Advancements and challenges in onion phytopathogens management: A comprehensive review
DOI:
https://doi.org/10.14719/pst.5064Keywords:
Onion, phytopathogens, yield loss, disease cycle, management strategiesAbstract
Onion (Allium cepa L.) stands as a vital commercial vegetable globally, ingrained in the culinary practices of homemakers worldwide. Beyond its culinary significance, the organosulfur compounds found in onions provide a solution for managing plant diseases. Onions face escalating disease challenges despite various antimicrobial properties due to climate fluctuations and pathogen evolution. Biotic factors, including fungi, bacteria, viruses and insects, contribute to pre-harvest and postharvest losses, accounting for nearly 50% yield reduction in fields and 10-30% loss in storage conditions. The importance of integrated disease management practices, such as early detection using e-nose, conventional methods, biological control and novel biotechnological tools, including CRISPR/Cas, were explained. Therefore, implementing effective control measures at the field level is crucial to mitigating these losses. This review emphasizes the need for continued research to provide more practical and long-lasting solutions for controlling onion phytopathogens.
Downloads
References
Etana MB, Aga MC, Fufa BO. Major onion (Allium cepa L.) production challenges in Ethiopia: A review. Journal of Biology, Agriculture and Healthcare. 2019;9(7):42-47.
El-Mougy NS, Abdel-Kader MM. Biocontrol measures against onion basal rot incidence under natural field conditions. Journal of Plant Pathology. 2019;101:579-86. https://doi.org/10.1007/s42161-018-00237-8.
Faldu T, Trivedi A, Dhruv J, Chaudhary K. Study on the impact of foliar application of growth regulators and micronutrients on morpho-physiological and yield parameters of onion (Allium cepa L.) cv. GAWO-2. The Pharma Innovation Journal. 2023;12(9):862-67.
Shin J-H, Lee H-K, Back C-G, Kang S-h, Han J-w, Lee S-C, et al. Identification of Fusarium basal rot pathogens of onion and evaluation of fungicides against the pathogens. Mycobiology. 2023;51(4):264-72. https://doi.org/10.1080/12298093.2023.2243759
Falcón-Piñeiro A, García-López D, Gil-Martínez L, De la Torre JM, Carmona-Yañez MD, Katalayi-Muleli A, et al. PTS and PTSO, two organosulfur compounds from onion by-products as a novel solution for plant disease and pest management. Chemical and Biological Technologies in Agriculture. 2023;10(1):76. https://doi.org/10.1186/s40538-023-00452-1
Kiran PR, Aradwad P, TV AK, Nayana N P, CS R, Sahoo M, et al. A comprehensive review on recent advances in postharvest treatment, storage, and quality evaluation of onion (Allium cepa): Current status and challenges. Future Postharvest and Food. 2024;1(1):124-57. https://doi.org/10.1002/fpf2.12009
Kumar V, Neeraj SS, Sagar NA. Post harvest management of fungal diseases in onion—a review. International Journal of Current Microbiology and Applied Sciences. 2015;4(6):737-52.
Ratnarajah V, Gnanachelvam N. Effect of abiotic stress on onion yield: a review. Advances in Technology. 2021;147-60. https://doi.org/10.31357/ait.v1i1.4876.
Banerjee S, Sarda K, Khandelwal S, Gajarushi A, Gawande S, Velmurugan R, et al., editors. IoT-based sensing system for thrips pest and disease management in onion crop. 2024 IEEE Applied Sensing Conference (APSCON). 2024; IEEE. https://doi.org/10.1109/apscon60364.2024.10466190
Appiah O, Hackman KO, Diallo BAA, Ogunjobi KO, Diakalia S, Valentin O, et al. PlanteSaine: An artificial intelligent empowered mobile application for pests and disease management for maize, tomato and onion farmers in Burkina Faso. Agriculture. 2024;14(8):1252. https://doi.org/10.3390/agriculture14081252
Labanska M, Van Amsterdam S, Jenkins S, Clarkson JP, Covington JA. Preliminary studies on detection of Fusarium basal rot infection in onions and shallots using electronic nose. Sensors. 2022;22(14):5453. https://doi.org/10.3390/s22145453
Mehedi IM, Hanif MS, Bilal M, Vellingiri MT, Palaniswamy T. Remote sensing and decision support system applications in precision agriculture: Challenges and possibilities. IEEE Access. 2024. https://doi.org/10.1109/access.2024.3380830.
