Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. Sp2 (2025): Current Trends in Plant Science and Microbiome for Sustainability

Effect of different fungal bio-agents on plant growth and yield attributes of tomato (Lycopersicon esculentum Mill.) against root-knot nematode, Meloidogyne incognita under field condition

DOI
https://doi.org/10.14719/pst.5179
Submitted
21 September 2024
Published
24-09-2025

Abstract

The experimental trial was carried out in the Department of Nematology at the Rajasthan College of Agriculture, Udaipur, during the Rabi season in 2021–2022 and 2022–2023. The prime goal was to address the effects of different fungal bio-agents on tomato plant growth and yield attributes in challenged with the root-knot nematode (RKN). The trial followed to randomized block design (RBD) consisted seven treatments viz.,Trichoderma harzianum, T. viride, Purpureocillim lilacinum, Metarhizium anisopliae and Baeuveria bassiana as soil application (SA) at 5 kg/ha and seedling treatment (ST) at 5 g/L of water and carbofuran 3G 2 kg /ha as well as untreated check were also maintained with four replications. All the treatments significantly improved the plant growth parameter and yield as compared to untreated check. However, significant reduction in nematode population and maximum improvement in plant growth parameters was recorded with carbofuran followed by bio-agents. The results revealed that among different promising fungal bio-control agents tested, the highest biometric parameters like, shoot length (69.62 cm), fresh shoot weight (53.50 g), root length (37.87 cm), fresh root weight (27.87 g), yield (34.26 kg/3×4 plot). In addition, the promising module mitigating nematode
reproduction like, no. of galls per plant (61.25), no. of egg masses per plant (55.50), no. of eggs & larvae per egg mass (174.12),
nematode population per 200 cc soil (960.37), final nematode population (soil + plant) (10686.78), root gall index (1-5 scale). The
reproductive factor (Rf) (22.32) was recorded in T. harzianum as SA at 5 kg/ha and ST at 5 g/lit of water (pooled data of 2021-22 and 2022-23, respectively) followed by T. viride and P. lilacinum in both years.

References

  1. 1. Punja ZK, Utkhede RS. Using fungi and yeasts to manage vegetable crop diseases. Trend. Biotech. 2003;21(9):400–07. https://doi.org/10.1016/S0167-7799(03)00193-8
  2. 2. Anonymous, Indian production of tomato. APEDA Agri Xchange. 2020-21. (cited 2021. 03.21). Available from:https://agriexchange. apeda.gov.in/India%20Production/India_Productions.aspx?cat=Vegetables&hscode=1088
  3. 3. Anonymous, Area and production of tomato in Rajasthan. 2023. (cited 2024.09.21) Available from: https://www.indiastatdistricts.com/ rajasthan/alldistricts/agriculture/tomato/data-year/all-years
  4. 4. Akhtar H, Anita S, Kumar SP. Studies on the management of root-knot nematode, Meloidogyne incognita-wilt fungus, Fusarium oxysporum disease complex of green gram, Vigna radiata cv ML-1108. J. Zhejiang Univ. Sci. 2005;6(8):736–42. https://doi.org/10.1631/jzus.2005.B0736
  5. 5. Hadian S, Rahnama K, Jamali S, Eskandari A. Comparing neem extract with chemical control on Fusarium oxysporum and Meloidogyne incognita complex of tomato. Adv Environ Biol 2011;5(8):2052–57. https://d1wqtxts1xzle7.cloudfront.net/80701913/2052-57
