Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 11 No. sp4 (2024): Recent Advances in Agriculture by Young Minds - I

Exploring the potential of beta rhizobium in nitrogen fixation and agricultural sustainability

DOI
https://doi.org/10.14719/pst.4958
Submitted
5 September 2024
Published
23-12-2024 — Updated on 24-02-2025
Versions

Abstract

Some of the earliest discovered nitrogen-fixing symbiotic prokaryotes were the ‘Rhizobia,’ microbes that associate with legume. A relatively recent group of nitrogen-fixing bacteria, beta-rhizobia plays a significant role in sustainable agriculture. Detailed insights into the relationships between beta-rhizobia and leguminous plants can be found in the phylogeny and taxonomy section on legumes. Here, we provide a discussion of recent literature focusing on the molecular aspects of beta-rhizobia-plant interactions, with potential implications for enhancing nitrogen fixation beyond nodulation processes. Furthermore, we emphasize the importance of coordinating knowledge from other disciplines into harness these beneficial microbes and advance sustainable crop farming practices. In other words, this review aims to explore the potential of beta-rhizobia and their contributions to sustainable agriculture.

References

  1. Kebede E. Contribution, utilization and improvement of legumes-driven biological nitrogen fixation in agricultural systems. Front Sustain Food Syst. 2021;5:767998. https://doi.org/10.3389/fsufs.2021.767998
  2. Vance CP, Graham PH. Nitrogen fixation in agriculture: Application and perspectives. In: Tikhonovich IA, Provorov NA, Romanov VI, Newton WE, editors. Nitrogen fixation: Fundamentals and applications. Current Plant Science and Biotechnology in Agriculture, vol. 27. Springer, Dordrecht; 1995. p. 77–86. https://doi.org/10.1007/978-94-011-0379-4_10
  3. Allito BB, Nana EM, Alemneh AA. Rhizobia strain and legume genome interaction effects on nitrogen fixation and yield of grain legume: A review. Mol Soil Biol. 2015;6(2):1-6. https://doi.org/10.5376/msb.2015.06.0002
  4. Kebede E. Competency of rhizobial inoculation in sustainable agricultural production and biocontrol of plant diseases. Front Sustain Food Syst. 2021;5:728014. https://doi.org/10.3389/fsufs.2021.728014
  5. Moulin L, Munive A, Dreyfus B, Boivin-Masson C. Nodulation of legumes by members of the b-subclass of Proteobacteria. Nature. 2001;411(6840):948-50. https://doi.org/10.1038/35082070
  6. Goyal RK, Mattoo AK, Schmidt MA. Rhizobial–host interactions and symbiotic nitrogen fixation in legume crops toward agriculture sustainability. Front Microbiol. 2021;12:669404. https://doi.org/10.3389/fmicb.2021.669404
  7. Gyaneshwar P, Hirsch AM, Moulin L, Chen WM, Elliott GN, Bontemps C, et al. Legume-nodulating betaproteobacteria: Diversity, host range and future prospects. Mol Plant Microbe Interact. 2011;24(11):1276-88. https://doi.org/10.1094/MPMI-06-11-0172
  8. Peter J, Young W, Haukka KE. Diversity and phylogeny of rhizobia. New Phytol. 1996;133(1):87-94. https://doi.org/10.1111/j.1469-8137.1996.tb04344.x
  9. Willems A. The taxonomy of rhizobia: An overview. Plant Soil. 2006;287(1-2):3-14. https://doi.org/10.1007/s11104-006-9058-7