Retig N, Kust A, Gabelman W. Greenhouse and field tests for determining the resistance of onion lines to Fusarium basal rot1. Journal of the American Society for Horticultural Science. 1970;95(4):422-24. https://doi.org/10.21273/JASHS.95.4.422
Le D, Ameye M, De Boevre M, De Saeger S, Audenaert K, Haesaert G. Population, virulence and mycotoxin profile of Fusarium spp. associated with basal rot of Allium spp. in Vietnam. Plant Disease. 2021;105(7):1942-50. https://doi.org/10.1094/PDIS-08-20-1850-RE
Sarwadnya K, Bhat G, Bangi S, Jeevitha D, Shivakumar G, Madalageri BB, et al. First report of Fusarium falciforme causing basal rot of onion (Allium cepa) in India. Plant Disease. 2023;107(1):228. https://doi.org/10.1094/PDIS-05-22-1037-PDN.
Bayraktar H. Genetic diversity and population structure of Fusarium oxysporum f. sp. cepae, the causal agent of Fusarium basal plate rot on onion using RAPD markers. Journal of Agricultural Sciences. 2010;16(3). https://doi.org/10.1501/Tarimbil_0000001133
Tirado-Ramirez MA, López-Urquídez GA, Amarillas-Bueno LA, Retes-Manjarrez JE, Vega-Gutiérrez TA, López Avendaño JE, et al. Identification and virulence of Fusarium falciforme and Fusarium brachygibbosum as causal agents of basal rot on onion in Mexico. Canadian Journal of Plant Pathology. 2021;43(5):722-33. https://doi.org/10.1080/07060661.2021.1894241
Le D, Audenaert K, Haesaert G. Fusarium basal rot: profile of an increasingly important disease in Allium spp. Tropical Plant Pathology. 2021;46:241-53. https://doi.org/10.1007/s40858-021-00421-9.
Sintayehu A, Fininsa C, Ahmed S, Sakhuja P. Evaluations of shallot genotypes for resistance against Fusarium basal rot (Fusarium oxysporum f. sp. cepae) disease. Crop Protection. 2011;30(9):1210-15. https://doi.org/10.1016/j.cropro.2011.04.011.
Muthukumar G, Udhayakumar R, Muthukumar A, Muthukumaran N, Ayyandurai M. Survey on disease incidence of basal rot of onion incited by Fusarium oxysporum f. sp. cepae in major onion growing tracts of Tamil Nadu. Journal of Pharmacognosy and Phytochemistry. 2022;11(8S):1445-54.
Manimaran P, Mohan KM, Sekar R. Antagonistic activity of Bacillus species against basal rot disease of onion. Journal of Mycology and Plant Pathology. 2011;41(2):241.
Ravi S, Nagalakshmi D, Bagyanarayana G. First report of Fusarium proliferatum causing rot of onion bulbs (Allium cepa L.) in India. Science, Technology and Arts Research Journal. 2014;3(2):1-3. https://doi.org/10.4314/star.v3i2.1.
Kalman B, Abraham D, Graph S, Perl-Treves R, Meller Harel Y, Degani O. Isolation and identification of Fusarium spp., the causal agents of onion (Allium cepa) basal rot in Northeastern Israel. Biology. 2020;9(4):69. https://doi.org/10.3390/biology9040069.
Bhat G, Rajakumara A, Bhangigoudra S, Karthik U, Shivakumar G, Madalageri B, et al. Fusarium acutatum is a major pathogen contributing to basal rot of onion in India. New Disease Reports. 2023;47(2). https://doi.org/10.1002/ndr2.12176
Shamyuktha J, Sheela J, Rajinimala N, Jeberlinprabina B, Ravindran C. Survey on onion basal rot disease incidence and evaluation of aggregatum onion (Allium cepa L. Var. Aggregatum Don.) genotypes against Fusarium oxysporum f. sp. cepae. International Journal of Current Microbiology and Applied Sciences. 2020;9(7):529-36. https://doi.org/10.20546/ijcmas.2020.907.058
Haapalainen M, Latvala S, Kuivainen E, Qiu Y, Segerstedt M, Hannukkala A. Fusarium oxysporum, F. proliferatum and F. redolens associated with basal rot of onion in Finland. Plant Pathology. 2016;65(8):1310-20. https://doi.org/10.1111/ppa.12521.
