Object-based image analysis and machine learning for mapping cashew plantations in Ariyalur district, Tamil Nadu

Authors

DOI:

https://doi.org/10.14719/pst.5165

Keywords:

image segmentation, machine learning, OBIA, rule set, sentinel 2 MSI

Abstract

An object-based image analysis (OBIA) approach provides a comprehensive method for delineating homogeneous segments based on spectral charac-teristics, geometry, and spatial imagery structures. The present study utiliz-es OBIA and machine learning (ML) techniques to map cashew plantations in Ariyalur district of Tamil Nadu, India. Sentinel-2 Multi-Spectral Instrument (MSI) imagery, acquired during the 2023 kharif season, was employed as the primary data source due to its high spatial and spectral resolution, suitable for detailed land cover mapping. The OBIA methodology involved multi-resolution segmentation using eCognition software to delineate homogene-ous image objects based on spectral, spatial, and contextual characteristics. Machine learning algorithms, including random forest (RF), support vector machine (SVM), and decision tree (DT), were evaluated to improve classifi-cation accuracy. The SVM demonstrated the best superior performance, achieving an overall accuracy of 92.1% and a kappa coefficient of 0.85. The results underscore the effectiveness of ML techniques in conjunction with OBIA for precise cashew plantation mapping while contributing to improved land use/land cover mapping, agricultural resource management, and sus-tainable development within the region.

Downloads

References

Gokool S, Mahomed M, Kunz R, Clulow A, Sibanda M, Naiken V, et al. Crop monitoring in smallholder farms using unmanned aerial vehicles to facilitate precision agriculture practices: A scoping review and bibliometric analysis. Sustainability.2023;15(4):3557. https://doi.org/10.3390/su15043557

Acharki S, Frison PL, Veettil BK, Pham QB, Singh SK, Amharref M, Bernoussi AS. Land cover and crop types mapping using different spatial resolution imagery in a Mediterranean irrigated area. Environ Monit Assess. 2023;195:1309. https://doi.org/10.1007/s10661-023-11877-4

Shrivastava RJ, Gebelein JL. Land cover classification and economic assessment of citrus groves using remote sensing. ISPRS J Photogramm Remote. 2007;61(5):34153. https://doi.org/10.1016/j.isprsjprs.2006.10.003

Verma HC, Ahmed T, Rajan S. Mapping and area estimation of mango orchards of Lucknow region by applying knowledge based decision tree to Landsat 8 OLI Satellite Images. Int J Innov Technol Explor.2020;9(3):362735. https://doi.org/10.35940/ijitee.B8109.019320

Stephen S, Haldar D, Patel NR. Impact of various vegetation indices on mango orchard mapping using object-based image analysis. J Geomat. 2022;16(2):159-66. https://doi.org/10.58825/jog.2022.16.2.45

Mueller M, Segl K, Kaufmann H. Edge-and region-based segmentation technique for the extraction of large, man-made objects in high-resolution satellite imagery. Pattern Recognit. 2004;37(8):1619-28. https://doi.org/10.1016/j.patcog.2004.03.001

Bock M, Xofis P, Mitchley J, Rossner G, Wissen M. Object-oriented methods for habitat mapping at multiple scales–Case studies from Northern Germany and Wye Downs, UK. J Nat Conserv. 2005;13(2-3):75-89. https://doi.org/10.1016/j.jnc.2004.12.002

Gamanya R, De Maeyer P, De Dapper M. An automated satellite image classification design using object-oriented segmentation algorithms: A move towards standardization. Expert Syst Appl. 2007;32(2):616-24. https://doi.org/10.1016/j.eswa.2006.01.055

Tran KH, Zhang HK, McMaine JT, Zhang X, Luo D. 10 m crop type mapping using Sentinel-2 reflectance and 30 m cropland data layer product. Int J Appl Earth Obs. 2022;107:102692. https://doi.org/10.1016/j.jag.2022.102692

Basheer S, Wang X, Farooque AA, Nawaz RA, Liu K, Adekanmbi T, et al. Comparison of land use land cover classifiers using different satellite imagery and machine learning techniques. Remote Sens. 2022;14(19):4978. https://doi.org/10.3390/rs14194978

Forkuor G, Conrad C, Thiel M, Ullmann T, Zoungrana E. Integration of optical and synthetic aperture radar imagery for improving crop mapping in Northwestern Benin, West Africa. Remote Sens. 2014;6(7):6472-99. https://doi.org/10.3390/rs6076472

Kramarczyk P, Hejmanowska B. Unet neural network in agricultural land cover classification using SENTINEL-2. Int Arch Photogramm Remote Sens Spatial Inf Sci. 2023;XLVIII-1/W3-2023:85-90. https://doi.org/10.5194/isprs-archives-XLVIII-1-W3-2023-85-2023

Ouattara A, Zenobe ED, Sangne CY, Frazier BE, Azagoh MC, Konan NA. Determining cashew acreages in a fragmented landscape: Object vs. pixel based classification. Online J Earth Sci. 2010;4(1):13-18.

