Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. Sp2 (2025): Current Trends in Plant Science and Microbiome for Sustainability

Enhancing tomato crop protection: Utilizing microbial and botanical bioproducts to control Meloidogyne incognita population

DOI
https://doi.org/10.14719/pst.5106
Submitted
17 September 2024
Published
26-07-2025

Abstract

The cultivation of tomatoes (Solanum lycopersicum L.) is seriously threatened by root-knot nematodes (Meloidogyne spp.), which can result in significant yield losses and decreased fruit quality. This study explores the efficacy of biological agents Trichoderma harzianum, Photorhabdus luminescens and Neem cake as an alternative strategy for managing M. incognita. During the study period T. harzianum caused maximum mortality 99.60 % followed by Neem cake 84.8 % and 79.2 % by P. luminescens against the infective second stage juveniles (IJ2) after 72 hr exposure period under laboratory conditions. The LC50 value and associated 95 % confidence limits were used to express the data on the in vitro nematicidal activity of biological agents. The pot experiment showed that the T. harzianum at 2 × 106 spores/10 mL suppressive effect was superior to all other treatments in terms of root gall index (RGI) (1.27), followed by Neem cake (2.07). P. luminescens at 4×104/10 mL/pot was found less effective in preventing M. incognita with the highest root gall index (RGI) (2.60). Similarly, T. harzianum had lowest number of females and egg masses (33.33, 27.00), followed by Neem cake (42.33, 48.33) and P. luminescens (58.0, 61.67). It also showed the most significant (P<0.05) decline in the nematode population (70.00) and reproduction factor (0.14) followed by Neem cake and P. luminescens in field efficacy. T. harzianum also achieved the lowest nematode egg masses and galling index. The study found that T. harzianum, Neem cake and P. luminescens treatments improved plant growth, with maximum shoot length, root length and fruit yield respectively. Nematode infection suppressed chlorophyll, carotenoid and sugar content in plants, with T. harzianum causing the most significant increase in chlorophyll and carotenoid content, followed by Neem cake and P. luminescens, with minimal increases in these parameters. These findings suggest that integrating these biological agents into nematode management strategies can offer an effective and sustainable approach for controlling root knot nematodes in tomato crop.

References

  1. 1. Jones JT, Haegeman A, Danchin EG, Gaur HS, Helder J, Jones MG, et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol. 2013;14:946–61. https://doi.org/10.1111/mpp.12057
  2. 2. Bhavana P, Singh AK, Kumar R, Prajapati GK, Thamilarasi K, Manickam R, et al. Identification of resistance in tomato against root knot nematode (Meloidogyne incognita) and comparison of molecular markers for the Mi gene. Aus Plant Pathol. 2019;48:93–100. https://doi.org/10.1007/s13313-018-0602-8
  3. 3. Jagdale GB, Forghani F, Martin K, Hajihassani A, Martinez-Espinoza AD. First report of the stubby-root nematode infecting seashore paspalum grass in Georgia, USA. J Nematol. 2020;52:1–3. https://doi.org/10.21307/jofnem-2020-
  4. 106
  5. 4. Kaur S, Thakur N, Jhamta S. Plant parasitic nematodes habitat, diversity and nature of damage. In: Exploring Innovations in Agricultural, Biological, Chemical, Environmental and Forensic Sciences. 2024. p. 188–208.
  6. 5. Jhamta S, Thakur N, Kaur S. Role of plant parasitic nematodes and dauer larvae against the parasitic adaptation and environmental extremes. In: Exploring Innovations in Agricultural, Biological, Chemical, Environmental and Forensic Science. 2024. p. 74–87.
  7. 6. Bartlem DG, Jones MG, Hammes UZ. Vascularization and nutrient delivery at root-knot nematode feeding sites in host roots. J Experim Bot. 2014;65:1789–98. https://doi.org/10.1093/jxb/ert415
  8. 7. Rawal S. A review on root-knot nematode infestation and its management practices through different approaches in tomato. Trop Agroecosystem 2020;1:92–96. https://doi.org/10.26480/taec.02.2020.92.96
  9. 8. Dong L, Huang C, Huang L, Li X, Zuo Y. Screening plants resistant against Meloidogyne incognita and integrated management of plant resources for nematode control. Crop Protect. 2012;33:34–39. https://doi.org/10.1016/j.cropro.