Leoni C. Crop rotation design in view of soilborne pathogen dynamics: a methodological approach illustrated with Sclerotium rolfsii and Fusarium oxysporum f. sp. cepae: Wageningen University; 2013.
Degani O, Dimant E, Gordani A, Graph S, Margalit E. Prevention and control of Fusarium spp., the causal agents of onion (Allium cepa) basal rot. Horticulturae. 2022;8(11):1071. https://doi.org/10.3390/horticulturae8111071.
Ahmed HA, Soliman Z, Khalil MA, Fawaz SB. Efficacy of biological therapies against onion basal rot caused by Fusarium oxysporum f. sp. cepae under field and storage conditions. Journal of Phytopathology and Pest Management. 2021;92-105.
Abdel-Fattah G, Al-Amri S. Induced systemic resistance in tomato plants against Fusarium oxysporum f. sp. lycopersici by different kinds of compost. African Journal of Biotechnology. 2012;11(61):12454-63. https://doi.org/10.5897/AJB12.924
Bektas I, Kusek M. Phylogenetic and morphological characterization of Fusarium oxysporum f. sp. cepae the causal agent of basal rot on onion isolated from Turkey. Fresenius Environmental Bulletin. 2019;28(3):1733-42.
Rajamohan K, Udhayakumar R, Sanjaygandhi S, Vengadesh Kumar L, Thamarai Selvi M, Sudhasha S, et al. Management of basal rot of onion caused by Fusarium oxysporumi. sp. cepae using bioregulators. Journal of Biopesticides. 2019;12(2).
Wesoly M, Daulton E, Jenkins S, van Amsterdam S, Clarkson J, Covington JA. Early detection of Fusarium basal rot infection in onions and shallots based on VOC profiles analysis. Journal of Agricultural and Food Chemistry. 2024. https://doi.org/10.1021/acs.jafc.3c06569.
Mandal S, Cramer CS. Improving Fusarium basal rot resistance of onion cultivars through artificial inoculation and selection of mature bulbs. Horticulturae. 2021;7(7):168. https://doi.org/10.3390/horticulturae7070168.
Shishkoff N, Lorbeer JW. Etiology of Stemphylium leaf blight of onion. Phytopathology. 1989;79(3):301-04. https://doi.org/10.1094/Phyto-79-301
Fernández J, Riveravargas LI. Leaf blight of onion caused by Pleospora eturmiuna Simm. (teleomorph of Stemphylium eturmiunuivu) in Puerto Rico. J Agric Univ PR. 2008;92:235-39. https://doi.org/10.46429/jaupr.v92i3-4.2641
Mehta Y. Severe outbreak of Stemphylium leaf blight, a new disease of cotton in Brazil. Plant Disease. 1998;82(3):333-36. https://doi.org/10.1094/pdis.1998.82.3.333.
Koike ST, O'Neill N, Wolf J, Van Berkum P, Daugovish O. Stemphylium leaf spot of parsley in California caused by Stemphylium vesicarium. Plant Disease. 2013;97(3):315-22. https://doi.org/10.1094/PDIS-06-12-0611-RE.
Hassan M, Yousuf V, Bhat Z, Bhat N, Shah T, Khan M, et al. Morpho-cultural and pathogenic variability among isolates of Stemphylium vesicarium (Wallr.) E. Simmons, causing Stemphylium blight in onion collected from different geographical regions of Kashmir valley. Indian Phytopathology. 2020;73:469-81. https://doi.org/10.1007/s42360-020-00253-8.
Hay F, Stricker S, Gossen BD, McDonald MR, Heck D, Hoepting C, et al. Stemphylium leaf blight: A re-emerging threat to onion production in eastern North America. Plant Disease. 2021;105(12):3780-94. https://doi.org/10.1094/pdis-05-21-0903-fe.