Xing J, Li Z, Li J, Du S, Li W, Zhang C. A classification framework with multi-level fusion of object-based analysis and convolutional neural network: A case study for land use classification in mining areas. Geo-Spat Inf Sci. 2024;1-7. https://doi.org/10.1080/10095020.2024.2336594

Breiman L. Random forests. Machine Learning. 2001;45:5-32. https://doi.org/10.1023/A:1010933404324

Koppaka R, Moh TS. Machine learning in Indian crop classification of temporal multi-spectral satellite image. In: 2020 14th International Conference on Ubiquitous Information Management and Communication (IMCOM); 2020 Jan 3; Taichung, Taiwan. IEEE; 2020. p.1-8. https://doi.org/10.1109/IMCOM48794.2020.9001718

Belgiu M, Dragut L. Random forest in remote sensing: A review of applications and future directions. ISPRS J Photogramm Remote Sens. 2016;114:24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011

Phiri D, Simwanda M, Nyirenda V, Murayama Y, Ranagalage M. Decision tree algorithms for developing rulesets for object-based land cover classification. ISPRS Int J Geo. 2020;9(5):329. https://doi.org/10.3390/ijgi9050329

Pal M, Mather PM. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens Environ. 2003;86(4):554-65. https://doi.org/10.1016/S0034-4257(03)00132-9

Teluguntla P, Thenkabail PS, Oliphant A, Xiong J, Gumma MK, Congalton RG, et al. A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS J Photogramm. Remote Sens. 2018-40. https://doi.org/10.1016/j.isprsjprs.2018.07.017

Talukdar S, Singha P, Mahato S, Shahfahad, Pal S, Liou YA, Rahman A. Land-use land-cover classification by machine learning classifiers for satellite observations-A review. Remote Sens. 2020;12(7):1135. https://doi.org/10.3390/rs12071135

Li RH, Belford GG. Instability of decision tree classification algorithms. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2002; p. 570-75. https://doi.org/10.1145/775047.775131

Europe’s Eyes on Earth [Internet]. The Programme of the European Union; 2023 [cited 2024 July 1]. Availablefrom: https://www.copernicus.eu/sites/default/files/202307/Copernicus%20General%20EN.pdf

Sabthapathy M, Kaliaperumal R, Pazhanivelan S, Velmurugan S. Cashew area mapping using Sentinel-2 in Ariyalur district of Tamil Nadu, India. Ecol Environ Conserv. 2022;11:68-68.

Vizzari M, Hilal M, Sigura M, Antognelli S, Joly D. Urban-rural-natural gradient analysis with CORINE data: An application to the metropolitan France. Landsc Urban Plan. 2018;171:18-29. https://doi.org/10.1016/j.landurbplan.2017.11.005

Adrian J, Sagan V, Maimaitijiang M. Sentinel SAR-optical fusion for crop type mapping using deep learning and Google Earth Engine. ISPRS J Photogramm Remote Sens. 2021;175:215-35. https://doi.org/10.1016/j.isprsjprs.2021.02.018

Baatz M, Benz U, Dehghani S, Heynen M, Holtje A, Hofmann P, Lingenfelder I, Mimler M, Sohlbach M, Weber M, Willhauck G. eCognition professional user guide, version 4.0. München (Germany): Definiens Imaging GmbH; 2004.

Hussain M, Chen D, Cheng A, Wei H, Stanley D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J Photogramm Remote Sens. 2013;80:91-106. https://doi.org/10.1016/j.isprsjprs.2013.03.006

Li M, Ma L, Blaschke T, Cheng L, Tiede D. A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments. Int J Appl Earth Obs Geoinf. 2016;49:87-98. https://doi.org/10.1016/j.jag.2016.01.011

Rasuly A, Naghdifar R, Rasoli M. Monitoring of Caspian Sea coastline changes using object-oriented techniques. Procedia Environ Sci. 2010;2:416-26. https://doi.org/10.1016/j.proenv.2010.10.046

Dragut L, Tiede D, Levick SR. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int J Geogr Inf Sci. 2010;(6):859-71. https://doi.org/10.1080/13658810903174803

Rana M, Kharel S. Feature extraction for urban and agricultural domains using ecognition developer. Int Arch Photogramm Remote Sens Spatial Inf. 2019; XLII-3/W64:609-15. https://doi.org/10.5194/isprs-archives-XLII-3-W6-609-2019

Hebbar R, Ravishankar HM, Trivedi S, Subramoniam SR, Uday R, Dadhwal VK. Object oriented classification of high resolution data for inventory of horticultural crops. Int Arch Photogramm Remote Sens Spatial Inf Sci. 2014;XL-8:745-9. https://doi.org/10.5194/isprsarchives-XL-8-745-2014