  10. Bellés-Sancho P, Beukes C, James EK, Pessi G. Nitrogen-fixing symbiotic Paraburkholderia species: Current knowledge and future perspectives. Nitrogen. 2023;4(1):135-58. https://doi.org/10.3390/nitrogen4010010
  11. Geurts R, Bisseling T. Rhizobium nod factor perception and signalling. Plant Cell. 2002;14 (suppl 1):S239-49. https://doi.org/10.1105/tpc.002451
  12. Poole P, Ramachandran V, Terpolilli J. Rhizobia: From saprophytes to endosymbionts. Nat Rev Microbiol. 2018;16:291-303. https://doi.org/10.1038/nrmicro.2017.171
  13. Checcucci A, DiCenzo GC, Bazzicalupo M, Mengoni A. Trade, diplomacy and warfare: The quest for elite rhizobia inoculant strains. Front Microbiol. 2017;8:2207. https://doi.org/10.3389/fmicb.2017.02207
  14. Whipps JM. Microbial interactions and biocontrol in the rhizosphere. J Exp Bot. 2001;52:487-511. https://doi.org/10.1093/jexbot/52.suppl_1.487
  15. Liu XY, Wu W, Wang ET, Zhang B, Macdermott J, Chen WX. Phylogenetic relationships and diversity of beta-rhizobia associated with Mimosa species grown in Sishuangbanna, China. Int J Syst Evol Microbiol. 2011;61(2):334-42. https://doi.org/10.1099/ijs.0.020560-0
  16. Chen WF, Wang ET, Ji ZJ, Zhang JJ. Recent development and new insight of diversification and symbiosis specificity of legume rhizobia: Mechanism and application. J Appl Microbiol. 2021;131(2):553-63. https://doi.org/10.1111/jam.14960
  17. Graham PH, Vance CP. Legumes: Importance and constraints to greater use. Plant Physiol. 2003;131(3):872-77. https://doi.org/10.1104/pp.017004
  18. Goyal RK, Habtewold JZ. Evaluation of legume–rhizobial symbiotic interactions beyond nitrogen fixation that help the host survival and diversification in hostile environments. Microorganisms. 2023;11(6):1454. https://doi.org/10.3390/microorganisms11061454
  19. Zahran HH. Rhizobium - legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev. 1999;63(4):968-89. https://doi.org/10.1128/MMBR.63.4.968-989.1999
  20. Sawada H, Kuykendall LD, Young JM. Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. J Gen Appl Microbiol. 2003;49(3):155-79. https://doi.org/10.2323/jgam.49.155
  21. Estrada-de Los Santos P, Vinuesa P, Martínez-Aguilar L, Hirsch AM, Caballero-Mellado J. Phylogenetic analysis of Burkholderia species by multilocus sequence analysis. Curr Microbiol. 2013;67:51-60. https://doi.org/10.1007/s00284-013-0330-9
  22. El-Banna N, Winkelmann G. Pyrrolnitrin from Burkholderia cepacia: Antibiotic activity against fungi and novel activities against streptomycetes. J Appl Microbiol. 1998;85(1):69–78. https://doi.org/10.1046/j.1365-2672.1998.00473.x
  23. AuCoin DP, Crump RB, Thorkildson P, Nuti DE, LiPuma JJ, Kozel TR. Identification of Burkholderia cepacia complex bacteria with a lipopolysaccharide-specific monoclonal antibody. J Med Microbiol. 2010;59(1):41-47. https://doi.org/10.1099/jmm.0.012500-0
  24. Lindström K, Mousavi SA. Effectiveness of nitrogen fixation in rhizobia. Microb Biotechnol. 2020;13(5):1314-35. https://doi.org/10.1111/1751-7915.13517
  25. Rahimlou S, Bahram M, Tedersoo L. Phylogenomics reveals the evolution of root nodulating alpha- and beta-Proteobacteria (rhizobia). Microbiol Res. 2021;250:126788. https://doi.org/10.1016/j.micres.2021.126788