Stricker SM, Tayviah CS, Gossen BD, McDonald MR. Fungicide efficacy and timing for the management of Stemphylium vesicarium on onion. Canadian Journal of Plant Pathology. 2021;43(2):275-87. https://doi.org/10.1080/07060661.2020.1804461.
Nainwal D, Vishunavat K. Management of purple blotch and Stemphylium blight of onion in Tarai and Bhabar regions of Uttarakhand, India. Journal of Applied and Natural Science. 2016;8(1):150-53. https://doi.org/10.31018/jans.v8i1.765.
Gupta R, Srivastava K, Pandey U, editors. Diseases and insect pests of onion in India. International Symposium on Alliums for the Tropics. 1993;358. https://doi.org/10.17660/ActaHortic.1994.358.43.
Mishra B, Singh RP. Fungicidal management of Stemphylium blight of onion caused by Stemphylium vesicarium (Wallr.) Simmons. Biosciences Biotechnology Research Asia. 2017;14(3):1043-49. http://dx.doi.org/10.13005/bbra/2539.
Hussein M, Hassan M, Allam A, Abo-Elyousr K. Management of Stemphylium blight of onion by using biological agents and resistance inducers. Egypt J Phytopathol. 2007;35(1):49-60.
Mishra R, Gupta R. In vitro evaluation of plant extracts, bio-agents and fungicides against purple blotch and Stemphylium blight of onion. Journal of Medicinal Plants Research. 2012;6(48):5840-43.
Roylawar P, Khandagale K, Randive P, Shinde B, Murumkar C, Ade A, et al. Piriformospora indica primes onion response against Stemphylium leaf blight disease. Pathogens. 2021;10(9):1085. https://doi.org/10.3390/pathogens10091085.
Abo-Elyousr KA, Hussein M, Allam A, Hassan M. Salicylic acid induced systemic resistance on onion plants against Stemphylium vesicarium. Archives of Phytopathology and Plant Protection. 2009;42(11):1042-50. https://doi.org/10.3390/pathogens10091085.
Mamgain A, Roychowdhury R, Tah J. Alternaria pathogenicity and its strategic controls. Research Journal of Biology. 2013;1:1-9.
Zaki S, Ahmed M, Ahsan M, Zai S, Anjum MR, Din N. Image-based onion disease (purple blotch) detection using deep convolutional neural network. Image (IN). 2021;12(5):448-58. https://doi.org/10.14569/IJACSA.2021.0120556
Uddin M, Islam M, Akhtar N, Faruq A. Evaluation of fungicides against purple blotch complex of onion (Alternaria porri and Stemphylium botryosum) for seed production. Journal of Agricultural Education and Technology. 2006;9(1&2):83-86.
Yadav RK, Singh A, Jain S, Dhatt AS. Management of purple blotch complex of onion in Indian Punjab. International Journal of Applied Sciences and Biotechnology. 2017;5(4):454-65. https://doi.org/10.3126/ijasbt.v5i4.18632
Latin R, Helms K. Diagnosis and Control of Onion Diseases. 1993.
Dar AA, Sharma S, Mahajan R, Mushtaq M, Salathia A, Ahamad S, et al. Overview of purple blotch disease and understanding its management through chemical, biological and genetic approaches. Journal of Integrative Agriculture. 2020;19(12):3013-24. https://doi.org/10.1016/S2095-3119(20)63285-3.
Sharma A, Panja P, Mandal J. Effect of integrated nutrient management on onion (Allium cepa L.) yield, quality attributes, soil properties and production economics under field condition. Indian Journal of Ecology. 2017;44(5):355-59.
Ul Haq I, Zaman Z, Habib A, Javed N, Khan SA, Iqbal M, et al. Assessment of yield losses caused by purple blotch disease in onion (Allium cepa L.) and its management. Pakistan Journal of Phytopathology. 2014;26(2):225-32.
Tyagi S, Dube V, Charaya M. Biological control of the purple blotch of onion caused by Alternaria porri (Ellis) Ciferri. International Journal of Pest Management. 1990;36(4):384-86. https://doi.org/10.1080/09670879009371517.