  6. 6. Williamson VM, Hussey RS. Nematode pathogenesis and resistance in plants. Plant Cell. 1996;8:1735–45. https://doi.org/10.1105/tpc.8.10.1735
  7. 7. Kayani MZ, Mukhtar T, Hussain MA. Effects of southern root-knot nematode population densities and plant age on growth and yield parameters of cucumber. Crop Prot. 2017;92:207–12. https://doi.org/10.1016/j.cropro.2016.09.007
  8. 8. Kumar V, Khan RM, Walia RK. Crop loss estimations due to plant parasitic nematode in major crops in India. Natl Acad Sci Lett. 2020;43(6):561–66. https://doi.org/10.1007/s40009-020-00895-2
  9. 9. Sasser JN, Eisenbach JN, Carter CC. The international Meloidogyne project – its goals and accomplishments. Ann Rev Phytopathol. 1983;21:271–88. https://doi.org/10.1146/annurev.py.21.090183.001415
  10. 10. Collange B, Navarrete M, Peyre G, Mateille T, Tchamitchian M. Root-knot nematode (Meloidogyne sp.) management in vegetable crop production: The challenge of an agronomic system analysis. Crop Prot. 2011;30(10):1251–62. https://doi.org/10.1016/j.cropro.2011.04.016
  11. 11. Ghayedi S, Abdollahi M. Biocontrol potential of Metarhizium anisopliae (Hypocreales: Clavicipitaceae), isolated from suppressive soils of Boyer-Ahmad region, Iran, against J2s of Heterodera avenae. J Plant Prot Res. 2013;53(2):165-71. https://doi.org/10.2478/jppr-2013-0025
  12. 12. Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front Public Health. 2016;4:148. https://doi.org/10.3389/fpubh.2016.
  13. 00148
  14. 13. Dutta J, Thakur D. Evaluation of multifarious plant growth promoting traits, antagonistic potential and phylogenetic affiliation of rhizobacteria associated with commercial tea plants grown in Darjeeling. India. PLoS One. 2017;12(8). https://doi.org/10.1371/journal.pone.0182302
  15. 14. Rao MS, Reddy PP, Nagesh M. Management of root-knot nematode, Meloidogyne incognita on Tomato by integration of Trichoderma harzianum with neem cake. J Plant Dis Prot. 1997;104:423-25. https://eurekamag.com/research/003/195/003195312
  16. 15. Kiewnick S, Sikora R. Optimizing the efficacy of Paecilomyces lilacinum (strain 251) for the control of root-knot nematodes. Commun Agric Appl Biol Sci. 2004;69:373–80. https://europepmc.org/article/med/15759437
  17. 16. Abdelmoneim TS. Using some microorganisms or their products for control of plant parasitic nematodes. In: PhD. Thesis, Faculty of Agriculture. Suez Canal University, Ismailia, Egypt. 2006; pp. 1–111. https://doi.org/10.1016/j.sjbs.2012.10.004
  18. 17. AL-Shammari TA, Bahkali AH, Elgorban AM, El-Kahky MT, Al-Sum BA. The use of Trichoderma longibrachiatum and Mortierella alpina against root-knot nematode, Meloidogyne javanica on tomato. J. Pure Appl. Microbio. 2013;7:199–207. https://www.researchgate.net/publication/259717225
  19. 18. Cobb NA. Estimating the nematode population of the soil, Agric Technol Circ, Bur Plant Ind, USDA, 1918(1);1–48. Available from: https://books.google.co.in/books/about/Estimating_the_Nema_Population_of_Soil_w.html?id=1iIxAQAAMAAJ&redir_esc=y
  20. 19. Baermann G. Eine einfache Methode zur Auffindung von Ankylostomum (nematoden) Larven in Erdproben. Geneesk. Tijdschr. Ned-Indie. 1917;57:131-37. https://eurekamag.com/research/022/531/022531783.
