Research Articles
Vol. 12 No. Sp2 (2025): Current Trends in Plant Science and Microbiome for Sustainability
Effect of different fungal bio-agents on plant growth and yield attributes of tomato (Lycopersicon esculentum Mill.) against root-knot nematode, Meloidogyne incognita under field condition
Department of Nematology, Maharana Pratap University of Agriculture and Technology, Udaipur 313 001, India
Department of Nematology, Maharana Pratap University of Agriculture and Technology, Udaipur 313 001, India
Department of Nematology, Maharana Pratap University of Agriculture and Technology, Udaipur 313 001, India
Department of Plant Pathology, Maharana Pratap University of Agriculture and Technology, Udaipur 313 001, India
Department of Nematology, Maharana Pratap University of Agriculture and Technology, Udaipur 313 001, India
Department of Nematology, Maharana Pratap University of Agriculture and Technology, Udaipur 313 001, India
Department of Nematology, Maharana Pratap University of Agriculture and Technology, Udaipur 313 001, India
Department of Nematology, Maharana Pratap University of Agriculture and Technology, Udaipur 313 001, India
Abstract
The experimental trial was carried out in the Department of Nematology at the Rajasthan College of Agriculture, Udaipur, during the Rabi season in 2021–2022 and 2022–2023. The prime goal was to address the effects of different fungal bio-agents on tomato plant growth and yield attributes in challenged with the root-knot nematode (RKN). The trial followed to randomized block design (RBD) consisted seven treatments viz.,Trichoderma harzianum, T. viride, Purpureocillim lilacinum, Metarhizium anisopliae and Baeuveria bassiana as soil application (SA) at 5 kg/ha and seedling treatment (ST) at 5 g/L of water and carbofuran 3G 2 kg /ha as well as untreated check were also maintained with four replications. All the treatments significantly improved the plant growth parameter and yield as compared to untreated check. However, significant reduction in nematode population and maximum improvement in plant growth parameters was recorded with carbofuran followed by bio-agents. The results revealed that among different promising fungal bio-control agents tested, the highest biometric parameters like, shoot length (69.62 cm), fresh shoot weight (53.50 g), root length (37.87 cm), fresh root weight (27.87 g), yield (34.26 kg/3×4 plot). In addition, the promising module mitigating nematode
reproduction like, no. of galls per plant (61.25), no. of egg masses per plant (55.50), no. of eggs & larvae per egg mass (174.12),
nematode population per 200 cc soil (960.37), final nematode population (soil + plant) (10686.78), root gall index (1-5 scale). The
reproductive factor (Rf) (22.32) was recorded in T. harzianum as SA at 5 kg/ha and ST at 5 g/lit of water (pooled data of 2021-22 and 2022-23, respectively) followed by T. viride and P. lilacinum in both years.
References
- 1. Punja ZK, Utkhede RS. Using fungi and yeasts to manage vegetable crop diseases. Trend. Biotech. 2003;21(9):400–07. https://doi.org/10.1016/S0167-7799(03)00193-8
- 2. Anonymous, Indian production of tomato. APEDA Agri Xchange. 2020-21. (cited 2021. 03.21). Available from:https://agriexchange. apeda.gov.in/India%20Production/India_Productions.aspx?cat=Vegetables&hscode=1088
- 3. Anonymous, Area and production of tomato in Rajasthan. 2023. (cited 2024.09.21) Available from: https://www.indiastatdistricts.com/ rajasthan/alldistricts/agriculture/tomato/data-year/all-years