Gothandapani S, Boopalakrishnan G, Prabhakaran N, Chethana B, Aravindhan M, Saravanakumar M, et al. Evaluation of entomopathogenic fungus against Alternaria porri (Ellis) causing purple blotch disease of onion. Archives of Phytopathology and Plant Protection. 2015;48(2):135-44. https://doi.org/10.1080/03235408.2014.884532.
Saini S, Raj K, Saini AK, Chugh RK, Lal M, Bhambhu MK. Efficacy of plant extracts in growth promotion and onion purple blotch management: Unveiling metabolite fingerprinting of promising neem leaf extracts through GC MS. European Journal of Plant Pathology. 2023:1-16. https://doi.org/10.1007/s10658-023-02810-z.
Rocky M, Rashid M, Alam I, Tahmid F, Jabed M, Hossain MB. Antifungal potentiality of selected micronutrients, botanicals and fungicides against purple blotch complex pathogens of onion. Journal of Pharmacognosy and Phytochemistry. 2023;12(6):227-34. https://doi.org/10.22271/phyto.2023.v12.i6c.14786.
Chaithanya G, Kumar A, Vijay D, Singh PK, Hussain Z, Basu S, et al. Efficacy of nanoparticles against purple blotch (Alternaria porri) of onion. Indian Phytopathology. 2023;1-8. https://doi.org/10.1007/s42360-023-00632-x.
Chand SK, Nanda S, Joshi RK. Genetics and molecular mapping of a novel purple blotch-resistant gene ApR1 in onion (Allium cepa L.) using STS and SSR markers. Molecular Breeding. 2018;38:1-13. https://doi.org/10.1007/s11032-018-0864-4.
Prajapati B, Patil R. Black mould rot: an important post harvest disease of onion and its management. Popular Kheti. 2014;1(1):162-63.
Salunkhe VN, Gedam P, Pradhan A, Gaikwad B, Kale R, Gawande S. Concurrent waterlogging and anthracnose-twister disease in rainy-season onions (Allium cepa): Impact and management. Frontiers in Microbiology. 2022;13:1063472. https://doi.org/10.3389/fmicb.2022.1063472.
Lopes LHR, Boiteux LS, Rossato M, Aguiar FM, Fonseca ME, Oliveira VR, et al. Diversity of Colletotrichum species causing onion anthracnose in Brazil. European Journal of Plant Pathology. 2021;159:339-57. https://doi.org/10.1007/s10658-020-02166-8.
Yuan C-Y, Huang C-W, Lin C-P, Huang J-H. First report of Anthracnose-twister disease of Welsh onion caused by Colletotrichum siamense in Taiwan. Disease Note. 2023; 89:288-91. https://doi.org/10.1007/s10327-023-01132-6.
Manthesha H, Kenganal M, Yenjerappa S, Aswathanarayana D, Kulkarni V. Management of onion twister disease under field condition. The Pharma Innovation Journal. 2022;11(4):551-55.
Dutta R, K J, Nadig SM, Manjunathagowda DC, Gurav VS, Singh M. Anthracnose of onion (Allium cepa L.): A twister disease. Pathogens. 2022;11(8):884. https://doi.org/10.3390/pathogens11080884
Mishra R, Jaiswal R, Kumar D, Saabale P, Singh A. Management of major diseases and insect pests of onion and garlic: A comprehensive review. Journal of Plant Breeding and Crop Science. 2014;6(11):160-70. https://doi.org/10.5897/jpbcs2014.0467.
Alberto R, Perez P. Development of integrated disease management program against Anthracnose-Twister (Colletotrichum gloeosporioides-Gibberella moniliformis) disease of onion (Allium cepa). Plant Pathol Quar. 2020;10:111-19. https://doi.org/10.5943/PPQ/10/1/13
Naguleswaran V, Pakeerathan K, Mikunthan G. Biological control: a promising tool for bulb-rot and leaf twisting fungal diseases in red onion (Allium cepa L.) in Jaffna district. World Applied Sciences Journal. 2014;31(6):1090-95.
Allam P, Bhatia G, Kanduri Maneesha Kaushik NR, Kabilan G. Anthracnose of chilli: Review on its spread, epidemiology and management. Biopesticides International. 2022;18(1).
Isip M, Alberto R, Biagtan A. Forecasting anthracnose-twister disease using weather based parameters: geographically weighted regression focus. Spatial Information Research. 2021;1-10. https://doi.org/10.1007/s41324-021-00386-6.