  10. 2011.11.012
  11. 9. Vito Greco N, Di Vito M. Main nematode problems of tomato. Acta Hortic. 2011;914:243–49. https://doi.org/10.17
  12. 660/ActaHortic.2011.914.44
  13. 10. Abd-Elgawad MM. Optimizing safe approaches to manage plant-parasitic nematodes. Plants 2021;10:1911. https://doi.org/10.3390/plants10091911
  14. 11. Bernard GC, Egnin M, Bonsi C. The impact of plant-parasitic nematodes on agriculture and methods of control. Nematol Con Diagnos Cont. 2017;10:121–51. https://doi.org/10.5772/intechopen.68958
  15. 12. Anamika S, Sobita S. Variation in life cycle of Meloidogyne incognita in different months in Indian conditions. Int J Sci Res. 2012;3:2286–88.
  16. 13. Schippers RR. African indigenous vegetables: An overview of the cultivated species; London (UK): University of Greenwich, Natural Resources Institute: 2000.
  17. 14. Thakur N, Sharma GC. Effect of different management practices on nematode populations and yield of ginger. Int J Farm Sci. 2018;8:31–33. https://doi.org/10.5958/2250-0499.2018.00009.55
  18. 15. Thakur N, Kaur K, Tomar P. Incidence of plant parasitic nematodes associated with capsicum (Capsicum annuum L.) in Himachal Pradesh. Indian J Nematol. 2018;48:237–39.
  19. 16. Kaistha A. Thakur N. Characterization of Meloidogyne incognita Chitwood infesting tomato crop in Himachal Pradesh. Indian J Nematol. 2019;49:205–07.
  20. 17. Thakur N, Thakur R, Khan ML. Plant parasitic nematodes associated with carnation (Dianthus caryophyllus L.) grown under protected conditions in Himachal Pradesh. Indian J Nematol. 2016;46:164–65.
  21. 18. Thakur N, Sharma GC. Effect of nematodes and fungal pathogens on growth parameters of ginger. AgricINT. 2014;1:47–51.
  22. 19. Jhamta S, Thakur N. Occurrence and distribution of Meloidogyne incognita infecting vegetable crops in some districts of Himachal Pradesh, India. Indian J Nematol. 2023;53:82–85. https://doi.org/10.5958/0974-4444.2023.00
  23. 010.0
  24. 20. Lutuf H. Identification of nematodes and morphological characterization of Meloidogyne incognita associated with Solanum lycopersicum L. in the Ashanti, Brong Ahafo and Upper East regions of Ghana [PhD Thesis]. Accra, Ghana: University of Ghana; 2015.
  25. 21. Seid A, Chemeda Fininsa CF, Mekete T, Decraemer W, Wesemael WM. Tomato (Solanum lycopersicum) and root-knot nematodes (Meloidogyne spp.) a century-old battle. Nematology 2015;17:995–1009. https://doi.org/10.1163/
  26. 15685411-00002935
  27. 22. Seo Y, Park J, Kim YS, Park Y, Kim YH. Screening and histopathological characterization of Korean carrot lines for resistance to the root-knot nematode Meloidogyne incognita. Plant Pathol J. 2014;30:75. https://doi.org/10.5423/PPJ.OA.08.2013.0082
  28. 23. Osman HA, Ameen HH, Mohamed M, El-Mohamedy R, Elkelany US. Field control of Meloidogyne incognita and root rot disease infecting eggplant using nematicide, fertilizers and microbial agents. Egypt J Biol Pest Control. 2018;28:1–6. https://doi.org/10.1186/s41938-018-0044-1
  29. 24. Aktar W, Sengupta D, Chowdhury A. Impact of pesticide use in agriculture: their benefits and hazards. InterdiscipToxicol. 2009;2:1–12. https://doi.org/10.2478/v10102-009-0001-7
  30. 25. Desaeger J, Wram C, Zasada I. New reduced-risk agricultural nematicides-rationale and review. J Nematol. 2020;52:1–16. https://doi.org/10.21307/jofnem-2020-091
  31. 26. Oka Y. Sensitivity to fluensulfone of inactivated Meloidogyne spp. second‐stage juveniles. Pest Manag Sci. 2020;76:2379–87. https://doi.org/10.1002/ps.5774
  32. 27. Haydock PP, Ambrose EL, Wilcox A, Deliopoulos T. Degradation of the nematicide oxamyl under field and laboratory conditions. Nematology. 2012;14:339–52. https://doi.org/10.1163/156854111X597485
  33. 28. Vega FE. The use of fungal entomopathogens as endophytes in biological control: a review. Mycologia. 2018;110:4–30. https://doi.org/10.1080/00275514.2017.1418578
  34. 29. Kaur K, Thakur N, Sharma S. Biological control of plant parasitic nematodes associated with capsicum (Capsicum annuum L.). Indian J Nematol. 2020;50:1–6.
