Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 11 No. sp4 (2024): Recent Advances in Agriculture by Young Minds - I

Nanotechnology in floriculture: Extending vase life and improving postharvest quality

DOI
https://doi.org/10.14719/pst.5151
Submitted
19 September 2024
Published
30-11-2024
Versions

Abstract

Cut flowers are traditionally used worldwide, regardless of caste, creed, and religion, especially in Asian countries. The global trade of cut flowers has shown a substantial increase in recent years and is expected to persist due to the
promotion and application of horticulture plants for their various advantages. The quality of vase life is critical in ensuring customer satisfaction and encouraging repeat purchases. Effective postharvest management is essential
for enhancing the quality and extending the shelf life of cut flowers. With proper handling, cut flowers can last several days in a vase. Nanotechnology presents innovative solutions for postharvest management, especially in the cut flower sector. Specifically, Nanoparticles have been utilized in packaging to act as ethylene inhibitors and antimicrobial agents, contributing to the extension of cut flower vase life. One of the strongest ethylene perceptions is 1-methylcyclopropene (1-MCP), a gaseous and nontoxic that binds to ethylene receptors irreversibly, blocking the action of ethylene. Nano-Silver particles improve postharvest longevity by increasing water absorption rather than
transpiration. Additionally, Nano-Selenium enhances the water balance in cut flowers. This review describes how nanoparticles suppress microbial growth and block ethylene action in cut flowers, extending their vase life.

References

  1. 1. Mazrou RM, Hassan S, Yang M, Hassan FA. Melatonin preserves the postharvest quality of cut roses through enhancing the antioxidant system. Plants. 2022;11(20):2713. https://doi.org/10.3390/plants11202713
  2. 2. Fatima K, Ahmad I, Dole JM, Ahmad N, Asif M, Ziaf K, et al. Folk floral preservatives extend postharvest longevity of Eustoma grandiflorum L. Sci Hortic. 2022;301. https://doi.org/10.1016/j.scienta.2022.111132
  3. 3. Shang Y, Hasan MK, Ahammed GJ, Li M, Yin H, Zhou J. Applications of nanotechnology in plant growth and crop
  4. protection: A review. Molecules. 2019;24(14):2558. https://doi.org/10.3390/molecules24142558
  5. 4. Spricigo PC, Pilon L, Trento JP, de Moura MR, Bonfim KS, Mitsuyuki MC, et al. Nano-chitosan as an antimicrobial agent in preservative solutions for cut flowers. J Chem Technol Biotechnol. 2021;96(8):2168-75. https://doi.org/10.1002/jctb.6766
  6. 5. Zhao L, Wang W, Fu X, Liu A, Cao J, Liu J. Graphene oxide, a novel nanomaterial as soil water retention agent, dramatically enhances drought stress tolerance in soybean plants. Front Plant Sci. 2022;13. https://doi.org/10.3389/fpls.2022.810905
  7. 6. Khatri D, Panigrahi J, Prajapati A, Bariya H. Attributes of Aloe vera gel and chitosan treatments on the quality and biochemical traits of post-harvest tomatoes. Sci Hortic. 2020;259. https://doi.org/10.1016/j.scienta.2019.108837
  8. 7. Tsai J-Y, Wang T-T, Huang P-L, Do Y-Y. Effects of developmental stages on postharvest performance of white crane orchid (Calanthe triplicata) inflorescences. Sci Hortic. 2021;281. https://doi.org/10.1016/j.scienta.2021.109988
  9. 8. Hassan F, Ali E, Mostafa N, Mazrou R. Shelf-life extension of sweet basil leaves by edible coating with thyme volatile oil encapsulated chitosan nanoparticles. Int J Biol Macromol. 2021;177:517-25. https://doi.org/10.1016/j.ijbiomac.2021.02.159
  10. 9. Ahmadi-Majd M, Mousavi-Fard S, Rezaei Nejad A, Fanourakis D. Nano-selenium in the holding solution promotes rose and carnation vase life by improving both water relations and antioxidant status. J Hortic Sci Biotechnol. 2023;98(2):246-61. https://doi.org/10.1080/14620316.2022.2125449
  11. 10. Alkaç OS, Güneş M, Belgüzar S. Effects of organic acids, chemical treatments and herbal essential oils on the vase life of cut carnation (Dianthus caryophyllus L.) flowers. Emir J Food Agri. 2023;35(4):332-41. https://doi.org/10.9755/ejfa.2023.v35.i4.3002
