Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Comparative GC-MS analysis of phytochemical compounds in seeds of Hebbal Avare-3 (Lablab purpureus var. lignosus) and its high-yielding M3 generation mutants

DOI
https://doi.org/10.14719/pst.5117
Submitted
18 September 2024
Published
26-08-2025 — Updated on 23-09-2025
Versions

Abstract

Field bean (Lablab purpureus var. lignosus) is a multipurpose leguminous plant belonging to the Fabaceae family, extensively cultivated in tropical regions and known for its nutritional values and numerous pharmacological properties. Limited genetic variability poses significant challenges to traditional crop improvement methods. However, mutation breeding offers a promising alternative for enhancing field bean traits. This study utilizes GCMS (gas chromatography mass spectrometry) analysis to compare the phytochemical profiles of Hebbel Avare-3 (HA-3) and its high-yielding M3 generation mutants namely, M8-18, 10 mM and 100 Gy. HA-3 exhibited the presence of 32 phytochemical compounds, while M8-18 contained 44, 10 mM revealed 32 and 100 Gy showed 36 phytochemical compounds. The mutants revealed ten abundant novel phytochemicals that were not detected in HA-3, such as 1,3-propanediol, 2-(hydroxymethyl)-2-nitro-, 9,12-octadecanoic acid, 2,3- dihydroxypropyl ester, hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester, stigmasterol, gamma-sitosterol, 9,11-octadeca-dienoic acid, methyl ester,(E,E)-, octadecanoic acid, 2,3-dihydroxypropyl ester, gamma-tocopherol, 9,12-octadecadienoic acid (Z, Z)-,2,3-dihydroxypropyl ester, octanoic acid, 2-furanylmethyl ester, which have various pharmaceutical, agrochemical and food industry applications. M8-18 is rich in 1,3-propanediol, 2-ethyl-2-(hydroxymethyl) (20.60%), 10 mM in stigmasterol (13.40%) and 100 Gy in 1,3-propanediol, 2-(hydroxymethyl)-2-nitro (19.37%). These newly identified compounds in seeds possess antifungal properties, anticancer, antibacterial and anti-inflammatory properties. The enhanced phytochemical profiles of these mutants will aid in developing a superior field bean variety with various applications in pharmaceuticals and for human consumption.

