ebrahimi MA, Haerinasab M. Tolerance evaluation and clustering of fourteen tomato cultivars grown under mild and severe drought conditions. Sci Hortic. 2018;232:1–12. https://doi.org/10.1016/j.scienta.2017.12.041
- 52. Parkash V, Singh S. A Review on potential plant-based water stress indicators for vegetable crops. Sustainability. 2020;12(10):3945. https://doi.org/10.3390/su12103945
- 53. Tantray AY, Bashir SS, Ahmad A. Low nitrogen stress regulates chlorophyll fluorescence in coordination with photosynthesis and Rubisco efficiency of rice. Physiol Mol Biol Plants. 2020;26(1):83. https://doi.org/10.1007/s12298-019-00721-0
- 54. Jin X, Yang G, Tan C, Zhao C. Effects of nitrogen stress on the photosynthetic CO2 assimilation, chlorophyll fluorescence and sugar-nitrogen ratio in corn. Sci Rep. 2015;5(1):1–9. https://doi.org/10.1038/srep09311
- 55. Du Y, Zhao Q, Chen L, Yao X, Xie F. Effect of drought stress at reproductive stages on growth and nitrogen metabolism in soybean. Agronomy 2020;10(2):302. https://doi.org/10.3390/agronomy10020302
- 56. Mu X, Chen Y. The physiological response of photosynthesis to nitrogen deficiency. Plant Physiol Biochem. 2021;158:76–82. https://doi.org/10.1016/j.plaphy.2020.11.019
- 57. Xue L, Yang L. Deriving leaf chlorophyll content of green-leafy vegetables from hyperspectral reflectance. ISPRS J Photogramm Remote Sens. 2009;64(1):97–106. https://doi.org/10.1016/j.isprsjprs.2008.06.002
Downloads
Download data is not yet available.