  35. 30. Meyer SL, Roberts DP. Combinations of biocontrol agents for management of plant-parasitic nematodes and soilborne plant-pathogenic fungi. J Nematol. 2002;34:1–6.
  36. 31. Schuster A, Schmoll M. Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol. 2010;87:787–99. https://doi.org/10.1007/s00253-010-2632-1
  37. 32. Szabó M, Csepregi K, Gálber M, Virányi F, Fekete C. Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi: The role of chi18-5 and chi18-12 genes in nematode egg-parasitism. Biol Control. 2012;63:121–28.https://doi.org/10.1016/j.biocontrol.2012.06.013
  38. 33. Migunova V, Sasanelli N, Kurakov A. Effect of microscopic fungi on larval mortality of the root-knot nematodes Meloidogyne incognita and Meloidogyne javanica. Biol Integ Control Plant Pathog. 2018;133:27–31.
  39. 34. Ansari RA, Rizvi R, Sumbul A, Mahmood I. Plant-growth promoting rhizobacteria (pgpr)-based sustainable management of phytoparasitic nematodes: current understandings and future challenges. In: Ansari RA, Rizvi R, Mahmood I, editors. Management of phytonematodes: recent advances and future challenges. Singapore: Springer;
  40. 2020. p. 51–71. https://doi.org/10.1007/978-981-15-4087-5_3
  41. 35. Pocurull M, Fullana AM, Ferro M, Valero P, Escudero N, Saus E, et al. Commercial formulations of Trichoderma induce systemic plant resistance to Meloidogyne incognita in tomato, and the effect is additive to that of the Mi-1.2 resistance gene. Front Microbiol. 2020;10:3042. https://doi.org/10.3389/fmicb.2019.03042
  42. 36. Mukherjee PK, Mehetre ST, Sherkhane PD, Muthukathan G, Ghosh A, Kotasthane AS, et al. A novel seed-dressing formulation based on an improved mutant strain of Trichoderma virens and its field evaluation. Front Microbiol. 2019;10:1910. https://doi.org/10.3389/fmicb.2019.01910
  43. 37. Vagelas IK, Dennett MD, Pembroke B, Gowen SR. Adhering Pasteuria penetrans endospores affect the movements of root-knot nematode juveniles. Phytopathol Medit. 2012;618–24.
  44. 38. Viljoen JJ, Labuschagne N, Fourie H, Sikora RA. Biological control of the root-knot nematode Meloidogyne incognita on tomatoes and carrots by plant growth-promoting rhizobacteria. Trop Plant Pathol. 2019;44:284–91. https://doi.org/10.1007/s40858-019-00283-2
  45. 39. El Aimani A, Houari A, Laasli SE, Mentag R, Iraqi D, Diria G, et al. Antagonistic potential of Moroccan entomopathogenic nematodes against root-knot nematodes, Meloidogyne javanica on tomato under greenhouse conditions. Sci Rep. 2022;12:2915. https://doi.org/10.1038/s41598-022-07039-0
  46. 40. Duong DH, Le TP, Bui TT, Ngo XQ, Nguyen DT, Nguyen HH, et al. Nematode communities act as bio-indicators of status and processes of an agricultural soil ecosystem in Thanh An, Binh Phuoc province. J Viet Environ. 2014;6:227–32. https://doi.org/10.13141/jve.vol6.no3.pp227-232
  47. 41. Jangra P, Kumar A, Yadav S, Patil JA. Organic management of Meloidogyne incognita in coriander and fenugreek. Indian J Nematol. 2023;53:142–48. https://doi.org/10.5958/0974-4444.2023.00015.X
  48. 42. Gautam, SB, Chand R, Chandra S, Singh DP, Rahul SN, Kumar P. Impact assessment of Neem products against root-knot nematode, Meloidogyne incognita on tomato. Agric Assoc Textile Chem Critic Rev J. 2023;76-–80.
