Influence of biogenic silica seed coating on the biochemical parameters of sorghum (var. k12) seeds stored in different containers under ambient conditions
DOI:
https://doi.org/10.14719/pst.5208Keywords:
Biogenic silica, seed coating, cloth bag, super grain bag, seed biochemical parametersAbstract
This research aimed to investigate the biochemical properties of Biogenic silica-coated sorghum seeds stored in various containers at ambient temperatures. Seeds often lose viability and vigour due to suboptimal storage conditions. The packaging material and storage conditions influence a seed's durability and long-term viability. Applying a protective substance to the seeds before storage can help preserve their quality over time. In this study, pre-storage seed coating with Biogenic silica effectively prevented seed degradation, thereby maintaining seed quality throughout storage. The results revealed that, after six months of storage period, seed coated with Biogenic silica with carbon @ 5 ml kg-1 exhibited the lowest electrolytic leakage compared to the control. The natural antioxidants in silica, which accumulate in the epidermal layers of seed cell walls, serve as a physical and mechanical barrier, effectively safeguarding the seeds from deterioration. Among the storage containers used, seeds packed in super grain bags performed better than those stored in cloth bags. The findings demonstrated that coating seeds with biogenic silica containing carbon at 5 ml kg-1 and storing them in super grain bags preserved seed viability, as indicated by decreased electrical conductivity, lower sugar levels, reduced lipid peroxidation, and stable biochemical parameters during the storage time frame.
Downloads
References
Abreha KB, Enyew M, Carlsson AS, Vetukuri RR, Feyissa T, Motlhaodi T, et al. Sorghum in dryland: morphological, physiological and molecular responses of sorghum under drought stress. Planta. 2022;255:1-23. https://doi.org/10.1007/s00425-021-03799-7
Li Q, Wang J, Liu Q, Zhang J, Zhu X, Hua Y, et al. Revealing critical mechanisms in determining sorghum resistance to drought and salt using mRNA, small RNA and degradome sequencing. BMC Plant Biol. 2024;24:547. https://doi.org/10.1186/s12870-024-05230-1
Hariprasanna K, Patil JV. Sorghum: origin, classification, biology and improvement In: Madhusudhana R, Rajendrakumar P, Patil J. (eds). Sorghum Molecular Breeding.Springer, New Delhi. 2015;3-20. https://doi.org/10.1007/978-81-322-2422-8_1
Stefoska-Needham A, Beck EJ, Johnson SK, Tapsell LC. Sorghum: an underutilized cereal whole grain with the potential to assist in the prevention of chronic disease. Food Rev. Int. 201531(4):401-37. https://doi.org/10.1080/87559129.2015.1022832
TeKrony DM, Egli DB, Wickham DA. Corn seed vigor effect on no?tillage field performance. I. Field emergence. Crop Sci. 1989;29(6):1523-28. https://doi.org/10.2135/cropsci1989.0011183x002900060042x
Scott JM. Seed coatings and treatments and their effects on plant establishment. Adv Agron. 1989;42:43-83. https://doi.org/10.1016/S0065-2113(08)60523-4
Sujatha P, Madhavi M, Pallavi M, Bharathi Y, Rao PJ, Rajeswari B, et al. Biological seed coating innovations for sustainable healthy crop growth in tomato. In: Lops F. (Ed). Tomato Cultivation and Consumption-Innovation and Sustainability; 2023. IntechOpen. https://doi.org/10.5772/intechopen.112438
Reddy BP, Bara BM, Krishina RY. Effect of polymer seed coating and seed treatment on seed quality parameters and yield attributing characters of hybrid maize (Zea mays L.). Int J Curr Microbiol App Sci. 2019;8(8):1175-82. https://doi.org/10.20546/ijcmas.2019.808.138
Javed T, Afzal I, Shabbir R, Ikram K, Zaheer MS, Faheem M, et al. Seed coating technology: An innovative and sustainable approach for improving seed quality and crop performance. J Saudi Soc Agric Sci. 2022;21(8):536-45. https://doi.org/10.1016/j.jssas.2022.03.003
Hiloidhari M, Baruah DC. Crop residue biomass for decentralized electrical power generation in rural areas (part 1): Investigation of spatial availability. Renew Sustain Energy Rev. 2011;15(4):1885-92. https://doi.org/10.1016/j.rser.2010.12.010