  12. 11. Arif AB, Susanto S, Widayanti SM, Matra DD. Pre-storage oxalic acid treatment inhibits postharvest browning symptoms and maintains quality of abiu (Pouteria caimito) fruit. Sci Hortic. 2023;311. https://doi.org/10.1016/j.scienta.2022.111795
  13. 12. Naing AH, Lee K, Arun M, Lim KB, Kim CK. Characterization of the role of sodium nitroprusside (SNP) involved in long vase life of different carnation cultivars. BMC Plant Biol. 2017;17:149. https://doi.org/10.1186/s12870-017-1097-0
  14. 13. Sunpapao A, Wonglom P, Satoh S, Takeda S, Kaewsuksaeng S. Pulsing with magnesium oxide nanoparticles maintains postharvest quality of cut lotus flowers (Nelumbo nucifera Gaertn)‘Sattabongkot’ and ‘Saddhabutra’. Hort J. 2019;88(3):420-26. https://doi.org/10.2503/hortj.UTD-087
  15. 14. Azuma M, Onozaki T, Ichimura K. Difference of ethylene production and response to ethylene in cut flowers of dahlia (Dahlia variabilis) cultivars. Sci Hortic. 2020;273. https://doi.org/10.1016/j.scienta.2020.109635
  16. 15. Sánchez-Navarro JF, González-García Y, Benavides-Mendoza A, Morales-Díaz AB, González-Morales S, Cadenas-Pliego G, et al. Silicon nanoparticles improve the shelf life and antioxidant status of Lilium. Plants. 2021;10(11). https://doi.org/10.3390/plants10112338
  17. 16. El-Sayed IM, Soliman DM. Silica nanoparticles improve growth, chemical bioactive and antioxidant enzyme activity of Dianthus caryophyllus L., plant. Egypt Pharm J. 2024;23(2):279-89. https://doi.org/10.4103/epj.epj_224_23
  18. 17. Gómez-Santos M, González-García Y, Pérez-Álvarez M, Cadenas-Pliego G, Juárez-Maldonado A. Impact of calcium-silicon nanoparticles on flower quality and biochemical characteristics of Lilium under salt stress. Plant Stress. 2023;10. https://doi.org/10.1016/j.stress.2023.100270
  19. 18. Tofighi Alikhani T, Tabatabaei SJ, Mohammadi Torkashvand A, Khalighi A, Talei D. Morphological and biochemical responses of gerbera (Gerbera jamesonii L.) to application of silica nanoparticles and calcium chelate under hydroponic state. J Ornam Plants. 2020;10(4):223-40.
  20. 19. Carillo P, Pannico A, Cirillo C, Ciriello M, Colla G, Cardarelli M, et al. Protein hydrolysates from animal or vegetal sources affect morpho-physiological traits, ornamental quality, mineral composition and shelf-life of Chrysanthemum in a distinctive manner. Plants. 2022;11(17):2321. https://doi.org/10.3390/plants11172321
  21. 20. Yadollahi A, Arzani K, Khoshghalb H. The role of nanotechnology in horticultural crops postharvest management. In: Southeast Asia symposium on quality and safety of fresh and fresh-cut produce. 2009;875. https://doi.org/10.17660/ActaHortic.2010.875.4
  22. 21. Shinde SP, Chaudhari SR, Matche RS. A way forward for a sustainable active packaging solution for prolonging the freshness and shelf life of Rosa hybrida L. cut flowers. Postharvest Biol Technol. 2023;204. https://doi.org/10.1016/j.postharvbio.2023.112475
  23. 22. Solgi M. Evaluation of plant-mediated silver nanoparticles synthesis and its application in postharvest physiology of cut flowers. Physiol Mol Biol Plants. 2014;20:279-85. https://doi.org/10.1007/s12298-014-0237-3
  24. 23. Solgi M. The application of new environmentally friendly compounds on postharvest characteristics of cut carnation (Dianthus caryophyllus L.). Braz J Bot. 2018;41:515-22. https://doi.org/10.1007/s40415-018-0464-x
  25. 24. Carrillo-López LM, Morgado-González A, Morgado-González A. Biosynthesized silver nanoparticles used in preservative solutions for Chrysanthemum cv. Puma. J Nanomater. 2016;2016(1):1769250. https://doi.org/10.1155/2016/1769250
  26. 25. Karakaya S, El SN, Karagözlü N, Şahin S. Antioxidant and antimicrobial activities of essential oils obtained from oregano (Origanum vulgare ssp. hirtum) by using different extraction methods. J Med Food. 2011;14(6):645-52. https://doi.org/10.1089/jmf.2010.009
  27. 26. Mustapha S, Ndamitso MM, Abdulkareem AS, Tijani JO, Shuaib DT, Mohammed AK, et al. Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles. Adv Nat Sci: Nanosci Nanotechnol. 2019;10(4):045013. https://doi.org/10.1088/2043-6254/ab52f7
  28. 27. Sharma P, Sharma R. Nanotechnology in post-harvest handling of cut flowers. Journal of Emerging Technologies and Innovative Research. 2019;6(1):993-1007.
