Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 4 (2025)

Impacts of five selected heavy metals (Cd, Cu, Ni, Pb & Zn) on growth performance of wheat crop (Triticum aestivum L.): A brief review

DOI
https://doi.org/10.14719/pst.5070
Submitted
15 September 2024
Published
08-11-2025 — Updated on 21-11-2025
Versions

Abstract

Wheat is indeed a crucial dietary staple globally, but its quality and yield can be severely affected by heavy metal contamination in the soil. Heavy metals like cadmium, copper, nickel, lead and zinc are necessary in trace amounts for plant growth, but in high concentrations, they become toxic. Urbanization, industrial development and agricultural practices all contribute to the accumulation of heavy metals (HM) in the soil, primarily through atmospheric deposition, sewage, fertilizers, pesticides and irrigation. This contamination negatively impacts wheat seed germination, plant growth and ultimately, crop yield and quality. To mitigate heavy metal contamination, various remediation techniques can be employed, such as pH modifications and phytoremediation, which involves using plants to remove pollutants from the soil. Additionally, detecting contaminated areas and implementing focused investigations are essential to reduce human exposure to these harmful substances. It's also crucial to develop specific policies to limit heavy metal accumulation in hyperaccumulator plants like root and stem tubers, as they can further contribute to the contamination of crops. Overall, addressing heavy metal contamination in wheat crops requires a multi-faceted approach that combines remediation techniques, policy interventions and focused research to safeguard both agricultural productivity and human health.