Shi Y, Zhang Y, Yao H, Wu J, Sun H, Gong H. Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant Physiol Biochem. 2014;78:27-36. https://doi.org/10.1016/j.plaphy.2014.02.009
Hasanaklou NT, Mohagheghi V, Hasanaklou HT, Ma’mani L, Malekmohammadi M, Moradi F, Dalvand Y. Seed nano-priming using silica nanoparticles: effects in seed germination and physiological properties of Stevia Rebaudiana Bertoni. Chem Biol Technol Agric. 2023;10(1):96. https://doi.org/10.1186/s40538-023-00445-0
Naaz H, Rawat K, Saffeullah P, Umar S. Silica nanoparticles synthesis and applications in agriculture for plant fertilization and protection: A review. Environ Chem Lett. 2023;21(1):539-59. https://doi.org/10.1007/s10311-022-01515-9
Azat S, Korobeinyk AV, Moustakas K, Inglezakis VJ. Sustainable production of pure silica from rice husk waste in Kazakhstan. J Clean Prod. 2019;217:352-59. https://doi.org/10.1016/j.jclepro.2019.01.142
Blissett R, Sommerville R, Rowson N, Jones J, Laughlin B. Valorisation of rice husks using a TORBED® combustion process. Fuel Process Technol. 2017;159:247-55. https://doi.org/10.1016/j.fuproc.2017.01.046
Jung DS, Ryou MH, Sung YJ, Park SB, Choi JW. Recycling rice husks for high-capacity lithium battery anodes. Proc Natl Acad Sci. 2013;110(30):12229-34. https://doi.org/10.1073/pnas.1305025110
Della VP, Kühn I, Hotza D. Rice husk ash as an alternate source for active silica production. Mater Lett. 2002;57(4):818-21. https://doi.org/10.1016/S0167-577X(02)00879-0
Bautista EU, Aldas RE, Gagelonia EC. Rice hull furnaces for paddy drying: The Philippine rice research institute's experience. In ACIAR Proceedings. 1996; pp. 253-260.
Singh R, Maheshwari RC, Ojha TP. Development of a husk fired furnace. J Agric Eng Res. 1980;25(2):109-20. https://doi.org/10.1016/0021-8634(80)90053-0
Patel KG, Shettigar RR, Misra NM. Recent advance in silica production technologies from agricultural waste stream. J Adv Agric Technol. 2017;4(3):274-279. http://doi.org/10.18178/joaat.4.3.274-279
Kalapathy U, Proctor A, Shultz J. An improved method for production of silica from rice hull ash. Bioresour Technol. 2002;85(3):285-89. https://doi.org/10.1016/S0960-8524(02)00116-5
Nakamae K, Hano N, Ihara H, Takafuji M. Thermally stable high-contrast iridescent structural colours from silica colloidal crystals doped with monodisperse spherical black carbon particles. Mater Adv. 2021;2(18):5935-41. https://doi.org/10.1039/d1ma00523e
Afzal I, Javed T, Amirkhani M, Taylor AG. Modern seed technology: Seed coating delivery systems for enhancing seed and crop performance. Agriculture. 2020;10(11):526. https://doi.org/10.3390/agriculture10110526
Rocha I, Ma Y, Souza-Alonso P, Vosátka M, Freitas H, Oliveira RS. Seed coating: a tool for delivering beneficial microbes to agricultural crops. Front Plant Sci. 2019; 10:01357. https://doi.org/10.3389/fpls.2019.01357
Pandey DK. Conductivity testing of seeds. In: Linskens HF, Jackson JF. (eds). Seed Analysis, Berlin, Heidelberg: Springer Berlin Heidelberg; 1992. pp. 273-304. https://doi.org/10.1007/978-3-662-01639-8_14
Kittock DL, Law AG. Relationship of seedling vigor to respiration and tetrazolium chloride reduction by germinating wheat seeds. Agron J. 1968;60(3):286-88. https://doi.org/10.2134/agronj1968.00021962006000030012x
Hodges DM, DeLong JM, Forney CF, Prange RK. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 1999; 207:604-11. https://doi.org/10.1007/s004250050524
Lück H. Catalase. InMethods of enzymatic analysis. 1965; pp. 885-894. https://doi.org/10.1016/B978-0-12-395630-9.50158-4
Corona-Carrillo JI, Flores-Ponce M, Chávez-Nájera G, Díaz-Pontones DM. Peroxidase activity in scutella of maize in association with anatomical changes during germination and grain storage. Springer plus. 2014;3:1-6. https://doi.org/10.1186/2193-1801-3-399
Bakhtavar MA, Afzal I. Climate smart dry chain technology for safe storage of quinoa seeds. Sci Rep. 2020;10(1):12554. https://doi.org/10.1038/s41598-020-69190-w
Panse VG, Sukhatme PV. Statistical methods for agricultural workers. 1954.