  29. 28. El-Serafy RS. Silica nanoparticles enhances physio-biochemical characters and postharvest quality of Rosa hybrida L. cut flowers. J Hortic Res. 2019;27(1):47-54. https://doi.org/10.2478/johr-2019-0006
  30. 29. Koohkan F, Ahmadi N, Ahmadi S. Improving vase life of carnation cut flowers by silver nano-particles acting as anti-ethylene agent. J Appl Hortic. 2014;16(3):210-14. https://doi.org/10.37855/jah.2014.v16i03.34
  31. 30. Kazemipour S, Hashemabadi D, Kaviani B. Effect of silver nanoparticles on the vase life and quality of cut chrysanthemum (Chrysanthemum morifolium L.) flower. Eur J Exp Biol. 2013;3(6):298-302.
  32. 31. Motaghayer MS, Azizi M, Teheranifar A. Nanosilver, salicylic acid and essential oils effects on water relations of gerbera ‘Rosalin’ cut flowers. Adv Hortic Sci. 2019;33(2):271-82.
  33. 32. Kamiab F, Fahreji SS, Bahramabadi EZ. Antimicrobial and physiological effects of silver and silicon nanoparticles on vase life of lisianthus (Eustoma grandiflora cv. Echo) flowers. Int J Hortic Sci Technol. 2017;4(1):135-44.
  34. 33. Rahman M, Ahmad S, Mohamed M, Ab Rahman M. Improving the vase life of cut Mokara red orchid flower using leaf extracts with silver nanoparticles. Proc Natl Acad Sci India Sect B Biol Sci. 2019;89:1343-50. https://doi.org/10.1007/s40011-018-1055-0
  35. 34. Brouwer B, Mensink M, Hogeveen-van Echtelt E, Woltering EJ. Prestorage application of 1-methylcyclopropene does not affect the flavour of ‘Conference ’pears ripened after 8 months of commercial-standard controlled atmosphere storage. Postharvest Biol Technol. 2021;174. https://doi.org/10.1016/j.postharvbio.2020.111448
  36. 35. Choo KS, Bollen M, Ravensdale JT, Dykes GA, Coorey R. Effect of chitosan and gum Arabic with natamycin on the aroma profile and bacterial community of Australian grown black Périgord truffles (Tuber melansoporum) during storage. Food Microbiol. 2021;97. https://doi.org/10.1016/j.fm.2021.103743
  37. 36. Brickell C. The Royal Horticultural Society: A-Z Encyclopedia of Garden Plants. Dorling Kindersley, London. 2003.
  38. 37. Jiang H, Manolache S, Wong ACL, Denes FS. Plasma-enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. J Appl Polym Sci. 2004;93(3):1411-22. https://doi.org/10.1002/app.20561
  39. 38. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):2346. https://doi.org/10.1088/0957-4484/16/10/059
  40. 39. Ichimura K, Shimizu-Yumoto H. Extension of the vase life of cut roses by treatment with sucrose before and during simulated transport. Bull Natl Inst Flor Sci. 2007;7(7):17-27.
  41. 40. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002
  42. 41. Solgi M, Kafi M, Taghavi TS, Naderi R. Essential oils and silver nanoparticles (SNP) as novel agents to extend vase-life of gerbera (Gerbera jamesonii cv.‘Dune’) flowers. Postharvest Biol Technol. 2009;53(3):155-58. https://doi.org/10.1016/j.postharvbio.2009.04.003
  43. 42. Naing AH, Win NM, Han J-S, Lim KB, Kim CK. Role of nano-silver and the bacterial strain Enterobacter cloacae in increasing vase life of cut carnation ‘Omea’. Front Plant Sci Science. 2017;8:1590. https://doi.org/10.3389/fpls.2017.01590
  44. 43. Hussen S, Yassin H. Review on the impact of different vase solutions on the postharvest life of rose flower. Int J Agric Res Rev. 2013;1(2):13-17.