References

  1. 1. Marini N, Tunes LM, Silva JI, Moraes DM, Olivo F, Cantos AA. Effect of the fungicide Carboxim Tiram on the physiological quality of wheat seeds (Triticum aestivum L.). Braz J Agr Sci. 2011;6(1):17-22. https://doi.org/10.5039/agraria.v6i1a737
  2. 2. Khan S, Basra SMA, Nawaz M, Hussain I, Foidl N. Combined application of moringa leaf extract and chemical growth-promoters enhances the plant growth and productivity of wheat crop (Triticum aestivum L.). S Afr J Bot. 2020;129:74-81. https://doi.org/10.1016/j.sajb.2019.01.007
  3. 3. Jamil M, Lee CC, Rehman SU, Lee DB, Ashraf M, Rha ES. Salinity (NaCl) tolerance of brassica species at germination and early seedling growth. Elec J Env Agri Food Chem. 2005;4(4):970-76.
  4. 4. Song J, Fan H, Zhao YY, Jia YH, Du XH, Wang BS. Effect of salinity on germination, seedling emergence, seedling growth and ion accumulation of a euhalophyte Suaeda salsa in an intertidal zone and on saline inland. Aquat Bot. 2008;88(4):331-37. https://doi.org/10.1016/j.aquabot.2007.11.004
  5. 5. Bungard RA, Mcneil D, Morton JD. Effects of chilling, light and nitrogen-containing compounds on germinations, rate of germination and inbibition of Clematis vitalba, L. Ann Bot. 1997;79(6):643-50. https://doi.org/10.1006/anbo.1996.0391
  6. 6. Atlaw A, Kasla K, Haile M. Manual for quality seed production in wheat. Research Gate pp. 2014:1-72.
  7. 7. Silva E, Santos PS, Guilherme MFS. Lead in plants: a brief review of its effects, mechanisms toxicological and remediation. Agrar Acad J. 2015;2(3):1-20. https://doi.org/10.18677/Agrarian_Academy_001_e
  8. 8. Oliveira AKM, Ribeiro JWF, Pereira KCL, Silva CAA. Effects of temperature on the germination of Diptychandra aurantiaca (Fabaceae) seeds. Acta Sci Agron. 2013;35(2):203-08.https://doi.org/10.4025/actasciagron.v35i2.15977
  9. 9. Khan MB, Ghurchani M, Hussain M, Mahmood K. Wheat seed invigoration by pre-sowing chilling treatments. Pak J Bot. 2010;42(2):1561-66.
  10. 10. Yari L, Aghaalikani M, Khazaei F. Effect of seed priming duration and temperature on seed germination behaviour of bread wheat (Triticum aestivum L). ARPN J Agri Biol Sci. 2010;5(1):1-6.
  11. 11. Rao DG, Sinha SK. Efficiency of mobilization of seed reserves in sorghum hybrids and their parents as influenced by temperature regimes. Seed Res. 1993;2(2):97-100.
  12. 12. Farooq M, Basra SMA, Hafeez-u-Rehman, Saleem BA. Seed priming enhances the performance of late sown wheat (Triticum aestivum L.) by improving chilling tolerance. J Agron Crop Sci. 2008;194(1):55-60. https://doi.org/10.1111/j.1439-037X.2007.00287.x
  13. 13. Mohammadi GR, Mozafari S. Wheat (Triticum aestivum L.) seed germination under salt stress as influenced by priming. Philipp Agric Sci. 2012;95(2):146-52.
  14. 14. Brown SL, Clausen I, Chappell MA, Scheckel KG, Newville M, Hettiarachch GM. High-iron biosolids compost–induced changes in lead and arsenic speciation and bio accessibility in co-contaminated soils. J Environ Qual. 2012;41(5):1612-22. https://doi.org/10.2134/jeq2011.0297
  15. 15. Attanayake CP, Hettiarachchi GM, Harms A, Presley D, Martin S, Pierzynski GM. Field evaluations on soil plant transfer of lead from an urban garden soil. J Environ Qual. 2014;43(2):475-87. https://doi.org/10.2134/jeq2013.07.0273
  16. 16. Kamitani T, Oba H, Kaneko N. Microbial biomass and tolerance of microbial community on an aged heavy metal polluted floodplain in Japan. Wat Air Soil Pollut. 2006;172:185-200. https://doi.org/10.1007/s11270-005-9073-y
  17. 17. Algreen M, Rein A, Legind CN, Amundsen CE, Karlson UG. Test of tree core sampling for screening of toxic elements in soils from a Norwegian site. Int J Phytoremediation. 2012;14:305-19. https://doi.org/10.1080/15226514.2011.620648
  18. 18. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment, in molecular, clinical and environmental toxicology. Springer Basel; 2012. p. 133-64. https://doi.org/10.1007/978-3-7643-8340-4_6
  19. 19. Gautam PK, Gautam RK, Banerjee S, Chattopadhyaya MC, Pandey JD. Heavy metals in the environment: fate, transport, toxicity and remediation technologies. In: Pathania D, editor. Heavy Metals. Nova Science Publishers, Inc; 2016
  20. 20. Karaca A. Effect of organic wastes on the extractability of cadmium, copper, nickel and zinc in soil. Geoderma. 2004;122:297-303. https://doi.org/10.1016/j.geoderma.2004.01.016
  21. 21. Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, del Rio LA. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot 2001;52:2115–2126.https://doi.org/10.1093/jexbot/52.364.2115
  22. 22. Liu JJ, Wei Z, Li JH. Effects of copper on leaf membrane structure and root activity of maize seedling. Botanical Studies. 2014;55:47. https://doi.org/10.1186/s40529-014-0047-5
  23. 23. Guo G, Lei M, Wang Y, Song B, Yang J. Accumulation of As, Cd and Pb in sixteen wheat cultivars grown in contaminated soils and associated health risk assessment. Int. J. Environ. Res. Public Health 2018;15:2601. https://doi.org/10.3390/ijerph15112601