De Araújo ER, Gonçalves P, Alves D. Acibenzolar-S-methyl and potassium and calcium phosphites are not effective to control downy mildew of onion in Brazil. Australasian Plant Disease Notes. 2017;12:1-3. https://doi.org/10.1007/s13314-017-0255-4
Parthasarathy S, Rajamanickam S, Muthamilan M. Allium diseases: A global perspective. Innovative Farming. 2016;1(4 (Spl.)):171-78.
Mergawy M, Hassanin M, Ali A, Yousef H. Morphological characterization, fungicidal alternatives and biological control of Peronospora farinosa on chamomile. Egyptian Journal of Biological Pest Control. 2023;33(1):68. https://doi.org/10.1186/s41938-023-00713-z.
Fujiwara K, Inoue H, Sonoda R, Iwamoto Y, Kusaba M, Tashiro N, et al. Real-time PCR detection of the onion downy mildew pathogen Peronospora destructor from symptomless onion seedlings and soils. Plant Disease. 2021;105(3):643-49. https://doi.org/10.1094/PDIS-05-20-1095-RE.
Van der Heyden H, Dutilleul P, Charron J-B, Bilodeau GJ, Carisse O. Factors influencing the occurrence of onion downy mildew (Peronospora destructor) epidemics: Trends from 31 years of observational data. Agronomy. 2020;10(5):738. https://doi.org/10.3390/agronomy10050738.
Bhatti TA, Nizamani ZA, Gadhi MA, Soomro F, Kumar R, Abro SA, et al. Management of downy mildew of onion through selective fungicides in the field condition. Journal of Applied Research in Plant Sciences. 2021;2(1):92-107. https://doi.org/10.38211/joarps.2021.2.1.13
Abd-Elbaky AA, Abo-Zaid GA, Ahmed He-FM, Matar SM, Abdel-Gayed MA. Reducing the incidence of onion downy mildew disease using bio-formulation of Pseudomonas fluorescens, limonene and acetyl salicylic acid. Plant Cell Biotechnology and Molecular Biology. 2021;103-20.
Kim W-S, Lee D-H, Kim Y-J. Machine vision-based automatic disease symptom detection of onion downy mildew. Computers and Electronics in Agriculture. 2020;168:105099. https://doi.org/10.1016/j.compag.2019.105099.
Steentjes MB, Scholten OE, van Kan JA. Peeling the onion: Towards a better understanding of Botrytis diseases of onion. Phytopathology®. 2021;111(3):464-73. https://doi.org/10.1094/phyto-06-20-0258-ia.
Sharma M, Khadda B. Effect of integrated nutrient management in onion for better crop productivity and improved soil health. Journal of Krishi Vigyan. 2023;11(suppl):60-64. http://dx.doi.org/10.5958/2349-4433.2023.00086.7.
Muhie SH. Preharvest production practices and postharvest treatment and handling methods for best quality onion bulbs. The Journal of Horticultural Science and Biotechnology. 2022;97(5):552-59. https://doi.org/10.1080/14620316.2022.2041493.
Sahoo PK, Masanta A, Achary KG, Singh S. Isolation and characterization of Botrytis antigen from Allium cepa L. and its role in rapid diagnosis of neck rot diseases. 2020.
Kou Z, Zhang J, Lan Q, Liu L, Su X, Islam R, et al. Antifungal activity and mechanism of palmarosa essential oil against pathogen Botrytis cinerea in the postharvest onions. Journal of Applied Microbiology. 2023;134(12):lxad290. https://doi.org/10.1093/jambio/lxad290.
Salama M, Asran MR, Moharam MH. Application of some antioxidants for controlling neck rot disease of onion caused by Botrytis allii Munn. Journal of Sohag Agriscience (JSAS). 2021;6(1):66-73. https://doi.org/10.21608/jsasj.2021.213802.
Salama M, Asran MR, Moharam M. Toxicity of some nanomaterials against Botrytis allii, the causal pathogen of neck rot disease of onion (Allium cepa L.). Journal of Sohag Agriscience (JSAS). 2021;6(1):8-19. https://doi.org/10.21608/jsasj.2021.213810.