  26. Beukes CW, Boshoff FS, Phalane FL, Hassen AI, Le Roux MM, Stepkowski T, et al. Both alpha- and beta-rhizobia occupy the root nodules of Vachellia karroo in South Africa. Front Microbiol. 2019;10:1195. https://doi.org/10.3389/fmicb.2019.01195
  27. Hassen AI, Lamprecht SC, Bopape FL. Emergence of beta-rhizobia as new root nodulating bacteria in legumes and current status of the legume–rhizobium host specificity dogma. World J Microbiol Biotechnol. 2020;36:40. https://doi.org/10.1007/s11274-020-2811-x
  28. Rajkumari J, Katiyar P, Dheeman S, Pandey P, Maheshwari DK. The changing paradigm of rhizobial taxonomy and its systematic growth upto postgenomic technologies. World J Microbiol Biotechnol. 2022;38:206. https://doi.org/10.1007/s11274-022-03370-w
  29. Zhang YM, Tian CF, Sui XH, Chen WF, Chen WX. Robust markers reflecting phylogeny and taxonomy of rhizobia. Badger JH, editor. PLoS ONE. 2012;7(9):e44936. https://doi.org/10.1371/journal.pone.0044936
  30. Koskey G, Mburu SW, Kimiti JM, Ombori O, Maingi JM, Njeru EM. Genetic characterization and diversity of Rhizobium isolated from root nodules of mid-altitude climbing bean (Phaseolus vulgaris L.) varieties. Front Microbiol. 2018;9:968. https://doi.org/10.3389/fmicb.2018.00968
  31. Lemaire B, Van Cauwenberghe J, Verstraete B, Chimphango S, Stirton C, Honnay O, et al. Characterization of the papilionoid– Burkholderia interaction in the Fynbos biome: The diversity and distribution of beta-rhizobia nodulating Podalyria calyptrata (Fabaceae, Podalyrieae). Syst Appl Microbiol. 2016;39(1):41-48. https://doi.org/10.1016/j.syapm.2015.09.006
  32. Liu G, Liu X, Liu W, Gao K, Chen X, Wang ET, et al. Biodiversity and geographic distribution of rhizobia nodulating with Vigna minima. Front Microbiol. 2021;12:665839. https://doi.org/10.3389/fmicb.2021.665839
  33. Lemaire B, Dlodlo O, Chimphango S, Stirton C, Schrire B, Boatwright JS, et al. Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the Core Cape Subregion (South Africa). FEMS Microbiol Ecol. 2015;91(2):1-17. https://doi.org/10.1093/femsec/fiu024
  34. Gerding M, O’Hara GW, Bräu L, Nandasena K, Howieson JG. Diverse Mesorhizobium spp. with unique nodA nodulating the South African legume species of the genus Lessertia. Plant Soil. 2012;358(1-2):385-401. https://doi.org/10.1007/s11104-012-1153-3
  35. Andrews M, De Meyer S, James EK, Stepkowski T, Hodge S, Simon MF, et al. Horizontal transfer of symbiosis genes within and between rhizobial genera: Occurrence and importance. Genes. 2018;9(7):321. https://doi.org/10.3390/genes9070321
  36. Liu XY, Wei S, Wang F, James EK, Guo X, Zagar C, et al. Burkholderia and Cupriavidus spp. are the preferred symbionts of Mimosa spp. in Southern China. FEMS Microbiol Ecol. 2012;80(2):417-26. https://doi.org/10.1111/j.1574-6941.2012.01310.x
  37. Heuer H, Smalla K. Horizontal gene transfer between bacteria. Environ Biosafety Res. 2007;6(1-2):3-13. https://doi.org/10.1051/ebr:2007034
  38. Nielsen KM, Van Elsas JD. Horizontal gene transfer and microevolution in soil. In: Van Elsas JD, Trevors JT, Rosado AS, Nannipieri P, editors. Modern soil microbiology. 3rd ed. CRC Press; 2019. p. 19.