  24. 24. Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH. Heavy metals in food crops: health risks, fate, mechanisms and management. Environ Int 2019;125:365-85. https://doi.org/10.1016/j.envint.2019.01.067
  25. 25. Lopez-Climent MF, Arbona V, Perez-Clemente RM, Gomez-Cadenas A. Effects of cadmium on gas exchange and phytohormone contents in citrus. Plant Biol. 2011;55:187-90. https://doi.org/10.1007/s10535-011-0028-4
  26. 26. Singh S, Parihar P, Singh R, Singh VP, Prasad SM. Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics and biolonomics. Fron Plant Sci. 2015;6:1143. https://doi.org/10.3389/fpls.2015.01143
  27. 27. Pintilie O, Zaharia M, Cosma A, Butnaru A, Murariu M, Drochioiu G, Sandu I. Effect of heavy metals on the germination of wheat seeds: Enzymatic assay. The Annals of “Dunarea De Jos”. University of Galati Fascicle Ix, Metall. Mater Sci 1; 2016.
  28. 28. Rizvi A, Ahmed B, Zaidi A, Khan MS. Heavy metal mediated phytotoxic impact on winter wheat: oxidative stress and microbial management of toxicity by Bacillus subtilis BM2. RSC Advance. 2019;9:6125-42. https://doi.org/10.1039/C9RA00333A
  29. 29. Rizvi A, Zaidi A, Ameen F, Ahmad B, Al-Kahtani MDF, Khan MS. Heavy metal induced stress on wheat: phytotoxicity and microbiological management. RSC Advance. 2020;10:38379-403. https://doi.org/10.1039/D0RA05610C
  30. 30. Samuilov S, Bojovic D, Dukic M, Rakovic J. The effect of elevated Zn concentrations on seed germination and young seedling growth of Ailanthus altissima (Mill.) Swingle. Bullet Facul Fores. 2014;110:145-57. https://doi.org/10.2298/GSF1410145S
  31. 31. Kishan PS, Bhattacharya S, Sharma P. American Eurasian assessment of heavy metal contents of some Indian medicinal plants. J Agric Environ Sci. 2014;14(10):1125-29.
  32. 32. Kumar N, Kumar S, Bauddh K, Dwivedi N, Shukla P, Singh DP, Barman SC. Toxicity assessment and accumulation of metals in radish irrigated with battery manufacturing industry effluent. Int J Veg Sci. 2015;21(4):373-85. https://doi.org/10.1080/19315260.2014.880771
  33. 33. Rodriguesa AAZ, Maria EL, Queiroz RD, Oliveira AF, Heleno AAFF, Zambolim L, Freitasa JF, Morais EHC. Pesticide residue removal in classic domestic processing of tomato and its effects on product quality. J Environ Sci Health Part B. 2017;52(12):850-57. https://doi.org/10.1080/03601234.2017.1359049
  34. 34. Zhou H, Yang WT, Zhou X, Liu L, Gu JF, Wang WL, et al. Accumulation of heavy metals in vegetable species planted in contaminated soils and the health risk assessment. Int J Environ Res Pub Health. 2016;13(3):289. https://doi.org/10.3390/ijerph13030289
  35. 35. Garcia OA, Beltran G, Uceda M, Hermoso M, Gonzalez P, Ordonez R, Giraldez JV. Vegetation water (alpechin) application effects on soils and plants. Acta Hortic. 1999;474:749-52. https://doi.org/10.17660/ActaHortic.1999.474.156
  36. 36. Mahmood A, Malik RN. Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arab J Chem. 2014;7(1):91-99. https://doi.org/10.1016/j.arabjc.2013.07.002
  37. 37. Anonymous. Estimating risk from contaminants contained in agricultural fertilizers (Draft Report). Washington: U.S. Environmental Protection Agency. 1999.
  38. 38. Zhang Y, Yu Z, Fu X, Liang C. Noc3p, a bHLH protein, plays an integral role in the initiation of DNA replication in budding yeast. Cell. 2002;109(7):849-60. https://doi.org/10.1016/S0092-8674(02)00805-X
  39. 39. Li WX, Chen TB, Huang ZC, Lei M, Liao XY. Effect of arsenic on chloroplast ultra-structure and calcium distribution in arsenic hyperaccumulator Pteris vittata L. Chemosphere. 2006;62(5):803-09. https://doi.org/10.1016/j.chemosphere.2005.04.055
  40. 40. Sing N, Ma LQ, Vu JC, Raj A. Effects of arsenic on nitrate metabolism in arsenic hyperaccumulating and non-hyperaccumulating ferns. Environ Pollut. 2009;157(8-9):2300-05. https://doi.org/10.1016/j.envpol.2009.03.036
  41. 41. Baker AJM, Books RR. Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry. Biorecovery. 1989;1:51-126.
  42. 42. Shahid M. Biogeochemical behaviour of heavy metals in soil-plant system, 1sted. Higher education Commission, Islamabad, Pakistan; 2017.
  43. 43. Boussen S, Soubrand M, Bril H, Ouerfelli K, Abdeljaouad S. Transfer of lead, zinc and cadmium from mine tailings to wheat (Triticum aestivum) in carbonated Mediterranean (Northern Tunisia) soils. Geoderma. 2013;192:227-36. https://doi.org/10.1016/j.geoderma.2012.08.029
  44. 44. Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Benavides MP. Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot. 2012;83:33-46. https://doi.org/10.1016/j.envexpbot.2012.04.006
  45. 45. Ci D, Jiang D, Dai T, Jing Q, Cao W. Effects of cadmium on plant growth and physiological traits in contrast wheat recombinant inbred lines differing in cadmium tolerance. Chemosphere. 2009;77(11):1620-25. https://doi.org/10.1016/j.chemosphere.2009.08.062