- 4. Akhtar H, Anita S, Kumar SP. Studies on the management of root-knot nematode, Meloidogyne incognita-wilt fungus, Fusarium oxysporum disease complex of green gram, Vigna radiata cv ML-1108. J. Zhejiang Univ. Sci. 2005;6(8):736–42. https://doi.org/10.1631/jzus.2005.B0736
- 5. Hadian S, Rahnama K, Jamali S, Eskandari A. Comparing neem extract with chemical control on Fusarium oxysporum and Meloidogyne incognita complex of tomato. Adv Environ Biol 2011;5(8):2052–57. https://d1wqtxts1xzle7.cloudfront.net/80701913/2052-57
- 6. Williamson VM, Hussey RS. Nematode pathogenesis and resistance in plants. Plant Cell. 1996;8:1735–45. https://doi.org/10.1105/tpc.8.10.1735
- 7. Kayani MZ, Mukhtar T, Hussain MA. Effects of southern root-knot nematode population densities and plant age on growth and yield parameters of cucumber. Crop Prot. 2017;92:207–12. https://doi.org/10.1016/j.cropro.2016.09.007
- 8. Kumar V, Khan RM, Walia RK. Crop loss estimations due to plant parasitic nematode in major crops in India. Natl Acad Sci Lett. 2020;43(6):561–66. https://doi.org/10.1007/s40009-020-00895-2
- 9. Sasser JN, Eisenbach JN, Carter CC. The international Meloidogyne project – its goals and accomplishments. Ann Rev Phytopathol. 1983;21:271–88. https://doi.org/10.1146/annurev.py.21.090183.001415
- 10. Collange B, Navarrete M, Peyre G, Mateille T, Tchamitchian M. Root-knot nematode (Meloidogyne sp.) management in vegetable crop production: The challenge of an agronomic system analysis. Crop Prot. 2011;30(10):1251–62. https://doi.org/10.1016/j.cropro.2011.04.016
- 11. Ghayedi S, Abdollahi M. Biocontrol potential of Metarhizium anisopliae (Hypocreales: Clavicipitaceae), isolated from suppressive soils of Boyer-Ahmad region, Iran, against J2s of Heterodera avenae. J Plant Prot Res. 2013;53(2):165-71. https://doi.org/10.2478/jppr-2013-0025
- 12. Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front Public Health. 2016;4:148. https://doi.org/10.3389/fpubh.2016.
- 00148
- 13. Dutta J, Thakur D. Evaluation of multifarious plant growth promoting traits, antagonistic potential and phylogenetic affiliation of rhizobacteria associated with commercial tea plants grown in Darjeeling. India. PLoS One. 2017;12(8). https://doi.org/10.1371/journal.pone.0182302
- 14. Rao MS, Reddy PP, Nagesh M. Management of root-knot nematode, Meloidogyne incognita on Tomato by integration of Trichoderma harzianum with neem cake. J Plant Dis Prot. 1997;104:423-25. https://eurekamag.com/research/003/195/003195312
- 15. Kiewnick S, Sikora R. Optimizing the efficacy of Paecilomyces lilacinum (strain 251) for the control of root-knot nematodes. Commun Agric Appl Biol Sci. 2004;69:373–80. https://europepmc.org/article/med/15759437
- 16. Abdelmoneim TS. Using some microorganisms or their products for control of plant parasitic nematodes. In: PhD. Thesis, Faculty of Agriculture. Suez Canal University, Ismailia, Egypt. 2006; pp. 1–111. https://doi.org/10.1016/j.sjbs.2012.10.004
- 17. AL-Shammari TA, Bahkali AH, Elgorban AM, El-Kahky MT, Al-Sum BA. The use of Trichoderma longibrachiatum and Mortierella alpina against root-knot nematode, Meloidogyne javanica on tomato. J. Pure Appl. Microbio. 2013;7:199–207. https://www.researchgate.net/publication/259717225
- 18. Cobb NA. Estimating the nematode population of the soil, Agric Technol Circ, Bur Plant Ind, USDA, 1918(1);1–48. Available from: https://books.google.co.in/books/about/Estimating_the_Nema_Population_of_Soil_w.html?id=1iIxAQAAMAAJ&redir_esc=y
- 19. Baermann G. Eine einfache Methode zur Auffindung von Ankylostomum (nematoden) Larven in Erdproben. Geneesk. Tijdschr. Ned-Indie. 1917;57:131-37. https://eurekamag.com/research/022/531/022531783.