  49. 43. Vadhera I, Tiear S, Dave G. Integrated management of root knot nematode, Meloidogyne incognita in ginger. Indian Phytopathol. 1998;51:161–63.
  50. 44. Thakur N, Tomar P, Kaur J, Kaur S, Sharma A, Jhamta S, et al. Eco-friendly management of Spodoptera litura (Lepidoptera: Noctuidae) in tomato under polyhouse and field conditions using Heterorhabditis bacteriophora Poinar, their associated bacteria (Photorhabdus luminescens) and Bacillus thuringiensis var. kurstaki. Egypt J Biol Pest Control. 2023;33:1–9. https://doi.org/10.1186/s41938-023-00649-4
  51. 45. Naz I, Palomares‐Rius JE, Saifullah, Blok V, Khan MR, Ali S. In vitro and in planta nematicidal activity of Fumaria parviflora (Fumariaceae) against the southern root‐knot nematode Meloidogyne incognita. Plant Pathol. 2013;62:943–52. https://doi.org/10.1111/j.1365-3059.2012.02682.x
  52. 46. Jang JY, Choi YH, Shin TS, Kim TH, Shin KS, Park HW, et al. Biological control of Meloidogyne incognita by a Spergillus niger F22 producing oxalic acid. PLOS ONE. 2016;11(6):e0156230. https://doi.org/10.1371/journal.pone.
  53. 0156230
  54. 47. Khalil MS, Badawy ME. Nematicidal activity of a biopolymer chitosan at different molecular weights against root-knot nematode, Meloidogyne incognita. Plant Prot Sci. 2012;48:170. https://doi.org/10.17221/46/2011-PPS
  55. 48. Taylor AL, Sasser JN. Biology, identification and control of root-knot nematodes (Meloidogyne species), North Carolina State University graphics, Raleigh, North Carolina, 1978; pp.111.
  56. 49. Zakaria HM, Kassab AS, Shamseldean MM, Oraby MM, El-Mourshedy MM. Controlling the root-knot nematode, Meloidogyne incognita, in cucumber plants using some soil bioagents and some amendments under simulated field conditions. Ann Agric Sci. 2013;58:77–82.
  57. 50. Mackinney G. Absorption of light by chlorophyll solutions. J Biol Chemist. 1941;140:315–22. https://doi.org/10.10
  58. 16/S0021-9258(18)51320-X
  59. 51. Niu J, Liu P, Liu Q, Chen C, Guo Q, Yin J, et al. Msp40 effector of root-knot nematode manipulates plant immunity to facilitate parasitism. Sci Rep. 2016;6:19443. https://doi.org/10.1038/srep19443
  60. 52. Xie J, Li S, Mo C, Wang G, Xiao X, Xiao Y. A novel Meloidogyne incognita effector Misp12 suppresses plant defense response at latter stages of nematode parasitism. Front Plant Sci. 2016;7:964. https://doi.org/10.3389/fpls.2016.
  61. 00964
  62. 53. Gomez KA, Gomez AA. Statistical procedures for agricultural research. 2nd ed. Singapore: John Wiley & Sons; 1984. p. 680.
  63. 54. Abbott WS. A method of computing the effectiveness of an insecticide. J Econ Entomol. 1925;18:265–67. https://doi.org/10.1093/jee/18.2.265a
  64. 55. Castagnone-Sereno P, Danchin EG, Perfus-Barbeoch L, Abad P. Diversity and evolution of root-knot nematodes, genus Meloidogyne: new insights from the genomic era. Ann Rev Phytopathol. 2013;51:203–20. https://doi.org/10.
  65. 1146/annurev-phyto-082712-102300
  66. 56. Anes K, Gupta G. Distribution of plant parasitic nematodes in the soybean (Glycine max) growing areas of India. Indian J Nematol. 2014;44:227–31.