References

  1. 1. Dhivyabharathi P, Rajasree V, Devi H, Thiruvengadam V. Genetic diversity studies in lablab (Lablab purpureus L.) genotypes. Elect J Plant Breeding. 2019;10(2):717–19. https://doi.org/10.5958/0975-928x.2019.00092.9
  2. 2. Bello-Pérez LA, Sáyago-Ayerdi SG, Chávez-Murillo CE, Agama-Acevedo E, Tovar J. Proximal composition and in vitro digestibility of starch in lima bean (Phaseolus lunatus) varieties. J Sci Food Agric. 2007;87(14):2570–75. https://doi.org/10.1002/jsfa.3005
  3. 3. Naeem M, Shabbir A, Ansari AA, Aftab T, Khan MMA, Uddin M. Hyacinth bean (Lablab purpureus L.)–An underutilised crop with future potential. Sci Hortic. 2020;272:109551. https://doi.org/10.1016/j.scienta.2020.109551
  4. 4. Prada J, Padmaja V. Studies on yield, quality and physiological parameters in induced mutant population of M2 generation in field bean [Lablab Purpurea var. lignosus (L.) Prain]. The Pharma Innovation Journal. 2022;11(9):1711-15.
  5. 5. Sowmya P, Sankari A, Hemavathy AT, Usha Nandhini Devi H, Iyanar K, Pugalendhi L, et al. Effect of gamma irradiation and EMS on germination, seedling length and seedling vigour index in vegetable mochai (Lablab purpureus var. lignosus L.). The Pharma Innov J. 2023;12(9):2316-19.
  6. 6. Bari T, Saeed S, Tayyab M, Anjum AA, Mehmood T. GC-MS bioactives profiling, antibacterial and cytotoxic potential of jamun (Syzygium cumini L.) extracts against food-borne pathogen Salmonella enteritidis. Pharmaceut Chem J. 2024;57(10):1586-92.
  7. 7. Alagbe JO. Bioactive compounds in ethanolic extract of Strychnos innocua root using gas chromatography and mass spectrometry (GC-MS). Drug Discov. 2023;17:e4dd1005. https://doi.org/10.54905/disssi.v17i39.e4dd1005
  8. 8. Elaiyaraja A, Chandramohan G. Comparative phytochemical profile of Indoneesiella echioides (L.) Nees leaves using GC-MS. J Pharmacogn Phytochem. 2016;5(6):158–71.
  9. 9. Ponnamma S, Manjunath K. GC-MS Analysis of phytocomponents in the methanolic extract of Justicia wynaadensis (Nees) T. Anders. Int J Pharm Bio Sci. 2012;3(3):570–76.
  10. 10. Rahman M, Ahmad S, Mohamed M, Ab Rahman M. Antimicrobial compounds from leaf extracts of Jatropha curcas, Psidium guajava, and Andrographis paniculata. Sci World J. 2014;2014(1):635240. https://doi.org/10.1155/2014/635240
  11. 11. Dilika F, Bremner P, Meyer J. Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: A plant used during circumcision rites. Fitoterapia. 2000;71(4):450–52. https://doi.org/10.1016/s0367-326x(00)00150-7
  12. 12. McGaw L, Jäger A, Van Staden J. Isolation of antibacterial fatty acids from Schotia brachypetala. Fitoterapia. 2002;73(5):431–33. https://doi.org/10.1016/s0367-326x(02)00120-x
  13. 13. Hema R, Kumaravel S, Alagusundaram K. GC/MS determination of bioactive components of Murraya koenigii. J Am Sci. 2011;7(1):80–83.
  14. 14. Huang ZR, Lin YK, Fang JY. Biological and pharmacological activities of squalene and related compounds: Potential uses in cosmetic dermatology. Molecules. 2009;14(1):540–54. https://doi.org/10.3390/molecules14010540
  15. 15. Smith TJ. Squalene: Potential chemo preventive agent. Expert Opin Investig Drugs. 2000;9(8):1841–48. https://doi.org/10.1517/13543784.9.8.1841
  16. 16. Lawal M, Verma AK, Umar IA, Gadanya AM, Umar B, Yahaya N, et al. Analysis of new potent anti-diabetic molecules from phytochemicals of Pistia strateotes with Sglt1 and G6pc proteins of Homo sapiens for treatment of diabetes mellitus. An in silico approach. IOSR J Pharm Biol Sci. 2020;15:59–73.
  17. 17. Gopalakrishnan K, Udayakumar R. GC-MS analysis of phytocompounds of leaf and stem of Marsilea quadrifolia (L.). Int J Biochem Res Rev. 2014;4(6):517–26. https://doi.org/10.9734/ijbcrr/2014/11350