  39. Vandamme P, Goris J, Chen WM, De Vos P, Willems A. Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol. 2002;25(4):507-12. https://doi.org/10.1078/07232020260517634
  40. Shankar S, Haque E, Ahmed T, Kiran GS, Hassan S, Selvin J. Rhizobia–legume symbiosis during environmental stress. In: Shrivastava N, Mahajan S, Varma A, editors. Symbiotic soil microorganisms. Soil Biology, vol. 60. Springer, Cham; 2021. p. 201–22. https://doi.org/10.1007/978-3-030-51916-2_13
  41. Hawkins JP, Oresnik IJ. The Rhizobium-legume symbiosis: Co-opting successful stress management. Front Plant Sci. 2022;12:796045. https://doi.org/10.3389/fpls.2021.796045
  42. Florentino LA, Jaramillo PMD, Silva KB, da Silva JS, de Oliveira SM, de Souza Moreira FM. Physiological and symbiotic diversity of Cupriavidus necator strains isolated from nodules of Leguminosae species. Sci Agric. 2012;69(4):247-58. https://doi.org/10.1590/S0103-90162012000400003
  43. Chen WM, Moulin L, Bontemps C, Vandamme P, Béna G, Boivin-Masson C. Legume symbiotic nitrogen fixation by beta-proteobacteria is widespread in nature. J Bacteriol. 2003;185(24):7266-72. https://doi.org/10.1128/JB.185.24.7266-7272.2003
  44. Tsyganova AV, Brewin NJ, Tsyganov VE. Structure and development of the legume-rhizobial symbiotic interface in infection threads. Cells. 2021;10(5):1050. https://doi.org/10.3390/cells10051050
  45. Acosta-Jurado S, Fuentes-Romero F, Ruiz-Sainz JE, Janczarek M, Vinardell JM. Rhizobial exopolysaccharides: Genetic regulation of their synthesis and relevance in symbiosis with legumes. Int J Mol Sci. 2021;22(12):6233. https://doi.org/10.3390/ijms22126233
  46. Gray JX, Rolfe BG. Exopolysaccharide production in Rhizobium and its role in invasion. Mol Microbiol. 1990;4(9):1425-31. https://doi.org/10.1111/j.1365-2958.1990.tb02052.x
  47. Coba De La Peña T, Fedorova E, Pueyo JJ, Lucas MM. The symbiosome: Legume and rhizobia co-evolution toward a nitrogen-fixing organelle? Front Plant Sci. 2018;8:2229. https://doi.org/10.3389/fpls.2017.02229
  48. Sprent JI, Ardley J, James EK. Biogeography of nodulated legumes and their nitrogen-fixing symbionts. New Phytol. 2017;215(1):40-56. https://doi.org/10.1111/nph.14474
  49. Dénarié J, Debellé F, Promé JC. Rhizobium lipo-chitooligosaccharide nodulation factors: Signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem. 1996;65:503-35. https://doi.org/10.1146/annurev.bi.65.070196.002443
  50. Geddes BA, Kearsley J, Morton R, diCenzo GC, Finan TM. The genomes of rhizobia. In: Frendo P, Frugier F, Masson-Boivin C, editors. Advances in Botanical Research. Vol. 94, Academic Press; 2020. p. 213–49.
  51. Spaink HP, Wijfjes AH, Lugtenberg BJ. Rhizobium NodI and NodJ proteins play a role in the efficiency of secretion of lipochitin oligosaccharides. J Bacteriol. 1995;177(21):6276-81. https://doi.org/10.1128/jb.177.21.6276-6281.1995
  52. Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Promé JC, et al. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature. 1990;344:781-84. https://doi.org/10.1038/344781a0
  53. Lee A, Hirsch AM. Signals and responses: Choreographing the complex interaction between legumes and alpha- and beta-rhizobia. Plant Signal Behav. 2006;1(4):161-68. https://doi.org/10.4161/psb.1.4.3143
  54. Shumilina J, Soboleva A, Abakumov E, Shtark OY, Zhukov VA, Frolov A. Signaling in legume–rhizobia symbiosis. Int J Mol Sci. 2023;24(24):17397. https://doi.org/10.3390/ijms242417397
  55. Fujishige NA, Kapadia NN, De Hoff PL, Hirsch AM. Investigations of Rhizobium biofilm formation: Rhizobia form biofilms. FEMS Microbiol Ecol. 2006;56(2):195-206. https://doi.org/10.1111/j.1574-6941.2005.00044.x
