Exploring cadmium tolerance in soil microbes: Isolation and identification of resistant strains
DOI:
https://doi.org/10.14719/pst.5042Keywords:
cadmium, bioremediation, Cupriavidus necator, Cupriavidus alkaliphilus, compatibilityAbstract
Cadmium poses detrimental effects on our surrounding environment and causes various health hazards. In this research, the bacterial diversity of soil samples procured from the contaminated sites of Coimbatore, Tamil Nadu, India was investigated and their cadmium removal potential was assessed. 16S rRna sequencing was followed for the identification of two isolates, which belong to the same genus, Cupriavidus sp. This genus was used for assessing the cadmium bioremediation potential. It was found that the strain S1CL (Cupriavidus necator) exhibited a high ability to remove cadmium (9 %) compared to S3CL (Cupriavidus alkaliphilus), which removed 2 %. The strains were compatible to each other and exhibited 1 2% removal efficiency in combination. The results revealed that Cupriavidus necator possessed a great potential for the cadmium bioremediation process.
Downloads
References
Ali H, Khan E, Ilahi I. Investigation of cadmium contamination and its impact on soil microorganisms. J Chem. 2019;2019(1):6730305. https://doi.org/10.1155/2019/6730305.
Afzal J, Hu C, Imtiaz M, Elyamine A, Rana M, Imran M, Farag M. Effects of cadmium pollution on microbial communities in agricultural soils. Int J Environ Sci Technol. 2019;16:4241-52. https://doi.org/10.1007/s13762-019-02395-3.
Anyanwu BO, Ezejiofor AN, Igweze ZN, Orisakwe OE. Cadmium toxicity and resistance mechanisms in soil bacteria. Toxics. 2018;6(4):65. https://doi.org/10.3390/toxics6040065.
Wuana RA, Okieimen FE. Soil contamination and remediation techniques for heavy metals. Int Schol Res Not. 2011;2011(1):402647. https://doi.org/10.5402/2011/402647.
Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ, editors. Environmental toxicology: Cadmium exposure and impact. In: Molecular, Clinical and Environmental Toxicology: Volume 3: Environmental Toxicology. Springer; 2012. p. 133-64.
https://doi.org/10.1007/978-3-7643-8340-4_10.
Yuan Z, Luo T, Liu X, Hua H, Zhuang Y, Zhang X, et al. Effects of cadmium on microbial diversity and activity in contaminated soils. Sci Total Environ. 2019;676:87-96. https://doi.org/10.1016/j.scitotenv.2019.04.129.
Andresen E, Peiter E, Küpper H. Plant-microbe interactions and cadmium stress. J Exp Bot. 2018;69(5):909-54. https://doi.org/10.1093/jxb/ery164.
Zulfiqar H, Zafar A, Rasheed MN, Ali Z, Mehmood K, Mazher A, et al. Nanoparticles for the removal of cadmium from contaminated soils. Nanoscale Adv. 2019;1(5):1707-13. https://doi.org/10.1039/C8NA00200G.
Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, et al. Strategies for the management of cadmium toxicity in plants. Ecotoxicol Environ Saf. 2021;211:111887. https://doi.org/10.1016/j.ecoenv.2021.111887.
ATSDR. Toxicological profile for cadmium. Atlanta, GA: Agency for Toxic Substances and Disease Registry; 2012.
Pokharel A, Wu F. Cadmium bioavailability and uptake in crops. Food Chem Toxicol. 2023;178:113873. https://doi.org/10.1016/j.fct.2022.113873.
Sari SHJ, Chien M-F, Inoue C. Effects of cadmium on soil microbial communities and plant growth. Environ Exp Bot. 2022;203:105047.
https://doi.org/10.1016/j.envexpbot.2022.105047.
Li J, Xia C, Cheng R, Lan J, Chen F, Li X, et al. Assessment of cadmium and its effects on microbial diversity in contaminated environments. Sci Total Environ. 2022;803:149866. https://doi.org/10.1016/j.scitotenv.2021.149866.
Li X, Li Y, Zhu X, Gui X, Ma C, Peng W, et al. Impact of cadmium on soil microbial communities and enzymatic activities. Chemosphere. 2022;286:131714. https://doi.org/10.1016/j.chemosphere.2021.131714.