- 20. Mc Beth CW, Taylor AL, Smith AL. Note on staining nematodes in root tissues. Proceeding of Helminth Soc of Wash. 1941;8:26. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2620550/pdf/179.pdf
- 21. Taylor PP, Netscher C. An improved technique for preparing perineal pattern of Meloidogyne spp. Nematologica. 1974;20:258-63. https://www.researchgate.net/publication/24202037
- 22. Amer-Zareen, Khan NJ, Zaki MJ. Biological control of Meloidogyne javanica (Treub) Chitwood, root-knot nematode of okra (Abelmoscus esculentus L.). Pak. J. Biol. Sci. 2001;4:990–94. https://doi.org/10.1016/j.sibs.2021.07.081
- 23. Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O. Introduction to food borne fungi Fifth edition. CBS, Netherlands. 1996. https://www.cabidigitallibrary.org/doi/full/10.5555/19821383013
- 24. Spiegel Y, Sharon E, Chet I. Mechanisms and improved biocontrol of the root-knot nematodes by Trichoderma spp. Acta Horticulturae. 2005;698:225-28. https://doi.org/10.17660/ActaHortic.2005.698.30
- 25. Casas-Flores S, Herrera-Estrella A. Antagonism of plant parasitic nematodes by fungi. Environmental and Microbial Relationships. 2nd Edn. Springer-Verlag, Berlin. 2007;147-57. https://link.springer.com/chapter/10.1007/
- 978-3-540-71840-6_9
- 26. Lopez Llorca LV, Macia Vicente JG, Jansson HB. Mode of action and interactions of nematophagous fungi. Integrated management and biocontrol of vegetable and grain crops nematodes. Springer.2008;49-74. https://link.springer.com/chapter/10.1007/978-1-4020-6063-2_3
- 27. Hallman J, Davies KG, Sikora R. Biological control using microbial pathogens, endophytes and antagonists. In: Perry RN, Moens M, Starr JI, editors. Root-knot nematodes. Wallingford (UK): CAB International; 2009. p. 380–411. https://doi.org/10.1079/9781845934927.0380
- 28. Moosavi MR, Zare R. Fungi as biological control agents of plant-parasitic nematodes. Plant Defence: Biological Control. Springer Science Business Media, Dordrecht. 2012.67-107. https://doi.org/10.1007/978-94-007-1933-0_4
- 29. Rao MS, Reddy PP, Nagesh M. Evaluation of plant-based formulations of Trichoderma harzianum for the management of Meloidogyne incognita on eggplant. Nematol Mediterr. 1998;26:59–62. https://journals.flvc.org/nemamedi/article/view/63402
- 30. Ramezani H. Antagonistic effects of Trichoderma spp. against Fusarium oxysporum f.sp. lycopersici causal agent of tomato wilt. Plant Prot J. 2010;2(1):167–73. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20133113078
- 31. Mwangi M, Monda E, Okoth S, Jefwa J. Innoculation of tomato seedlings with Trichoderma harzianum and arbuscular mycorrhizal Fungi and their effect on growth and control of wilt in tomato seedlings. Braz J Microbiol. 2011;42:508–13. https://doi.org/10.1590/S1517-838220110002000015
- 32. Bhatt J, Sengupta SK, Chaurasia RK. Management of Meloidogyne incognita by Trichoderma viride in betelvine. Indian Phytopathol. 2002;55:97-98. https://www.cabidigitallibrary.org/doi/full/10.5555/20023104090
- 33. Goswami BK, Mittal A. Management of root-knot nematode infecting tomato by Trichoderma viride and Paecilomyces lilacinus. Indian Phytopathol. 2004;57(2):235-36. https://www.cabidigitallibrary.org/doi/full/10.5555/
- 20053074532
- 34. Muthulakshmi M, Devrajan K, Jonathan EI. Biocontrol of root knot nematode, Meloidogyne incognita (Kofoid and White) Chitwood in mulberry (Morus alba L.). J Biopestic. 2010;3(2):479–82. https://doi.org/10.57182/jbiopestic.3.2.