Tyson J, Fullerton R. Effect of soilborne inoculum on incidence of onion black mould (Aspergillus niger). New Zealand Plant Protection. 2004;57:138-41. https://doi.org/10.30843/nzpp.2004.57.6923.
Devi SS, Rajini P. First report on postharvest management of black mold of onion by eugenol. South Asian Journal of Experimental Biology. 2021;11(6). https://doi.org /10.38150/sajeb.11(6).p759-767.
Adongo B, Kwoseh C, Moses E. Storage rot fungi and seed-borne pathogens of onion. Journal of Science and Technology (Ghana). 2015;35(2):13-21. https://doi.org/10.4314/just.v35i2.2.
Abd-Alla M, El-Mohamedy R, Badeaa R. Effect of some volatile compounds on black mould disease on onion bulbs during storage. Res J Agric Biol Sci. 2006;2(6):384-90.
Raju K, Naik M. Effect of pre-harvest spray of fungicides and botanicals on storage diseases of onion. Indian Phytopathology. 2006;59(2):133.
Prajapati B, Patil R. Bio-efficacy of Trichoderma spp. and its liquid culture filtrate on mycelial growth and management of onion black mould rot (Aspergillus niger) in vitro and in vivo. Indian Phytopathol. 2017;70(1):58-62. https://doi.org/10.24838/ip.2017.v70.i1.48989.
Bashir L, Gashua I, Isa M, Ali A. The antifungal activity of aqueous and ethanol extracts of Jatropha curcas L. against Aspergillus Niger (Van Tieghem) that cause black mould rot of onion bulbs in Sokoto, Nigeria. International Journal of Environment. 2013;2(1):83-90. https://doi.org/10.3126/ije.v2i1.9211
Obani F, editor. Response of storage fungi of onion (Allium cepa) to selected botanicals. E-Proceedings of the Faculty of Agriculture International Conference; 2023.
Kritzman A, Lampel M, Raccah B, Gera A. Distribution and transmission of Iris yellow spot virus. Plant Disease. 2001;85(8):838-42. https://doi.org/10.1094/PDIS.2001.85.8.838.
Bag S, Schwartz HF, Cramer CS, Havey MJ, Pappu HR. Iris yellow spot virus (Tospovirus: B unyaviridae): from obscurity to research priority. Molecular Plant Pathology. 2015;16(3):224-37. https://doi.org/10.1111/mpp.12177.
Gent DH, du Toit LJ, Fichtner SF, Mohan SK, Pappu HR, Schwartz HF. Iris yellow spot virus: an emerging threat to onion bulb and seed production. Plant Disease. 2006;90(12):1468-80. https://doi.org/10.1094/PD-90-1468.
Arya M, Baranwal V, Ahlawat Y, Singh L. RT–PCR detection and molecular characterization of onion yellow dwarf virus associated with garlic and onion. Current Science. 2006;1230-34.
Hoa N, Ahlawat Y, Pant R. Partial characterization of onion yellow dwarf virus from onion in India. Indian Phytopathology. 2003;56(3):276-82.
Leach A, Reiners S, Fuchs M, Nault B. Evaluating integrated pest management tactics for onion thrips and pathogens they transmit to onion. Agriculture, Ecosystems and Environment. 2017;250:89-101. https://doi.org/10.1016/j.agee.2017.08.031.
Wang MR, Hamborg Z, Blystad DR, Wang QC. Combining thermotherapy with meristem culture for improved eradication of onion yellow dwarf virus and shallot latent virus from infected in vitro?cultured shallot shoots. Annals of Applied Biology. 2021;178(3):442-49. https://doi.org/10.1111/aab.12646.
Ovesná J, Kaminiaris MD, Tsiropoulos Z, Collier R, Kelly A, De Mey J, et al. Applicability of smart tools in vegetable disease diagnostics. Agronomy. 2023;13(5):1211. https://doi.org/10.3390/agronomy13051211.
Araújo E, Resende R, Alves D, Higashikawa F. Integrating cultivar resistance and disease warning system to control downy mildew of onion. Australasian Plant Disease Notes. 2020;15:1-3. https://doi.org/10.1007/s13314-019-0370-5.