Minea AA. A review on electrical conductivity of nanoparticle-enhanced fluids. Nanomaterials. 2019;9(11):1592. https://doi.org/10.3390/nano9111592
Zaim NS, Tan HL, Rahman SM, Abu Bakar NF, Osman MS, Thakur VK, Radacsi N. Recent advances in seed coating treatment using nanoparticles and nanofibers for enhanced seed germination and protection. J Plant Growth Regul. 2023;42(12):7374-402. https://doi.org/10.1007/s00344-023-11038-4
Zhu L, Meng T, Khuje S, Ren S. Surfactant templated biogenic nanoporous silica thermal insulation composite. J Mater Chem A. 2024;12:28512-28520. https://doi.org/10.1039/D4TA05605A
Paravar A, Maleki Farahani S, Adetunji AE, Oveisi M, Piri R. Effects of seed moisture content, temperature and storage period on various physiological and biochemical parameters of Lallemantia iberica Fisch. & CA Mey. Acta Physiol Plant. 2023;45(9):105. https://doi.org/10.1007/s11738-023-03581-0
Corbineau F. The effects of storage conditions on seed deterioration and ageing: How to improve seed longevity. Seeds. 2024;3(1):56-75. https://doi.org/10.3390/seeds3010005
Ahamed AS, Sujatha K, Ragupathi KP. Biochemical changes during Seed development and maturation in little millet cv. CO (Samai) 4. J Pharmacogn Phytochem. 2021;10(1):703-06. https://doi.org/10.22271/phyto.2021.v10.i1j.13406
Dadlani M, Gupta A, Sinha SN, Kavali R. Seed storage and packaging. In: Dadlani M, Yadava DK (eds) Seed Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-5888-5_11
Lin YX, Xu HJ, Yin GK, Zhou YC, Lu XX, Xin X. Dynamic changes in membrane lipid metabolism and antioxidant defense during soybean (Glycine max L. Merr.) seed aging. Front Plant Sci. 2022;13:908949. https://doi.org/10.3389/fpls.2022.908949
Tritean N, Tric? B, Dima ?O, Capr? L, Gabor RA, Cimpean A, et al. Mechanistic insights into the plant bio stimulant activity of a novel formulation based on rice husk nanobiosilica embedded in a seed coating alginate film. Front Plant Sci. 2024;15:1349573. https://doi.org/10.3389/fpls.2024.1349573
Gonc G, Gunes A, Akca H, Taskin MB. Green synthesis of biogenic nano-silicon from rice husk and its effect on combined boron and salinity stress tolerance of barley and wheat. J Soil Sci Plant Nutr. 2024;24(1):252-62. https://doi.org/10.1007/s42729-023-01577-w
Mandlik R, Thakral V, Raturi G, Shinde S, Nikoli? M, Tripathi DK, et al. Significance of silicon uptake, transport and deposition in plants. J Exp Bot. 2020;71(21):6703-18. https://doi.org/10.1093/jxb/eraa301
Bansal K, Hooda V, Verma N, Kharewal T, Tehri N, Dhull V, Gahlaut A. Stress alleviation and crop improvement using silicon nanoparticles in agriculture: a review. Silicon. 2022;14(16):10173-86. https://doi.org/10.1007/s12633-022-01755-y
Glibert PM. Silica uptake, assimilation and metabolism: Making cell walls. In: Phytoplankton Whispering: An Introduction to the Physiology and Ecology of Microalgae. Cham: Springer International Publishing; 2024:313-27. https://doi.org/10.1007/978-3-031-53897-1_14
Yahaya AM, Sinniah UR, Misran A. Seed quality of lablab beans (Lablab purpureus L.) as influenced by drying methods and storage temperature. Agronomy. 2022;12(3):699. https://doi.org/10.3390/agronomy12030699
Ma JF, Yamaji N. Functions and transport of silicon in plants. Cell Mol Life Sci. 2008; 65:3049-57. https://doi.org/10.1007/s00018-008-7580-x
