Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 11 No. sp4 (2024): Recent Advances in Agriculture by Young Minds - I

Exploring cadmium tolerance in soil microbes: Isolation and identification of resistant strains

DOI
https://doi.org/10.14719/pst.5042
Submitted
12 September 2024
Published
27-10-2024

Abstract

Cadmium poses detrimental effects on our surrounding environment and causes various health hazards. In this research, the bacterial diversity of soil samples procured from the contaminated sites of Coimbatore, Tamil Nadu, India was investigated and their cadmium removal potential was assessed. 16S rRna sequencing was followed for the identification of two isolates, which belong to the same genus, Cupriavidus sp. This genus was used for assessing the cadmium bioremediation potential. It was found that the strain S1CL (Cupriavidus necator) exhibited a high ability to remove cadmium (9 %) compared to S3CL (Cupriavidus alkaliphilus), which removed 2 %. The strains were compatible to each other and exhibited 1 2% removal efficiency in combination. The results revealed that Cupriavidus necator possessed a great potential for the cadmium bioremediation process.

References

  1. Ali H, Khan E, Ilahi I. Investigation of cadmium contamination and its impact on soil microorganisms. J Chem. 2019;2019(1):6730305. https://doi.org/10.1155/2019/6730305.
  2. Afzal J, Hu C, Imtiaz M, Elyamine A, Rana M, Imran M, Farag M. Effects of cadmium pollution on microbial communities in agricultural soils. Int J Environ Sci Technol. 2019;16:4241-52. https://doi.org/10.1007/s13762-019-02395-3.
  3. Anyanwu BO, Ezejiofor AN, Igweze ZN, Orisakwe OE. Cadmium toxicity and resistance mechanisms in soil bacteria. Toxics. 2018;6(4):65. https://doi.org/10.3390/toxics6040065.
  4. Wuana RA, Okieimen FE. Soil contamination and remediation techniques for heavy metals. Int Schol Res Not. 2011;2011(1):402647. https://doi.org/10.5402/2011/402647.
  5. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ, editors. Environmental toxicology: Cadmium exposure and impact. In: Molecular, Clinical and Environmental Toxicology: Volume 3: Environmental Toxicology. Springer; 2012. p. 133-64.
  6. https://doi.org/10.1007/978-3-7643-8340-4_10.
  7. Yuan Z, Luo T, Liu X, Hua H, Zhuang Y, Zhang X, et al. Effects of cadmium on microbial diversity and activity in contaminated soils. Sci Total Environ. 2019;676:87-96. https://doi.org/10.1016/j.scitotenv.2019.04.129.
  8. Andresen E, Peiter E, Küpper H. Plant-microbe interactions and cadmium stress. J Exp Bot. 2018;69(5):909-54. https://doi.org/10.1093/jxb/ery164.
  9. Zulfiqar H, Zafar A, Rasheed MN, Ali Z, Mehmood K, Mazher A, et al. Nanoparticles for the removal of cadmium from contaminated soils. Nanoscale Adv. 2019;1(5):1707-13. https://doi.org/10.1039/C8NA00200G.
  10. Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, et al. Strategies for the management of cadmium toxicity in plants. Ecotoxicol Environ Saf. 2021;211:111887. https://doi.org/10.1016/j.ecoenv.2021.111887.
  11. ATSDR. Toxicological profile for cadmium. Atlanta, GA: Agency for Toxic Substances and Disease Registry; 2012.
  12. Pokharel A, Wu F. Cadmium bioavailability and uptake in crops. Food Chem Toxicol. 2023;178:113873. https://doi.org/10.1016/j.fct.2022.113873.
  13. Sari SHJ, Chien M-F, Inoue C. Effects of cadmium on soil microbial communities and plant growth. Environ Exp Bot. 2022;203:105047.
  14. https://doi.org/10.1016/j.envexpbot.2022.105047.
  15. Li J, Xia C, Cheng R, Lan J, Chen F, Li X, et al. Assessment of cadmium and its effects on microbial diversity in contaminated environments. Sci Total Environ. 2022;803:149866. https://doi.org/10.1016/j.scitotenv.2021.149866.