  21. 20. Mc Beth CW, Taylor AL, Smith AL. Note on staining nematodes in root tissues. Proceeding of Helminth Soc of Wash. 1941;8:26. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2620550/pdf/179.pdf
  22. 21. Taylor PP, Netscher C. An improved technique for preparing perineal pattern of Meloidogyne spp. Nematologica. 1974;20:258-63. https://www.researchgate.net/publication/24202037
  23. 22. Amer-Zareen, Khan NJ, Zaki MJ. Biological control of Meloidogyne javanica (Treub) Chitwood, root-knot nematode of okra (Abelmoscus esculentus L.). Pak. J. Biol. Sci. 2001;4:990–94. https://doi.org/10.1016/j.sibs.2021.07.081
  24. 23. Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O. Introduction to food borne fungi Fifth edition. CBS, Netherlands. 1996. https://www.cabidigitallibrary.org/doi/full/10.5555/19821383013
  25. 24. Spiegel Y, Sharon E, Chet I. Mechanisms and improved biocontrol of the root-knot nematodes by Trichoderma spp. Acta Horticulturae. 2005;698:225-28. https://doi.org/10.17660/ActaHortic.2005.698.30
  26. 25. Casas-Flores S, Herrera-Estrella A. Antagonism of plant parasitic nematodes by fungi. Environmental and Microbial Relationships. 2nd Edn. Springer-Verlag, Berlin. 2007;147-57. https://link.springer.com/chapter/10.1007/
  27. 978-3-540-71840-6_9
  28. 26. Lopez Llorca LV, Macia Vicente JG, Jansson HB. Mode of action and interactions of nematophagous fungi. Integrated management and biocontrol of vegetable and grain crops nematodes. Springer.2008;49-74. https://link.springer.com/chapter/10.1007/978-1-4020-6063-2_3
  29. 27. Hallman J, Davies KG, Sikora R. Biological control using microbial pathogens, endophytes and antagonists. In: Perry RN, Moens M, Starr JI, editors. Root-knot nematodes. Wallingford (UK): CAB International; 2009. p. 380–411. https://doi.org/10.1079/9781845934927.0380
  30. 28. Moosavi MR, Zare R. Fungi as biological control agents of plant-parasitic nematodes. Plant Defence: Biological Control. Springer Science Business Media, Dordrecht. 2012.67-107. https://doi.org/10.1007/978-94-007-1933-0_4
  31. 29. Rao MS, Reddy PP, Nagesh M. Evaluation of plant-based formulations of Trichoderma harzianum for the management of Meloidogyne incognita on eggplant. Nematol Mediterr. 1998;26:59–62. https://journals.flvc.org/nemamedi/article/view/63402
  32. 30. Ramezani H. Antagonistic effects of Trichoderma spp. against Fusarium oxysporum f.sp. lycopersici causal agent of tomato wilt. Plant Prot J. 2010;2(1):167–73. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20133113078
  33. 31. Mwangi M, Monda E, Okoth S, Jefwa J. Innoculation of tomato seedlings with Trichoderma harzianum and arbuscular mycorrhizal Fungi and their effect on growth and control of wilt in tomato seedlings. Braz J Microbiol. 2011;42:508–13. https://doi.org/10.1590/S1517-838220110002000015
  34. 32. Bhatt J, Sengupta SK, Chaurasia RK. Management of Meloidogyne incognita by Trichoderma viride in betelvine. Indian Phytopathol. 2002;55:97-98. https://www.cabidigitallibrary.org/doi/full/10.5555/20023104090
  35. 33. Goswami BK, Mittal A. Management of root-knot nematode infecting tomato by Trichoderma viride and Paecilomyces lilacinus. Indian Phytopathol. 2004;57(2):235-36. https://www.cabidigitallibrary.org/doi/full/10.5555/
  36. 20053074532
  37. 34. Muthulakshmi M, Devrajan K, Jonathan EI. Biocontrol of root knot nematode, Meloidogyne incognita (Kofoid and White) Chitwood in mulberry (Morus alba L.). J Biopestic. 2010;3(2):479–82. https://doi.org/10.57182/jbiopestic.3.2.