  18. 18. Ojewumi M, Obanla O, Taiwo S, John A. Phytochemical screening and microbial assessment of Moringa oleifera seed crude oil extract. Rasayan J Chem. 2021;14:1835–44. https://doi.org/10.31788/rjc.2022.1516543
  19. 19. Popendorf W, Selim M, Lewis MQ. Exposure while applying industrial antimicrobial pesticides. Am Ind Hyg Assoc J. 1995;56(10):993–1001. https://doi.org/10.1080/15428119591016421
  20. 20. Arora S, Kumar G. Phytochemical screening of root, stem and leaves of Cenchrus biflorus Roxb. J Pharmacogn Phytochem. 2018;7(1):1445–50.
  21. 21. Bakrim S, Benkhaira N, Bourais I, Benali T, Lee LH, El Omari N, et al. Health benefits and pharmacological properties of stigmasterol. Antioxidants. 2022;11(10):1912. https://doi.org/10.3390/antiox11101912
  22. 22. Naikwadi PH, Phatangare ND, Mane DV. Active anti-inflammatory potency of gamma-sitosterol from Woodfordia floribunda Salisb. J Plant Sci Res. 2022;38(2):1-9. https://doi.org/10.32381/JPSR.2022.38.02.4
  23. 23. Sianipar NF, Purnamaningsih R. Enhancement of the contents of anticancer bioactive compounds in mutant clones of rodent tuber (Typhonium flagelliforme Lodd.) based on GC-MS analysis. Pertanika J Trop Agric Sci. 2018;41(1):305-20.
  24. 24. Jiang Q, Ames BN. Gamma-tocopherol, but not alpha-tocopherol, decreases proinflammatory eicosanoids and inflammation damage in rats. FASEB J. 2003;17(8):816–22. https://doi.org/10.1096/fj.02-0877com
  25. 25. Wagner KH, Kamal-Eldin A, Elmadfa I. Gamma-tocopherol–an underestimated vitamin? Ann Nutr Metab. 2004;48(3):169–88. https://doi.org/10.1159/000079555
  26. 26. Aparna V, Dileep KV, Mandal PK, Karthe P, Sadasivan C, Haridas M. Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chem Biol Drug Des. 2012;80(3):434–39. https://doi.org/10.1111/j.1747-0285.2012.01418.x
  27. 27. Afolayan FI, Odeyemi RA, Salaam RA. In silico and in vivo evaluations of multistage anti plasmodial potency and toxicity profiling of n-hexadecanoic acid derived from Vernonia amygdalina. Front Pharmacol. 2024;15:1445905. https://doi.org/10.3389/fphar.2024.1445905
  28. 28. Kametani T, Furuyama H. Synthesis of vitamin D3 and related compounds. Med Res Rev. 1987;7(2):147–71. https://doi.org/10.1002/med.2610070202
  29. 29. Kumari K, Kumar A, Oraon V. Phytochemical and GC-MS analysis of Cuscuta reflexa Roxb: A parasitic plant collected from host Vitex negundu. Ann Plant Soil Res. 2024;26(2):449-55. https://doi.org/10.47815/apsr.2024.10383
  30. 30. Senbagalakshmi P, Muthukrishnan S, Jebasingh T, Kumar TS, Rao MV, Senbagalakshmi P. Squalene, biosynthesis and its role in production of bioactive compounds, a proper scientific challenge – A Review. J Emerg Technol Innov Res. 2019;6(2):505-26.
  31. 31. Song Y, Yang X, Li S, Luo Y, Chang JS, Hu Z. Thraustochytrids as a promising source of fatty acids, carotenoids, and sterols: Bioactive compound biosynthesis, and modern biotechnology. Crit Rev Biotech. 2024;44(4):618-40. https://doi.org/10.1080/07388551.2023.2196373
  32. 32. Suganandam K, Jeevalatha A, Kandeepan C, Kavitha N, Senthilkumar N, Sutha S, et al. Profile of phytochemicals and GCMS analysis of bioactive compounds in natural dried seed removed ripened pods methanolic extracts of Moringa oleifera. J Drug Deliv Ther. 2022;12(5-S):133–41. https://doi.org/10.22270/jddt.v12i5-s.5657
  33. 33. Awonyemi O, Abegunde M, Olabiran T. Analysis of bioactive compounds from Raphia taedigera using gas chromatography-mass spectrometry. Eur Chem Commun. 2020;2(8):933–44.
  34. 34. Janani SR, Singaravadivel K. Screening of phytochemical and GC-MS analysis of some bioactive constituents of Asparagus racemosus. Int J Pharm Tech Res. 2014;6(2):428–32.
  35. 35. Sharma A, Kumar V, Kohli SK, Thukral AK, Bhardwaj R. Phytochemicals in Brassica juncea L. seedlings under imidacloprid-epibrassinolide treatment using GC-MS. J Chem Pharm Res. 2015;7(10):708–11.

Downloads

Download data is not yet available.