  16. Li X, Li Y, Zhu X, Gui X, Ma C, Peng W, et al. Impact of cadmium on soil microbial communities and enzymatic activities. Chemosphere. 2022;286:131714. https://doi.org/10.1016/j.chemosphere.2021.131714.
  17. Priya A, Gnanasekaran L, Dutta K, Rajendran S, Balakrishnan D, Soto-Moscoso M. Microbial strategies for cadmium detoxification in contaminated soils. Chemosphere. 2022;307:135957. https://doi.org/10.1016/j.chemosphere.2022.135957.
  18. Pepi M, Borra M, Tamburrino S, Saggiomo M, Viola A, Biffali E, et al. Bioaccumulation of cadmium in soil microorganisms and its environmental implications. Sci Total Environ. 2016;562:588-95.
  19. https://doi.org/10.1016/j.scitotenv.2016.03.083.
  20. Kalkan S. Marine pollution and heavy metal contamination: Implications for marine microbial communities. Mar Pollut Bull. 2022;179:113652.
  21. https://doi.org/10.1016/j.marpolbul.2022.113652.
  22. He M, Xu Y, Qiao Y, Zhang Z, Liang J, Peng Y, et al. Ecotoxicological effects of cadmium on aquatic microbial communities. Ecotoxicol Environ Saf. 2022;236:113497. https://doi.org/10.1016/j.ecoenv.2022.113497.
  23. Lei D, Yongzhang Z, Jin M, Yong L, Qiuming C, Shuyun X, et al. Cadmium contamination in soils and its effects on microbial communities. J China Univ Geosci. 2008;19(4):343-53. https://doi.org/10.1007/s11783-008-0343-0.
  24. Harley JP. Microbiology: Principles and Explorations. 2008.
  25. Thomloudi E-E, Tsalgatidou P, Douka D, Spantidos T-N, Dimou M, Venieraki A, Katinakis P. Assessment of cadmium uptake and detoxification by plants. Hell Plant Prot J. 2019;12(2):61-77. https://doi.org/10.1515/hppj-2019-0007.
  26. Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792-97. https://doi.org/10.1093/nar/gkh340.
  27. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned regions from protein sequence alignments. Syst Biol. 2007;56(4):564-77. https://doi.org/10.1080/10635150701472164.
  28. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, et al. Phylogenetic analysis using the software package PhyML. Nucleic Acids Res. 2008;36(suppl_2). https://doi.org/10.1093/nar/gkn142.
  29. Paul D, Sinha SN. Phytoremediation of heavy metals: Microbial strategies for enhancing heavy metal removal. Ann Agr Sci. 2017;15(1):130-36.
  30. https://doi.org/10.1016/j.aasci.2017.02.001.
  31. Saravanan V, Kumar MR, Sa T. Role of bacteria in plant nutrient management and heavy metal detoxification. In: Bacteria in Agrobiology: Plant Nutrient Management. Springer; 2011. p. 47-63. https://doi.org/10.1007/978-3-642-22053-7_4.
  32. Akl MA, Hashem MA, Ismail MA, Abdelgalil DA. Cadmium-induced stress responses in soil bacteria. BMC Chem. 2022;16(1):65. https://doi.org/10.1186/s13065-022-00834-w.
  33. Jiang M, Wang K, Wang Y, Zhao Q, Wang W. Impact of cadmium on soil microbial community structure and functions. Sci Total Environ. 2022;813:151908.
  34. https://doi.org/10.1016/j.scitotenv.2021.151908.
  35. Barrow N, Hartemink AE. Cadmium in soil and its impact on soil health: A review. Plant Soil. 2023;487(1):21-37. https://doi.org/10.1007/s11104-023-05911-3.
  36. Yao B-M, Wang S-Q, Xie S-T, Li G, Sun G-X. Analysis of cadmium accumulation and its effects on soil microbial communities. Sci Total Environ. 2022;846:157444. https://doi.org/10.1016/j.scitotenv.2022.157444.
  37. Fashola MO, Ngole-Jeme VM, Babalola OO. Soil microbiota and their role in remediation of cadmium contamination. Can J Soil Sci. 2020;100(3):217-33.
  38. https://doi.org/10.1139/cjss-2019-0101
  39. Chen X, Zhao Y, Zhao X, Wu J, Zhu L, Zhang X, et al. Cadmium contamination and its effects on soil ecosystems. J Hazard Mater. 2020;398:122858.
  40. https://doi.org/10.1016/j.jhazmat.2020.122858
  41. Huang L, Wang Q, Jiang L, Zhou P, Quan X, Logan BE. Bioelectrochemical removal of cadmium from contaminated water. Environ Sci Technol. 2015;49(16):9914-24. https://doi.org/10.1021/acs.est.5b01677