  38. 479-482
  39. 35. Mukhtar T. Management of Root-Knot Nematode, Meloidogyne incognita, in Tomato with Two Trichoderma Species. Pak J Zool. 2018;50(4):1589-92. https://doi.org/10.17582/journal.pjz/2018.50.4.sc15
  40. 36. Devi LS, Richa S, Sharma R. Effect of Trichoderma spp. against root-knot nematode Meloidgyne incognita on tomato. Indian J Nematol. 2002;32(2):227-28. https://www.cabidigitallibrary.org/doi/full/10.5555/20033086419
  41. 37. Khan T, Saxena SK. Intergrated management of root-knot nematode Meloidogyne javanica infecting Tomato using Paecilomyces lilacinus. Bioresour Technol. 1997;61:242-50. https://doi.org/10.1016/S0960-8524(97)00024-2
  42. 38. Chen SY, Chen FJ. Fungal parasitism of Heterodera glycines eggs as influenced by egg age and pre-colonization of cysts by other fungi. J Nematol. 2003;35:271-77. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2620643/
  43. 39. Askary TH, Martinelli PRP. Biocontrol agents of phytonematodes. CAB International, Wallingford. 2015;pp. fisrt470. https://doi.org/ 10.1079/9781780643755.0000
  44. 40. Barberchek ME, Kaya HK. Competitive interaction between nematode and Beauveria bassiana in soil borne larvae of Spodoptera exigue. Envium Entomol. 1991;20:707-12. https://doi.org/10.1093/ee/20.2.707
  45. 41. Bradley CA, Black WE, Kearns R, Wood P. Role of production technology in mycoinsecticide development. Frontiers in industrial microbiology. Boston (MA): Springer; 1992;160-73. https://doi.org/10.1007/978-1-4684-7112-
  46. 0_11
  47. 42. Bekanayake HMRK, Jayasundar NJ. Effect of Paecilomyces lilacinus and Beauveria bassiana in controlling Meloidogyne incognita on tomato in Sri Lanka. Nematologia Mediterranea. 1994;22:87-88. https://journals.flvc.org/nemamedi/article/view/69111
  48. 43. Feng MG, Chen B, Ying SH. Trials of Beauveria bassiana, Paecilomyces fumosoroseus and imidacloprid for management of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) on greenhouse grown lettuce. Biocontrol Sci Technol. 2004;14:489-96. https://doi. org/10.1080/09583150410001682269
  49. 44. Hatting JL, Wraight SP, Miller RM. Efficiency of Beauveria bassiana (Hyphomycetes) for control of Russian wheat aphid (Homoptera:Aphididae) on resistant wheat under field conditions. Biocontrol Sci Technol. 2004;14:459-73. https://doi.org/10.1080/09583 150410001683501
  50. 45. Jean PK, Les S, Peter K, Bruce B. Optimal concentration of Beauveria bassiana vectored by bumble bees in relation to pest and bee mortality in greenhouse tomato and sweet pepper. BioControl. 2008;53:797-812. https://doi.org/10.
  51. 1007/s10526-007-9142-9
  52. 46. Dutta J, Thakur D. Evaluation of multifarious plant growth promoting traits, antagonistic potential and phylogenetic affiliation of rhizobacteria associated with commercial tea plants grown in Darjeeling. India. PLoS One. 2017;12(8). https://doi.org/10.1371/journal. pone.0182302
  53. 47. Lin D, Dehai L, Tianjiao Z. New alkaloids and diterpenes from a deep ocean sediment derived fungus Penicillium sp. Tetrahedron. 2009;65(5):1033-39. https://doi.org/10.1016/j.tet.2008.11.078
  54. 48. Ghayedi S, Abdollahi M. Biocontrol potential of Metarhizium anisopliae (Hypocreales: Clavicipitaceae), isolated from suppressive soils of Boyer-Ahmad region, Iran, against J2s of Heterodera avenae. J Plant Prot Res. 2013;53(2):165-71. https://doi.org/10.2478/jppr-2013-0025
  55. 49. Hamil PL, Higgeus CE, Boan HE. The structure of Beauvericin, A new depsipepdicle antibiotic toxic to Artemia salina. Tetrahedron Lett. 1969;49:4255-58. https://doi.org/10.1016/S0040-4039(01)88668-8
  56. 50. Suzuki A, Kanaoka M, Isogai A. Bassianolide, a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Tetrahedron Lett. 1977;25:2167-70. https://doi.org/10.1016/S0040-4039(01)83709-6
  57. 51. Anke H, Stadler M, Mayer A. Secondary metabolites with nematicidal and antimicrobial activity from nematophagous fungi and ascomycetes. Can J Bot. 1995;72(SI):932-39. https://doi.org/10.1139/b95-341
  58. 52. Mayer A. PhD Thesis, University of Kaiserslautern, Kaiserslautern, Germany. 1995. https://doi.org/10.13140/RG.2.