  46. 46. Rizwan M, Meunier JD, Davidian JC, Pokrovsky OS, Bovet N, Keller C. Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. Environ Sci Pollut Res. 2016;23(2):1414-27. https://doi.org/10.1007/s11356-015-5351-4
  47. 47. Jin C, Fan J, Liu R, Sun R. Single and joint toxicity of sulfamonomethoxine and cadmium on three agricultural crops. Int J Soil Sediment Contam. 2015;24(4):454-70. https://doi.org/10.1080/15320383.2015.981648
  48. 48. Khan NA, Singh S, Nazar R. Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. J Agron Crop Sci. 2007;193(6):435-44. https://doi.org/10.1111/j.1439-037X.2007.00272.x
  49. 49. Hussain A, Murtaza G, Ghafoor A, Basra SMA, Qadir M, Sabir M. Cadmium contamination of soils and crops by long term use of raw effluent, ground and canal waters in agricultural lands. Int J Agric Biol. 2010;12:851-56.
  50. 50. Pinto AP, Mota AD, Varennes AD, Pinto FC. Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Sci Total Environ. 2004;326(1-3):239-47. https://doi.org/10.1016/j.scitotenv.2004.01.004
  51. 51. Gouia H, Suzuki A, Brulfert J, Ghorbal H. Effect of cadmium on the co-ordination of nitrogen and carbon metabolism in bean seedlings. Plant Physiol. 2004;160(4):367-76. https://doi.org/10.1078/0176-1617-00785
  52. 52. Ramon O, Vazquez E, Fernandez M, Felipe M, Zornoza P. Cadmium stress in white lupine: effects on nodule structure and functioning. Plant Physiol Biochem. 2003;41(10):911-19. https://doi.org/10.1016/S0981-9428(03)00136-0
  53. 53. An YJ. Soil ecotoxicity assessment using cadmium sensitive plants. Environ Pollut. 2004;127(1):21-26. https://doi.org/10.1016/S0269-7491(03)00263-X
  54. 54. Weckx JEJ, Clijsters HMM. Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgarisas a result of root assimilation of toxic amounts of copper. Plant Physiol. 1996;96(3):506-12. https://doi.org/10.1111/j.1399-3054.1996.tb00465.x
  55. 55. Devi RS, Prasad MNV. Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: Response of antioxidant enzymes and antioxidants. Plant Sci. 1998;138(2):157-65. https://doi.org/10.1016/S0168-9452(98)00161-7
  56. 56. Schopfer P. Hydrogen peroxide-mediated cell wall stiffening in vitro in maize coleoptile. Planta. 1996;199(1):43-49. https://doi.org/10.1007/BF00196879
  57. 57. Pacyna JM, Pacyna EG. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ Rev. 2001;9(4):269-98. https://doi.org/10.1139/a01-012
  58. 58. Ouzounidou G, Moustakas M, Symeonidis L, Karataglis S. Response of wheat seedlings to Ni stress: effects supplemental calcium. Arch Environ Conta Toxicol. 2006;50(3):346-52. https://doi.org/10.1007/s00244-005-5076-3
  59. 59. Gajewska E, Sklodowska M. Relations between tocopherol, chlorophyll and lipid peroxides contents in shoots of Ni-treated wheat. J Plant Physiol. 2007;164(3):364-66. https://doi.org/10.1016/j.jplph.2006.05.021
  60. 60. Boominathan R, Doran PM. Ni-induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. New Phytol. 2002;156(2):205-15. https://doi.org/10.1046/j.1469-8137.2002.00506.x
  61. 61. Patra M, Bhowmik N, Bandopadhyay B, Sharma A. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot. 2004;52(3):199-223. https://doi.org/10.1016/j.envexpbot.2004.02.009
  62. 62. Singh RP, Tripathi RD, Sinha SK, Maheshwari R, Srivastava HS. Response of higher plants to lead contaminated environment. Chemosphere. 1997;34(11):2467-93. https://doi.org/10.1016/S0045-6535(97)00087-8
  63. 63. Mishra A, Choudhari MA. Amelioration of lead and mercury effects on germination and rice seedling growth by antioxidants. Plant Biol. 1998;41(3):469-73. https://doi.org/10.1023/A:1001871015773
  64. 64. Verma S, Dubey RS. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci. 2003;164(4):645-55. https://doi.org/10.1016/S0168-9452(03)00022-0
  65. 65. Mahmood S, Hussain A, Saeed Z, Athar M. Germination and seedling growth of corn (Zea mays L.) under varying levels of copper and zinc. Int J Environ Sci Technol. 2005;2(3):269-74. https://doi.org/10.1007/BF03325886
  66. 66. Jamal SN, Iqbal MZ, Athar M. Evaluation of two wheat varieties for phytotoxic effect of mercury on seed germination and seedling growth. Agric Crops Sci. 2006;71(2):41-44.
  67. 67. Pandey N, Pathak GC, Sharma CP. Zinc is critically required for pollen function and fertilization in lentil. J Trace Elem Med Biol. 2006;20(2):89-96. https://doi.org/10.1016/j.jtemb.2005.09.006
  68. 68. Cakmak I, Kutman UB. Agronomic biofortification of cereals with zinc: a review. Eur J Soil Sci. 2018;69(1):172-80. https://doi.org/10.1111/ejss.12437
  69. 69. Farooq M, Wahid A, Siddique KHM. Micronutrient application through seed treatments: A review. J Soil Sci Plant Nut. 2012;12(1):125-42. https://doi.org/10.4067/S0718-95162012000100011

Downloads

Download data is not yet available.