- 479-482
- 35. Mukhtar T. Management of Root-Knot Nematode, Meloidogyne incognita, in Tomato with Two Trichoderma Species. Pak J Zool. 2018;50(4):1589-92. https://doi.org/10.17582/journal.pjz/2018.50.4.sc15
- 36. Devi LS, Richa S, Sharma R. Effect of Trichoderma spp. against root-knot nematode Meloidgyne incognita on tomato. Indian J Nematol. 2002;32(2):227-28. https://www.cabidigitallibrary.org/doi/full/10.5555/20033086419
- 37. Khan T, Saxena SK. Intergrated management of root-knot nematode Meloidogyne javanica infecting Tomato using Paecilomyces lilacinus. Bioresour Technol. 1997;61:242-50. https://doi.org/10.1016/S0960-8524(97)00024-2
- 38. Chen SY, Chen FJ. Fungal parasitism of Heterodera glycines eggs as influenced by egg age and pre-colonization of cysts by other fungi. J Nematol. 2003;35:271-77. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2620643/
- 39. Askary TH, Martinelli PRP. Biocontrol agents of phytonematodes. CAB International, Wallingford. 2015;pp. fisrt470. https://doi.org/ 10.1079/9781780643755.0000
- 40. Barberchek ME, Kaya HK. Competitive interaction between nematode and Beauveria bassiana in soil borne larvae of Spodoptera exigue. Envium Entomol. 1991;20:707-12. https://doi.org/10.1093/ee/20.2.707
- 41. Bradley CA, Black WE, Kearns R, Wood P. Role of production technology in mycoinsecticide development. Frontiers in industrial microbiology. Boston (MA): Springer; 1992;160-73. https://doi.org/10.1007/978-1-4684-7112-
- 0_11
- 42. Bekanayake HMRK, Jayasundar NJ. Effect of Paecilomyces lilacinus and Beauveria bassiana in controlling Meloidogyne incognita on tomato in Sri Lanka. Nematologia Mediterranea. 1994;22:87-88. https://journals.flvc.org/nemamedi/article/view/69111
- 43. Feng MG, Chen B, Ying SH. Trials of Beauveria bassiana, Paecilomyces fumosoroseus and imidacloprid for management of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) on greenhouse grown lettuce. Biocontrol Sci Technol. 2004;14:489-96. https://doi. org/10.1080/09583150410001682269
- 44. Hatting JL, Wraight SP, Miller RM. Efficiency of Beauveria bassiana (Hyphomycetes) for control of Russian wheat aphid (Homoptera:Aphididae) on resistant wheat under field conditions. Biocontrol Sci Technol. 2004;14:459-73. https://doi.org/10.1080/09583 150410001683501
- 45. Jean PK, Les S, Peter K, Bruce B. Optimal concentration of Beauveria bassiana vectored by bumble bees in relation to pest and bee mortality in greenhouse tomato and sweet pepper. BioControl. 2008;53:797-812. https://doi.org/10.
- 1007/s10526-007-9142-9
- 46. Dutta J, Thakur D. Evaluation of multifarious plant growth promoting traits, antagonistic potential and phylogenetic affiliation of rhizobacteria associated with commercial tea plants grown in Darjeeling. India. PLoS One. 2017;12(8). https://doi.org/10.1371/journal. pone.0182302
- 47. Lin D, Dehai L, Tianjiao Z. New alkaloids and diterpenes from a deep ocean sediment derived fungus Penicillium sp. Tetrahedron. 2009;65(5):1033-39. https://doi.org/10.1016/j.tet.2008.11.078
- 48. Ghayedi S, Abdollahi M. Biocontrol potential of Metarhizium anisopliae (Hypocreales: Clavicipitaceae), isolated from suppressive soils of Boyer-Ahmad region, Iran, against J2s of Heterodera avenae. J Plant Prot Res. 2013;53(2):165-71. https://doi.org/10.2478/jppr-2013-0025
- 49. Hamil PL, Higgeus CE, Boan HE. The structure of Beauvericin, A new depsipepdicle antibiotic toxic to Artemia salina. Tetrahedron Lett. 1969;49:4255-58. https://doi.org/10.1016/S0040-4039(01)88668-8
- 50. Suzuki A, Kanaoka M, Isogai A. Bassianolide, a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Tetrahedron Lett. 1977;25:2167-70. https://doi.org/10.1016/S0040-4039(01)83709-6
- 51. Anke H, Stadler M, Mayer A. Secondary metabolites with nematicidal and antimicrobial activity from nematophagous fungi and ascomycetes. Can J Bot. 1995;72(SI):932-39. https://doi.org/10.1139/b95-341
- 52. Mayer A. PhD Thesis, University of Kaiserslautern, Kaiserslautern, Germany. 1995. https://doi.org/10.13140/RG.2.