  42. Rosewarne CP, Pettigrove V, Stokes HW, Parsons YM. Cadmium contamination and microbial diversity in sediments. FEMS Microbiol Ecol. 2010;72(1):35-46.
  43. https://doi.org/10.1111/j.1574-6941.2010.00854.x
  44. Verma C, Singh P, Kumar R. Isolation and characterization of heavy metal resistant PGPR and their role in enhancement of growth of wheat plant under metal (cadmium) stress condition. Arch Appl Sci Res. 2015;7(7):37-43.
  45. Biswas R, Halder U, Kabiraj A, Mondal A, Bandopadhyay R. Cadmium resistance in soil bacteria: Mechanisms and applications. Arch Microbiol. 2021;203:2761-70.
  46. https://doi.org/10.1007/s00203-021-02472-2
  47. Mandal M, Das SN, Mandal S. Bioremediation of cadmium-contaminated soils using microbial strategies. Access Microbiol. 2020;2(3).
  48. https://doi.org/10.1099/acmi.ac2020.po0160
  49. Neethu C, Mujeeb Rahiman K, Saramma A, Mohamed Hatha A. Cadmium resistance in soil bacteria and its application in bioremediation. Can J Microbiol. 2015;61(6):429-35. https://doi.org/10.1139/cjm-2015-0044
  50. Paulsen IT, Park JH, Choi PS, Saier MH Jr. Transport of heavy metals in bacteria: Mechanisms and applications. FEMS Microbiol Lett. 1997;156(1):1-8. https://doi.org/10.1111/j.1574-6968.1997.tb10603.x
  51. Singh RP, Anwar MN, Singh D, Bahuguna V, Manchanda G, Yang Y. Microbial versatility in handling cadmium contamination. In: Microbial Versatility in Varied Environments: Microbes in Sensitive Environments; 2020. p. 101-16. https://doi.org/10.1007/978-3-030-26222-5_8
  52. Ayangbenro AS, Babalola OO, Aremu OS. Microbial remediation of cadmium in contaminated soils: Strategies and prospects. Chemosphere. 2019;231:113-20.
  53. https://doi.org/10.1016/j.chemosphere.2019.05.078
  54. Usmonkulova A, Kadirova G, Shukurov N. Functioning of local strains of bacteria under heavy metal stress (Uzbekistan). J Environ Manage. 2023.
  55. https://doi.org/10.21203/rs.3.rs-2521503/v1
  56. Shim J, Kumar M, Mukherjee S, Goswami R. Sustainable removal of pernicious arsenic and cadmium by a novel composite of MnO2 impregnated alginate beads: A cost-effective approach for wastewater treatment. J Environ Manage. 2019;234:8-20.
  57. https://doi.org/10.1016/j.jenvman.2018.12.084
  58. Ghorui A, Pal S, Pal S, Ghosh K, Dutta U. Cadmium (Cd) resistant bacteria. J Survey Fish Sci. 2023;10(1S):6463-69. https://doi.org/10.53555/sfs.v10i1S.2166
  59. Sukruansuwan V, Napathorn SC. Use of agro-industrial residue from the canned pineapple industry for polyhydroxybutyrate production by Cupriavidus necator strain A-04. Biotechnol Biofuels. 2018;11:202. https://doi.org/10.1186/s13068-018-1207-8
  60. Sarkar P, Chourasia R. Recycling of organic waste and its impact on soil cadmium levels. Int J Recycl Org Waste Agric. 2017;6:321-34. https://doi.org/10.1007/s40093-017-0173-1
  61. Shahid M, Hameed S, Imran A, Ali S, van Elsas JD. Microbial remediation of cadmium-contaminated soils and its effectiveness. World J Microbiol Biotechnol. 2012;28:2749-58. https://doi.org/10.1007/s11274-012-1086-1
  62. Shahid M, Hameed S, Tariq M, Zafar M, Ali A, Ahmad N. Assessment of microbial bioremediation techniques for cadmium-contaminated environments. Ann Microbiol. 2015;65:1525-36. https://doi.org/10.1007/s13213-015-1041-3
  63. Bhattacharjee S. Heavy metal contamination and its effects on plant growth. J Bot. 2012;2012(1):985298. https://doi.org/10.1155/2012/985298
  64. Srithaworn M, Jaroenthanyakorn J, Tangjitjaroenkun S, Suriyachadkun C, Chunhachart S. Remediation of cadmium-contaminated soils using bioremediation techniques. PeerJ. 2023;11. https://doi.org/10.7717/peerj.15128

Downloads

Download data is not yet available.