Priya A, Gnanasekaran L, Dutta K, Rajendran S, Balakrishnan D, Soto-Moscoso M. Microbial strategies for cadmium detoxification in contaminated soils. Chemosphere. 2022;307:135957. https://doi.org/10.1016/j.chemosphere.2022.135957.
Pepi M, Borra M, Tamburrino S, Saggiomo M, Viola A, Biffali E, et al. Bioaccumulation of cadmium in soil microorganisms and its environmental implications. Sci Total Environ. 2016;562:588-95.
https://doi.org/10.1016/j.scitotenv.2016.03.083.
Kalkan S. Marine pollution and heavy metal contamination: Implications for marine microbial communities. Mar Pollut Bull. 2022;179:113652.
https://doi.org/10.1016/j.marpolbul.2022.113652.
He M, Xu Y, Qiao Y, Zhang Z, Liang J, Peng Y, et al. Ecotoxicological effects of cadmium on aquatic microbial communities. Ecotoxicol Environ Saf. 2022;236:113497. https://doi.org/10.1016/j.ecoenv.2022.113497.
Lei D, Yongzhang Z, Jin M, Yong L, Qiuming C, Shuyun X, et al. Cadmium contamination in soils and its effects on microbial communities. J China Univ Geosci. 2008;19(4):343-53. https://doi.org/10.1007/s11783-008-0343-0.
Harley JP. Microbiology: Principles and Explorations. 2008.
Thomloudi E-E, Tsalgatidou P, Douka D, Spantidos T-N, Dimou M, Venieraki A, Katinakis P. Assessment of cadmium uptake and detoxification by plants. Hell Plant Prot J. 2019;12(2):61-77. https://doi.org/10.1515/hppj-2019-0007.
Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792-97. https://doi.org/10.1093/nar/gkh340.
Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned regions from protein sequence alignments. Syst Biol. 2007;56(4):564-77. https://doi.org/10.1080/10635150701472164.
Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, et al. Phylogenetic analysis using the software package PhyML. Nucleic Acids Res. 2008;36(suppl_2). https://doi.org/10.1093/nar/gkn142.
Paul D, Sinha SN. Phytoremediation of heavy metals: Microbial strategies for enhancing heavy metal removal. Ann Agr Sci. 2017;15(1):130-36.
https://doi.org/10.1016/j.aasci.2017.02.001.
Saravanan V, Kumar MR, Sa T. Role of bacteria in plant nutrient management and heavy metal detoxification. In: Bacteria in Agrobiology: Plant Nutrient Management. Springer; 2011. p. 47-63. https://doi.org/10.1007/978-3-642-22053-7_4.
Akl MA, Hashem MA, Ismail MA, Abdelgalil DA. Cadmium-induced stress responses in soil bacteria. BMC Chem. 2022;16(1):65. https://doi.org/10.1186/s13065-022-00834-w.
Jiang M, Wang K, Wang Y, Zhao Q, Wang W. Impact of cadmium on soil microbial community structure and functions. Sci Total Environ. 2022;813:151908.
https://doi.org/10.1016/j.scitotenv.2021.151908.
Barrow N, Hartemink AE. Cadmium in soil and its impact on soil health: A review. Plant Soil. 2023;487(1):21-37. https://doi.org/10.1007/s11104-023-05911-3.
Yao B-M, Wang S-Q, Xie S-T, Li G, Sun G-X. Analysis of cadmium accumulation and its effects on soil microbial communities. Sci Total Environ. 2022;846:157444. https://doi.org/10.1016/j.scitotenv.2022.157444.
Fashola MO, Ngole-Jeme VM, Babalola OO. Soil microbiota and their role in remediation of cadmium contamination. Can J Soil Sci. 2020;100(3):217-33.
https://doi.org/10.1139/cjss-2019-0101
Chen X, Zhao Y, Zhao X, Wu J, Zhu L, Zhang X, et al. Cadmium contamination and its effects on soil ecosystems. J Hazard Mater. 2020;398:122858.
https://doi.org/10.1016/j.jhazmat.2020.122858
Huang L, Wang Q, Jiang L, Zhou P, Quan X, Logan BE. Bioelectrochemical removal of cadmium from contaminated water. Environ Sci Technol. 2015;49(16):9914-24. https://doi.org/10.1021/acs.est.5b01677
Rosewarne CP, Pettigrove V, Stokes HW, Parsons YM. Cadmium contamination and microbial diversity in sediments. FEMS Microbiol Ecol. 2010;72(1):35-46.
https://doi.org/10.1111/j.1574-6941.2010.00854.x
Verma C, Singh P, Kumar R. Isolation and characterization of heavy metal resistant PGPR and their role in enhancement of growth of wheat plant under metal (cadmium) stress condition. Arch Appl Sci Res. 2015;7(7):37-43.