Harish M, Kaliaperumal R, Pazhanivelan S, Sivakumar C, Kumaraperumal R. Mango area mapping using very high-resolution satellite data in major blocks of Krishnagiri district, Tamil Nadu, India. Int J Environ Clim Chang. 2023;13(9):8118. https://doi.org/10.9734/ijecc/2023/v13i92302

Chabalala Y, Adam E, Ali KA. Machine learning classification of fused Sentinel-1 and Sentinel-2 image data towards mapping fruit plantations in highly heterogenous landscapes. Remote. 2022;14(11):2621. https://doi.org/10.3390/rs14112621

Chaudhary D, Vasuja ER. A review on various algorithms used in machine learning. Int J Sci Res Comput Sci Eng Inf. 2019;5(2):915-20. https://doi.org/10.32628/CSEIT1952248

Aasi E, Vasile CI, Bahreinian M, Belta C. Classification of time-series data using boosted decision trees. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2022 Oct 23; Kyoto, Japan. IEEE; 2022. p. 1263-8. https://doi.org/10.1109/IROS47612.2022.9982105

Biau G, Scornet E. A random forest guided tour. TEST. 2016;25:197-227. Available from: https://doi.org/10.1007/s11749-016-0481-7

Natek S, Zwilling M. Student data mining solution-knowledge management system related to higher education institutions. Expert Syst. 2014;41(14):6400-07. https://doi.org/10.1016/j.eswa.2014.04.024

Li RH, Belford GG. Instability of decision tree classification algorithms. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’02). Edmonton, Alberta, Canada: Association for Computing Machinery; 2002. p. 570–75.

Du KL, Swamy MNS. Support vector machines. In: Neural networks and statistical learning. London: Springer; 2014. p. 319–45. https://doi.org/10.1007/978-1-4471-5571-3_16

Hedayati A, Vahidnia MH, Behzadi S. Paddy lands detection using Landsat-8 satellite images and object-based classification in Rasht city, Iran. Egypt J Remote Sens Space Sci. 2022;25(1):73-84. https://doi.org/10.1016/j.ejrs.2021.12.008

Lillesand T, Kiefer RW, Chipman J. Remote sensing and image interpretation. Hoboken: John Wiley & Sons; 2015.

Congalton RG. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ. 1991;37(1):35-46. https://doi.org/10.1016/0034-4257(91)90048-B

Rawat S, Saini R. Cropland mapping using single date Sentinel-2 imagery using machine learning classifiers. In: Proceedings of the 2022 International Conference on Advances in Computing, Communication and Materials (ICACCM); 2022. p. 1–7. https://doi.org/10.1109/ICACCM56405.2022.10009406

Lin X, Ren C, Li Y, Yue W, Liang J, Yin A. Eucalyptus plantation area extraction based on SLPSO-RFE feature selection and multi-temporal sentinel-1/2 data. Forests. 2023;14(9):1864. https://doi.org/10.3390/f14091864

Luo H, Li M, Dai S, Li H, Li Y, Hu Y, et al. Combinations of feature selection and machine learning algorithms for object-oriented betel palms and mango plantations classification based on Gaofen-2 imagery. Remote Sens. 2022;14(7):1757. https://doi.org/10.3390/rs14071757

Hunt Jr ER, Li L, Yilmaz MT, Jackson TJ. Comparison of vegetation water contents derived from shortwave-infrared and passive-microwave sensors over central Iowa. Remote Sens Environ. 2011;115(9):2376-83. https://doi.org/10.1016/j.rse.2011.04.037

Xue H, Xu X, Zhu Q, Yang G, Long H, Li H, et al. Object-oriented crop classification using time series sentinel images from google earth engine. Remote Sens. 2023;15(5):1353. https://doi.org/10.3390/rs15051353

Feizizadeh B, Omarzadeh D, Kazemi Garajeh M, Lakes T, Blaschke T. Machine learning data-driven approaches for land use/cover mapping and trend analysis using Google Earth Engine. J Environ Plann Man. 2023;66(3):665-97. https://doi.org/10.1080/09640568.2021.2001317

Loukika KN, Keesara VR, Sridhar V. Analysis of land use and land cover using machine learning algorithms on google earth engine for Munneru River Basin, India. Sustainability. 2021;13(24):13758. https://doi.org/10.3390/su132413758

Ouma YO, Keitsile A, Nkwae B, Odirile P, Moalafhi D, Qi J. Urban land-use classification using machine learning classifiers: Comparative evaluation and post-classification multi-feature fusion approach. Eur J Remote Sens. 2023;56(1):2173659. https://doi.org/10.1080/22797254.2023.2173659

Published

23-12-2024 — Updated on 28-02-2025

Versions

How to Cite

1.
Alaguvel K, Ramalingam K, Sellaperumal P, Dhanaraju M, Kaliyaperumal R, Selvakumar, Moorthi N. Object-based image analysis and machine learning for mapping cashew plantations in Ariyalur district, Tamil Nadu. Plant Sci. Today [Internet]. 2025 Feb. 28 [cited 2025 Apr. 17];11(sp4). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/5165