Getinet A, Yalew D, Berhan M. Evaluation of plant density and fungicides for the management of onion downy mildew. Proceedings of Plant Protection Research Results. 2023.
De Menezes Júnior FOG, de Araújo ER, Resende RS. Onion downy mildew severity in no-tillage irrigation under nutrient budgeting and population densities. Trends in Horticulture. 2022;5(2):69-74. https://doi.org/10.24294/th.v5i2.1830.
Pandiyan I, Ayyathurai V, Ramesh V. Integrated pest and disease management (IPDM) module for major insect pest thrips and diseases of onion (Allium cepa var. aggregatum). Madras Agricultural Journal. 2024;110 (December (10-12)):1. https://doi.org/10.29321/MAJ.10.200D23.
Kiehr M, Delhey R, Azpilicueta A. Smudge and other diseases of onion caused by Colletotrichum circinans, in southern Argentina. Phyton. 2012;81(1):161-64. https://doi.org/10.32604/phyton.2012.81.161
Salunkhe V, Gawande S, Singh M. Combating onion fungal diseases through integrated disease management. Indian Horticulture. 2017;62(6).
Chen A, Najeeb S, Wang Y, Khan R, Ping X, Ling J. First report of Colletotrichum circinans causing Anthracnose in Allium fistulosum L. var. giganteum Makino in Gansu Province, China. Plant Disease. 2021. https://doi.org/10.1094/pdis-09-21-2011-pdn.
Mesta R, Kukanur L, editors. Management of postharvest smudge infections in onion through fungicides. VII International Postharvest Symposium 1012; 2012. https://doi.org/10.17660/ActaHortic.2013.1012.84.
Ghosh A, Ghosh TK, Das S, Ray H, Mohapatra D, Modhera B, et al. Development of electronic nose for early spoilage detection of potato and onion during postharvest storage. Journal of Materials NanoScience. 2022;9(2):101-14.
Fernando M, De Silva S. Nursery method for damping-off disease in true seed cultivation of cluster onion. International Journal of Environment, Agriculture and Biotechnology. 2019;4(1). http://dx.doi.org/10.22161/ijeab/4.1.32
Dacumos CC, Patricio M, Melegrito R. Increasing quality transplants through the use of microbial and soil amendments against damping-off disease in onion. CLSU International Journal of Science and Technology. 2021;5(1):27-34. https://doi.org/10.22137/ijst.2021.v5n1.03
Ikeda S, Yasuoka S. Damping-off of onion: a new symptom caused by soilborne Botrytis byssoidea. Journal of General Plant Pathology. 2023;89(5):260-65. https://doi.org/10.1007/s10327-023-01137-1
Gunaratna L, Deshappriya N, Jayaratne D, Rajapaksha R. Damping-off disease of big onion (Allium cepa L.) in Sri Lanka and evaluation of Trichoderma asperellum and Trichoderma virens for its control. Tropical Plant Research. 2019;6:275-92. https://doi.org/10.22271/tpr.2019.v6.i2.036
Osman HE, Nehela Y, Elzaawely AA, El-Morsy MH, El-Nagar A. Two bacterial bioagents boost onion response to Stromatinia cepivora and promote growth and yield via enhancing the antioxidant defense system and auxin production. Horticulturae. 2023;9(7):780. https://doi.org/10.3390/horticulturae9070780
Elshahawy IE, Morsy AA, Abd-El-Kareem F, Saied NM. Reduction of Stromatinia cepivora inocula and control of white rot disease in onion and garlic crops by repeated soil applications with sclerotial germination stimulants. Heliyon. 2019;5(1). https://doi.org/10.1016/j.heliyon.2019.e01168
Schroeder B, Humann J, Du Toit L. Effects of postharvest onion curing parameters on the development of sour skin and slippery skin in storage. Plant Disease. 2012;96(10):1548-55. https://doi.org/10.1094/PDIS-02-12-0117-RE
Belo T, du Toit LJ, LaHue GT. Reducing the risk of onion bacterial diseases: A review of cultural management strategies. Agronomy Journal. 2023;115(2):459-73. https://doi.org/10.1002/agj2.21301
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 P Yazhini, K Angappan, M Karthikeyan, R Anandham, B Anita, M Nivedha
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).