  45. 44. Li H, Li H, Liu J, Luo Z, Joyce D, He S. Nano-silver treatments reduced bacterial colonization and biofilm formation at the stemends of cut gladiolus ‘Eerde’ spikes. Postharvest Biol Technol. 2017;123:102-11. https://doi.org/10.1016/j.postharvbio.2016.08.014
  46. 45. Xia QH, Zheng LP, Zhao PF, Wang JW. Biosynthesis of silver nanoparticles using Artemisia annua callus for inhibiting stemend bacteria in cut carnation flowers. IET Nanobiotechnol. 2017;11(2):185-92. https://doi.org/10.1049/iet-nbt.2015.0125
  47. 46. Li Y, Li L, Wang S, Liu Y, Zou J, Ding W, et al. Magnesium hydride acts as a convenient hydrogen supply to prolong the vase life of cut roses by modulating nitric oxide synthesis. Postharvest Biol Technol. 2021;177. https://doi.org/10.1016/j.postharvbio.2021.111526
  48. 47. Naing AH, Lee K, Kim K-O, Ai TN, Kim CK. Involvement of sodium nitroprusside (SNP) in the mechanism that delays stem bending of different gerbera cultivars. Front Plant Sci. 2017;8:2045. https://doi.org/10.3389/fpls.2017.02045
  49. 48. Karlidag H, Yildirim E, Turan M. Salicylic acid ameliorates the adverse effect of salt stress on strawberry. Sci Agric. 2009;66(2):180-87. https://doi.org/10.1590/S0103-90162009000200006
  50. 49. Basiri Y, Zarei H, Mashayekhi K. Effects of nano-silver treatments on vase life of cut flowers of carnation (Dianthus caryophyllus cv. 'White Librity'). J Adv Lab Res Biol. 2011;2(2):40-44.
  51. 50. Kazemi M, Ameri A. Postharvest life of cut gerbera flowers as affected by nano-silver and acetylsalicylic acid. Asian J Biochem. 2012;7(2):106-11. https://doi.org/10.3923/ajb.2012.106.111
  52. 51. Marandi RJ, Hassani A, Abdollahi A, Hanafi S. Application of Carum copticum and Satureja hortensis essential oils and salicylic acid and silver thiosulfate in increasing the vase life of cut rose flower. J Med Plant Res. 2011;5(20):5034-38.
  53. 52. Liu J, Ratnayake K, Joyce DC, He S, Zhang Z. Effects of three different nano-silver formulations on cut Acacia holosericea vase life. Postharvest Biol Technol. 2012;66:8-15. https://doi.org/10.1016/j.postharvbio.2011.11.005
  54. 53. Geshnizjany N, Ramezanian A, Khosh-Khui M. Postharvest life of cut gerbera (Gerbera jamesonii) as affected by nano-silver particles and calcium chloride. Int J Hortic Sci Technol. 2014;1(2):171-80.
  55. 54. Safa Z, Hashemabadi D, Kaviani B, Nikchi N, Zarchini M. Studies on quality and vase life of cut Gerbera jamesonii cv. 'Balance' flowers by silver nanoparticles and chlorophenol. J Environ Biol. 2015;36(2):425-31.