  67. 57. Mukhtar T, Jabba A, Raja MU, Javed H. Management of root-knot nematode, Meloidogyne incognita, in tomato with two Trichoderma species. Pakistan J Zool. 2018;50:1589–92. https://doi.org/10.17582/journal.pjz/2018.50.4.sc15
  68. 58. Moo-Koh FA, Cristóbal-Alejo J andrés MF, Martín J, Reyes F, Tun-Suárez JM, Reyes F, et al. In vitro assessment of organic and residual fractions of nematicidal culture filtrates from thirteen tropical Trichoderma strains and metabolic profiles of the most active. J Fungi 2022;8:82. https://doi.org/10.3390/jof8010082
  69. 59. Kappel L, Münsterkötter M, Sipos G, Escobar Rodriguez C, Gruber S. Chitin and chitosan remodelling defines vegetative development and Trichoderma biocontrol. PLoS Pathog. 2020;16:e1008320. https://doi.org/10.1371/journal.ppat.1008320
  70. 60. Siddiqui I, Shaukat S. Trichoderma harzianum enhances the production of nematicidal compounds in vitro and improves biocontrol of Meloidogyne javanica by Pseudomonas fluorescens in tomato. Lett Appl Microbiol. 2004;38169–75. https://doi.org/10.1111/j.1472-765X.2003.01481.x
  71. 61. Yan Y, Mao Q, Wang Y, Zhao J, Fu Y, Yang Z, et al. Trichoderma harzianum induces resistance to root-knot nematodes by increasing secondary metabolite synthesis and defense-related enzyme activity in Solanum lycopersicum L. Bio Control 2021;158:104609. https://doi.org/10.1016/j.biocontrol.2021.104609
  72. 62. Sahebani N, Hadavi N. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biol Biochemist. 2008;40:2016–20. https://doi.org/10.1016/j.soilbio.2008.03.011
  73. 63. Abdulla GA, Saleh HM, Al-Hakeem AM. Effects of Trichoderma harzianum and Trichoderma asperellum against eggs of Meloidogyne incognita under laboratory conditions. Earth Environ Sci. 2023;1213:012011. https://doi.org/ 10.1088/1755-1315/1213/1/012011
  74. 64. Poveda J, Abril-Urias P, Escobar C. Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma mycorrhizal and endophytic fungi. Front Microbiol 2020;11:118. https://doi.org/10.3389/fmicb.2020.00992
  75. 65. Harman GE, Doni F, Khadka RB, Uphoff N. Endophytic strains of Trichoderma increase plants' photosynthetic capability. J Appl Microbiol. 2021;130:529–46. https://doi.org/10.1111/jam.14368
  76. 66. Arain RR, Syed RN, Rajput AQ, Khanzada MA, Rajput NA, Lodhi AM. Comparative efficacy of Trichoderma harzianum, Neem extract and Furadan on Meloidogyne incognita infecting tomato plant growth. Pak J Nematol. 2015;33:105–112.
  77. 67. Ering M, Simon S. Effect of Trichoderma spp. against Meloidogyne incognita on tomato. Indian J Nematol. 2018;48:236–37. https://doi.org/10.3126/jpps.v8i1.56447
  78. 68. Sonkar SS, Bhatt J, Meher J, Kashyap P. Bio-efficacy of Trichoderma viride against the root-knot nematode (Meloidogyne incognita) in tomato plant. J Pharmacog Phytochem. 2018;7: 2010–14. https://doi.org/10.3390/plants11212890
  79. 69. Fan H, Yao M, Wang H, Zhao D, Zhu X, Wang Y, et al. Isolation and effect of Trichoderma citrinoviride Snef1910 for the biological control of root-knot nematode, Meloidogyne incognita. BMC Microbiol. 2020;20:1–11. https://doi.org/
  80. 10.1186/s12866-020-01984-4
  81. 70. Singh SP, Keswani C, Singh SP, Sansinenea E, Hoat TX. Trichoderma spp. mediated induction of systemic defense response in brinjal against Sclerotinia sclerotiorum. Curr Res Microbial Sci. 2021;2:100051. https://doi.org/ 10.1016/j.crmicr.2021.100051
  82. 71. Schmutterer, H. Properties and potential of natural pesticides from the Neem tree, Azadirachta indica. Ann Rev Entomol. 1990;35:271–97. https://doi.org/10.1146/annurev.en.35.010190.001415
  83. 72. Akhtar M, Malik A. Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: a review. Biores Technol. 2000;74:35–47. https://doi.org/ 10.1016/S0960-8524(99)00154-6