  56. Nascimento FX, Tavares MJ, Rossi MJ, Glick BR. The modulation of leguminous plant ethylene levels by symbiotic rhizobia played a role in the evolution of the nodulation process. Heliyon. 2018;4(12):e01068. https://doi.org/10.1016/j.heliyon.2018.e01068
  57. Shaharoona B, Imran M, Arshad M, Khalid A. Manipulation of ethylene synthesis in roots through bacterial ACC deaminase for improving nodulation in legumes. Crit Rev Plant Sci. 2011;30(3):279-91. https://doi.org/10.1080/07352689.2011.572058
  58. Fahde S, Boughribil S, Sijilmassi B, Amri A. Rhizobia: A promising source of plant growth-promoting molecules and their non-legume interactions: Examining applications and mechanisms. Agriculture. 2023;13(7):1279. https://doi.org/10.3390/agriculture13071279
  59. Sun W, Shahrajabian MH. The effectiveness of Rhizobium bacteria on soil fertility and sustainable crop production under cover and catch crops management and green manuring. Not Bot Horti Agrobot Cluj-Napoca. 2022;50(2):12560. https://doi.org/10.15835/nbha50212560
  60. Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L. Plant growth promoting rhizobia: Challenges and opportunities. 3 Biotech. 2015;5:355-77. https://doi.org/10.1007/s13205-014-0241-x
  61. Jaiswal SK, Mohammed M, Ibny FYI, Dakora FD. Rhizobia as a source of plant growth-promoting molecules: Potential applications and possible operational mechanisms. Front Sustain Food Syst. 2021;4:619676. https://doi.org/10.3389/fsufs.2020.619676
  62. Vio SA, García SS, Casajus V, Arango JS, Galar ML, Bernabeu PR, et al. Paraburkholderia. In: Amaresan N, Senthil Kumar N, Annapurna K, Kumar K, Sankaranarayanan A, editors. Beneficial microbes in agro-ecology. Academic Press; 2020. p. 271–311. https://doi.org/10.1016/B978-0-12-823414-3.00015-0
  63. Herpell JB, Schindler F, Bejtovic M, Fragner L, Diallo B, Bellaire A, et al. The potato yam phyllosphere ectosymbiont Paraburkholderia sp. Msb3 is a potent growth promotor in tomato. Front Microbiol. 2020;11:581. https://doi.org/10.3389/fmicb.2020.00581
  64. Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A. Role of plant growth promoting rhizobacteria in agricultural sustainability—A review. Molecules. 2016;21(5):573. https://doi.org/10.3390/molecules21050573
  65. Concha C, Doerner P. The impact of the rhizobia–legume symbiosis on host root system architecture. Gutiérrez R, editor. J Exp Bot. 2020;71(13):3902-21. https://doi.org/10.1093/jxb/eraa198
  66. Bellés-Sancho P, Liu Y, Heiniger B, Von Salis E, Eberl L, Ahrens CH, et al. A novel function of the key nitrogen-fixation activator NifA in beta-rhizobia: Repression of bacterial auxin synthesis during symbiosis. Front Plant Sci. 2022;13:991548. https://doi.org/10.3389/fpls.2022.991548
  67. Afzal M, Khan QM, Sessitsch A. Endophytic bacteria: Prospects and applications for the phytoremediation of organic pollutants. Chemosphere. 2014;117:232-42. https://doi.org/10.1016/j.chemosphere.2014.06.078
  68. Teng Y, Wang X, Li L, Li Z, Luo Y. Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils. Front Plant Sci. 2015;6:32. https://doi.org/10.3389/fpls.2015.00032
  69. Keller KR, Lau JA. When mutualisms matter: Rhizobia effects on plant communities depend on host plant population and soil nitrogen availability. J Ecol. 2018;106(3):1046-56. https://doi.org/10.1111/1365-2745.12938
  70. Sawana A, Adeolu M, Gupta RS. Molecular signatures and phylogenomic analysis of the genus Burkholderia: Proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet. 2014;5:429 https://doi.org/10.3389/fgene.2014.00429

Downloads

Download data is not yet available.