Biswas R, Halder U, Kabiraj A, Mondal A, Bandopadhyay R. Cadmium resistance in soil bacteria: Mechanisms and applications. Arch Microbiol. 2021;203:2761-70.
https://doi.org/10.1007/s00203-021-02472-2
Mandal M, Das SN, Mandal S. Bioremediation of cadmium-contaminated soils using microbial strategies. Access Microbiol. 2020;2(3).
https://doi.org/10.1099/acmi.ac2020.po0160
Neethu C, Mujeeb Rahiman K, Saramma A, Mohamed Hatha A. Cadmium resistance in soil bacteria and its application in bioremediation. Can J Microbiol. 2015;61(6):429-35. https://doi.org/10.1139/cjm-2015-0044
Paulsen IT, Park JH, Choi PS, Saier MH Jr. Transport of heavy metals in bacteria: Mechanisms and applications. FEMS Microbiol Lett. 1997;156(1):1-8. https://doi.org/10.1111/j.1574-6968.1997.tb10603.x
Singh RP, Anwar MN, Singh D, Bahuguna V, Manchanda G, Yang Y. Microbial versatility in handling cadmium contamination. In: Microbial Versatility in Varied Environments: Microbes in Sensitive Environments; 2020. p. 101-16. https://doi.org/10.1007/978-3-030-26222-5_8
Ayangbenro AS, Babalola OO, Aremu OS. Microbial remediation of cadmium in contaminated soils: Strategies and prospects. Chemosphere. 2019;231:113-20.
https://doi.org/10.1016/j.chemosphere.2019.05.078
Usmonkulova A, Kadirova G, Shukurov N. Functioning of local strains of bacteria under heavy metal stress (Uzbekistan). J Environ Manage. 2023.
https://doi.org/10.21203/rs.3.rs-2521503/v1
Shim J, Kumar M, Mukherjee S, Goswami R. Sustainable removal of pernicious arsenic and cadmium by a novel composite of MnO2 impregnated alginate beads: A cost-effective approach for wastewater treatment. J Environ Manage. 2019;234:8-20.
https://doi.org/10.1016/j.jenvman.2018.12.084
Ghorui A, Pal S, Pal S, Ghosh K, Dutta U. Cadmium (Cd) resistant bacteria. J Survey Fish Sci. 2023;10(1S):6463-69. https://doi.org/10.53555/sfs.v10i1S.2166
Sukruansuwan V, Napathorn SC. Use of agro-industrial residue from the canned pineapple industry for polyhydroxybutyrate production by Cupriavidus necator strain A-04. Biotechnol Biofuels. 2018;11:202. https://doi.org/10.1186/s13068-018-1207-8
Sarkar P, Chourasia R. Recycling of organic waste and its impact on soil cadmium levels. Int J Recycl Org Waste Agric. 2017;6:321-34. https://doi.org/10.1007/s40093-017-0173-1
Shahid M, Hameed S, Imran A, Ali S, van Elsas JD. Microbial remediation of cadmium-contaminated soils and its effectiveness. World J Microbiol Biotechnol. 2012;28:2749-58. https://doi.org/10.1007/s11274-012-1086-1
Shahid M, Hameed S, Tariq M, Zafar M, Ali A, Ahmad N. Assessment of microbial bioremediation techniques for cadmium-contaminated environments. Ann Microbiol. 2015;65:1525-36. https://doi.org/10.1007/s13213-015-1041-3
Bhattacharjee S. Heavy metal contamination and its effects on plant growth. J Bot. 2012;2012(1):985298. https://doi.org/10.1155/2012/985298
Srithaworn M, Jaroenthanyakorn J, Tangjitjaroenkun S, Suriyachadkun C, Chunhachart S. Remediation of cadmium-contaminated soils using bioremediation techniques. PeerJ. 2023;11. https://doi.org/10.7717/peerj.15128
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Chandra Lekha Raman, Bharani Alagirisamy, Dhevagi Periyasamy, Kalaiselvi Thangavel, Vijayalakshmi Dhashnamurthi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).