  84. 73. Javed N, Gowen SR, Inam-ul-Haq M, Abdullah K, Shahina F. Systemic and persistent effect of Neem (Azadirachta indica) formulations against root-knot nematodes, Meloidogyne javanica and their storage life. Crop Protect. 2007;26:911–16. https://doi.org/ 10.1016/j.cropro.2006.08.011
  85. 74. Cavoski I, Caboni P, Miano T. Natural pesticides and future perspectives. Pesticides in the modern world-pesticides use and management 2011;10:17550. https://doi.org/10.5772/17550
  86. 75. Kalaiarasi K, Sunitha PU. Optimization of alkaline protease production from Pseudomonas fluorescens isolated from meat waste-contaminated soil. African J Biotechnol. 2009;8:7035–41. https://doi.org/10.4314/ajb.v8i24.68791
  87. 76. Traoré A, Bandaogo AA, Savadogo OM, Saba F, Ouédraogo AL, Sako Y, et al. Optimizing tomato (Solanum
  88. lycopersicum L.) growth with different combinations of organo-mineral fertilizers. Front Sustain Food Systems 2022;5:694628. https://doi.org/ 10.4314/jagrenv.v19i2.11
  89. 77. Sahu S, Patra MK, Dash B. Management of root knot nematode (Meloidogyne incognita) in tomato (cv. Pusa ruby) using different oil cakes. Int J Curr Microbiol Appl Sci. 2018;7:2527–32. https://doi.org/10.20546/ijcmas.2018.703.292
  90. 78. Akhtar A, Hisamuddin A, Sharf R. Study on Black Gram (Vigna mungo L.) infected with Meloidogyne incognita under the influence of Pseudomonas fluorescens, Bacillus subtilis and urea. J Plant Pathol Microbiol. 2013;4:202. https://doi.org/10.4172/2157-7471.1000202
  91. 79. Kepenekci I, Hazir S, Lewis EE. Evaluation of entomopathogenic nematodes and the supernatants of the in vitro culture medium of their mutualistic bacteria for the control of the root‐knot nematodes Meloidogyne incognita and
  92. M. arenaria. Pest Manag Sci. 2016;72:327–34. https://doi.org/10.1002/ps.3998
  93. 80. Kerakalamatti M, Mesta RK, Kiran KC, Rudresh DL. Evaluation of nematicides and oil cakes against root knot nematode caused by Meloidogyne incognita in pomegranate. Int J Curr Microbiol App Sci. 2020;9:1763–75. https://doi.org/10.20546/ijcmas.2020.907.202
  94. 81. Chandrawat BS, Siddiqui AU, Saharan V. Determination of defence enzyme induction in chilli in response to root-knot nematode, Meloidogyne incognita, upon oil cake application. Indian J Nematol. 2022;52: 225–33. https://doi.org/10.5958/0974-4444.2022.00026.9
  95. 82. Andreoglou F, Samaliev H, Elawad S, Hague N, Gowen S. The susceptibility of the root-knot nematode Meloidogyne javanica to the bacterium Pseudomonas oryzihabitans isolated from the entomopathogenic nematode Steinernema abbasi (Steinernematidae: Nematoda). IOBC Wprs Bull. 2001;24:5–8. https://doi.org/10.1163/15685
  96. 4100509420
  97. 83. Mahar AN, Munir M, Elawad S, Gowen SR, Hague NG. Pathogenicity of bacterium, Xenorhabdus nematophila, isolated from entomopathogenic nematode (Steinernema carpocapsae) and its secretion against Galleria mellonella larvae. J Zhejiang Uni Sci B. 2005;6:457–63. https://doi.org/10.1631/jzus.2005.B0457
  98. 84. Aatif HM, Javed N, Khan SA, Ahmed S. Virulence of Xenorhabdus and Photorhabdus bacteria and their toxins against juvenile's immobilization of Meloidogyne incognita. Pak J Phytopathol. 2012;24:170–74. https://doi.org/10.
  99. 1038/s41598-022-07039-0
  100. 85. Kusakabe A, Wang C, Xu YM, Molnár I, Stock SP. Selective toxicity of secondary metabolites from the entomopathogenic bacterium Photorhabdus luminescens sonorensis against selected plant parasitic nematodes of the Tylenchina suborder. Microbiol Spectr. 2022;10:e02577–21. https://doi.org/10.1128/spectrum.02577-21
  101. 86. El-Sappah AH, MM I, H. El-awady H, Yan S, Qi S, Liu J, et al.Tomato natural resistance genes in controlling the root-knot nematode. Genes. 2019;10:925. https://doi.org/10.3390/genes10110925

Downloads

Download data is not yet available.