  56. 55. Kemp MM, Kumar A, Mousa S, Park T-J, Ajayan P, Kubotera N, et al. Synthesis of gold and silver nanoparticles stabilized with glycosaminoglycans having distinctive biological activities. Biomacromolecules. 2009;10(3):589-95. https://doi.org/10.1021/bm801266t
  57. 56. Damunupola JW, Joyce DC. When is a vase solution biocide not, or not only, antimicrobial? J Jpn Soc Hortic Sci. 2008;77(3):211-28. https://doi.org/10.2503/jjshs1.77.211
  58. 57. Jacob BM, Kim E. Inhibiting biofilm formation of Enterobacter sp. prevented premature withering in cut flowers. Korean J Chem Eng. 2010;27:1252-57. https://doi.org/10.1007/s11814-010-0196-5
  59. 58. Carlson AS, Dole JM, Matthysse AG, Hoffmann WA, Kornegay JL. Bacteria species and solution pH effect postharvest quality of cut Zinnia elegans. Sci Hortic. 2015;194:71-78. https://doi.org/10.1016/j.scienta.2015.07.044
  60. 59. van Doorn WG. 2 Water relations of cut flowers: An update. In: Janic J, editor. Horticultural Reviews. Wiley-Blackwell. 2012;40:55-106. https://doi.org/10.1002/9781118351871.ch2
  61. 60. Maity TR, Samanta A, Saha B, Datta S. Evaluation of Piper betle mediated silver nanoparticle in post-harvest physiology in relation to vase life of cut spike of Gladiolus. Bull Natl Res Cent. 2019;43(1):1-11. https://doi.org/10.1186/s42269-019-0051-8
  62. 61. Nguyen TK, Lim JH. Do eco-friendly floral preservative solutions prolong vase life better than chemical solutions? Horticulturae. 2021;7(10):415. https://doi.org/10.3390/horticulturae7100415
  63. 62. Manzoor A, Bashir MA, Hashmi MM. Nanoparticles as a preservative solution can enhance postharvest attributes of cut flowers. Italus Hortus. 2020;27:1-14. https://doi.org/10.26353/j.itahort/2020.2.0114
  64. 63. Ghidan AY, Al Antary TM. Applications of nanotechnology in agriculture. In: Stoytcheva M, Zlatev R, editors. Applications of nanobiotechnology: IntechOpen; 2019. https://doi.org/10.5772/intechopen.88390
  65. 64. Byczyńska A, Salachna P. Effects of colloidal silver on vase life of cut Chrysanthemum. World Scientific News. 2017(69):239-43.
  66. 65. Prabawati S, Sjafrina N, Sulistyaningrum A, Rahayu E, Widayanti SM, Waryat et al. Increasing the vase life of Chrysanthemum cut flowers by using silver and zinc nanoparticles. Sci World J. 2023;2023. https://doi.org/10.1155/2023/8871491
  67. 66. Yokoyama M, Yamashita T, Kaida R, Seo S, Tanaka K, Abe S, et al. Ultrafine bubble water mitigates plant growth in damaged soil. Biosci Biotechnol Biochem. 2021;85(12):2466-75. https://doi.org/10.1093/bbb/zbab169
  68. 67. Nakazawa R, Tanaka A, Hata N, Minagawa H, Harada E. Nanobubbles in vase water inhibit transpiration and prolong the vase life of cut Chrysanthemum flowers. Plant-Environ Interact. 2023;4(6):309-16. https://doi.org/10.1002/pei3.10124
  69. 68. Pal V, Chandra N, Kumar V, Singh O. Growth, flowering and bulb yield of tuberose (Polianthes tuberosa L.) cv. mexican single as affected by nitrogen and phosphorus under varying spacing. Progressive Agriculture. 2020;20(1and2):188-90. https://doi.org/10.5958/0976-4615.2020.00028.9
  70. 69. Mangaiyarkarasi R, Haripriya S. Study on advance storage and chemical treatments to enhance the shelf life of tuberose. Pharma Innovation. 2019;8(7):618-19.
  71. 70. Thakur M, Chandel A, Guleria S, Verma V, Kumar R, Singh G, et al. Synergistic effect of graphene oxide and silver nanoparticles as biostimulant improves the postharvest life of cut flower bird of paradise (Strelitzia reginae L.). Front Plant Sci. 2022;13. https://doi.org/10.3389/fpls.2022.1006168
  72. 71. Skutnik E, Łukaszewska A, Rabiza-Świder J. Effects of postharvest treatments with nanosilver on senescence of cut lisianthus (Eustoma grandiflorum (Raf.) Shinn.) flowers. Agronomy. 2021;11(2):215. https://doi.org/10.3390/agronomy11020215
  73. 72. Zhou J, An R, Huang X. Genus Lilium: A review on traditional uses, phytochemistry and pharmacology. J Ethnopharmacol. 2021;270. https://doi.org/10.1016/j.jep.2021.113852
  74. 73. El-Sayed IM, El-Ziat RA. Utilization of environmentally friendly essential oils on enhancing the postharvest characteristics of Chrysanthemum morifolium Ramat cut flowers. Heliyon. 2021;7(1). https://doi.org/10.1016/j.heliyon.2021.e05909

Downloads

Download data is not yet available.