  59. 2.28044.80000/1
  60. 53. Zhao D, Liu B, Wang Y, Zhu X, Duan Y, Chen L. Screening for nematicidal activities of Beauveria bassiana and associated fungus using culture filtrate. Afr J Microbiol Res. 2013;7(11):974-78. https://doi.org/10.5897/AJMR12.2340
  61. 54. Mahmoud MF. Pathogenicity of three commercial products of entomopathogenic fungi, Beauveria bassiana, Metarhizum anisopilae and Lecanicillium lecanii against adults of olive fly, Bactrocera oleae (Gmelin) (Diptera:Tephritidae) in the laboratory. Plant Prot Sci. 2009;45(3):98-102. https://doi.org/10.17221/34/2008-PPS
  62. 55. Jahanbazian L, Abdollahi M, Hussienvand M. Inhibitory effect of Metarhizium anisopliae against Meloidogyne incognita, the causal agent of root knot of tomato, under laboratory condition. National Conference of Modern Topic in Agriculture. 2014. https://www.researchgate.net/publication/277716734
  63. 56. Khosrawi M, Abdollahi M, Sadravi M. Effect of Metarhizium anisopliae and Trichoderma harzianum on root knot nematode, Meloidogyne javanica. Biol Control Pests Plant Dis. 2014;3(1):67-76. https://doi.org/10.22059/JBIOC.2014.
  64. 52921
  65. 57. Jahanbazian L, Abdollahi M, Rezaie R. Combined effect of Metarhizium anisopliae and Pseudomonas fluorescens CHA0 on root-knot nematode, Meloidogyne incognita in tomato. Iran J Plant Pathol. 2015;51(3):339-55. https://ijpp.areeo.ac.ir/article_17805_en.html?lang=fa
  66. 58. Mohanty SS, Raghavendra K, Mittal PK, Dash AP. Efficacy of culture filtrates of Metarhizium anisopliae against larvae of Anopheles stephensi and Culex quinquefasciatus. J Ind Microbiol Biotechnol. 2008;35:1199-202. https://doi.org/10.1007/s10295-008-0434-6
  67. 59. Bruck DJ. Ecology of Metarhizium anisopliae in soilless potting media and the rhizosphere: Implications for pest management. Biol Control. 2005;32:155-163. https://doi.org/10.1016/j.biocontrol.2004.09.003
  68. 60. Wang C, St Leger RJ. The MAD1 adhesion of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesion enables attachment to plants. Eukaryot Cell. 2007;6:808-16. https://doi.org/10.1128/EC.00409-06
  69. 61. Kershaw MJ, Moorhouse ER, Bateman R, Reynolds SE, Charnley AK. The Role of destruxins in the pathogenicity of Metarhizium anisopliae for three species of insect. J Invertebr Pathol. 1999;74:213–23. https://doi.org/10.1006/jipa.
  70. 1999.4884
  71. 62. Roberts DW, Toxins from the entomogenous fungus Metarhizium anisopliae. 1. Production in submerged and surface cultures, and in inorganic and organic nitrogen media. Journal of Invertebrate Pathology. 1966;8:212-21. https://doi/10.1016/0022-2011(66)90131-5

Downloads

Download data is not yet available.