- 2.28044.80000/1
- 53. Zhao D, Liu B, Wang Y, Zhu X, Duan Y, Chen L. Screening for nematicidal activities of Beauveria bassiana and associated fungus using culture filtrate. Afr J Microbiol Res. 2013;7(11):974-78. https://doi.org/10.5897/AJMR12.2340
- 54. Mahmoud MF. Pathogenicity of three commercial products of entomopathogenic fungi, Beauveria bassiana, Metarhizum anisopilae and Lecanicillium lecanii against adults of olive fly, Bactrocera oleae (Gmelin) (Diptera:Tephritidae) in the laboratory. Plant Prot Sci. 2009;45(3):98-102. https://doi.org/10.17221/34/2008-PPS
- 55. Jahanbazian L, Abdollahi M, Hussienvand M. Inhibitory effect of Metarhizium anisopliae against Meloidogyne incognita, the causal agent of root knot of tomato, under laboratory condition. National Conference of Modern Topic in Agriculture. 2014. https://www.researchgate.net/publication/277716734
- 56. Khosrawi M, Abdollahi M, Sadravi M. Effect of Metarhizium anisopliae and Trichoderma harzianum on root knot nematode, Meloidogyne javanica. Biol Control Pests Plant Dis. 2014;3(1):67-76. https://doi.org/10.22059/JBIOC.2014.
- 52921
- 57. Jahanbazian L, Abdollahi M, Rezaie R. Combined effect of Metarhizium anisopliae and Pseudomonas fluorescens CHA0 on root-knot nematode, Meloidogyne incognita in tomato. Iran J Plant Pathol. 2015;51(3):339-55. https://ijpp.areeo.ac.ir/article_17805_en.html?lang=fa
- 58. Mohanty SS, Raghavendra K, Mittal PK, Dash AP. Efficacy of culture filtrates of Metarhizium anisopliae against larvae of Anopheles stephensi and Culex quinquefasciatus. J Ind Microbiol Biotechnol. 2008;35:1199-202. https://doi.org/10.1007/s10295-008-0434-6
- 59. Bruck DJ. Ecology of Metarhizium anisopliae in soilless potting media and the rhizosphere: Implications for pest management. Biol Control. 2005;32:155-163. https://doi.org/10.1016/j.biocontrol.2004.09.003
- 60. Wang C, St Leger RJ. The MAD1 adhesion of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesion enables attachment to plants. Eukaryot Cell. 2007;6:808-16. https://doi.org/10.1128/EC.00409-06
- 61. Kershaw MJ, Moorhouse ER, Bateman R, Reynolds SE, Charnley AK. The Role of destruxins in the pathogenicity of Metarhizium anisopliae for three species of insect. J Invertebr Pathol. 1999;74:213–23. https://doi.org/10.1006/jipa.
- 1999.4884
- 62. Roberts DW, Toxins from the entomogenous fungus Metarhizium anisopliae. 1. Production in submerged and surface cultures, and in inorganic and organic nitrogen media. Journal of Invertebrate Pathology. 1966;8:212-21. https://doi/10.1016/0022-2011(66)90131-5
Downloads
Download data is not yet available.