Sahebi M, Hanafi MM, Akmar ASN, Rafii MY, Azizi P, Tengoua FF, et al. Importance of silicon and mechanisms of biosilica formation in plants. Biomed Res Int. 2015;2015(1):396010. http://dx.doi.org/10.1155/2015/396010
Bakhtavar MA, Afzal I, Basra SM. Moisture adsorption isotherms and quality of seeds stored in conventional packaging materials and hermetic Super Bag. PLoS One. 2019;14(2):e0207569. https://doi.org/10.1371/journal.pone.0207569
Umesha U, Channakeshava BC, Bhanuprakash K, Nuthan D, Siddaraju R, Lakshmi J. Influence of seed treatment and packaging materials on seed longevity of cluster bean [Cyamopsistetra gonoloba (L.) Taub.]. J Appl Nat Sci. 2017;9(1):482-91. https://doi.org/10.31018/jans.v9i1.1218
Shineeanwarialmas B, Menaka C, Yuvaraja A. Assessment of longevity of single cross maize hybrids and parental lines. Electron J Plant Breed. 2019;10(2):462-75. https://doi.org/10.5958/0975-928X.2019.00059.0
Saxena OP, Singh G, Pakeeraiah T, Pandey N. Seed deterioration studies in some vegetable seeds. Seed Research in Horticulture 215. 1985 May 6:39-44.
https://doi.org/10.17660/ActaHortic.1987.215.5
P?a?ek A, Dubert F, Kope? P, Dziurka M, Kalandyk A, Pastuszak J, Wolko B. Seed hydropriming and smoke water significantly improve low-temperature germination of Lupinus angustifolius L. Int J Mol Sci. 2018 Mar 26;19(4):992. https://doi.org/10.3390/ijms19040992
Xing M, Long Y, Wang Q, Tian X, Fan S, Zhang C, Huang W. Physiological alterations and nondestructive test methods of crop seed vigor: A comprehensive review. Agriculture. 2023;13(3):527. https://doi.org/10.3390/agriculture13030527
Yewle NR, Gupta SV, Patil BN, Mann S, Kandasamy P. Hermetic super grain bags for controlling storage losses caused by Callosobruchus maculatus Fabricius (Coleoptera: Bruchinae) in stored mung bean (Vigna radiata). Bull Entomol. Res. 2023;113(1):98-106. https://doi.org/10.1017/S0007485322000360
Zhang J, Kirkham MB. Drought-stress-induced changes in activities of superoxide dismutase, catalase and peroxidase in wheat species. Plant Cell Physiol. 1994;35(5):785-91. https://doi.org/10.1093/oxfordjournals.pcp.a078658
Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Archives of toxicology. 2023;97(10):2499-574. https://doi.org/10.1007/s00204-023-03562-9
Pinheiro DT, Dias DC, Silva LJ, Martins MS, Finger FL. Oxidative stress, protein metabolism and physiological potential of soybean seeds under weathering deterioration in the pre-harvest phase. Acta Sci Agron. 2023;45:e56910 https://doi.org/10.4025/actasciagron.v45i1.56910
Bewley JD. Physiological aspects of desiccation tolerance.Ann Rev Plant Physiol. 1979;30:195-238. https://doi.org/10.1146/annurev.pp.30.060179.001211
Ebone LA, Caverzan A, Chavarria G. Physiologic alterations in orthodox seeds due to deterioration processes. Plant Physiol Biochem. 2019;145:34-42. https://doi.org/10.1016/j.plaphy.2019.10.028
Narayana Murthy UM, Sun WQ. Protein modification by Amadori and Maillard reactions during seed storage: roles of sugar hydrolysis and lipid peroxidation. J Exp Bot. 2000;51(348):1221-28. https://doi.org/10.1093/jexbot/51.348.1221
Shen Z, Cheng X, Li X, Deng X, Dong X, Wang S, Pu X. Effects of silicon application on leaf structure and physiological characteristics of Glycyrrhiza uralensis Fisch. and Glycyrrhiza inflata Bat. under salt treatment. BMC Plant Biol. 2022;22(1):390. https://doi.org/10.1186/s12870-022-03783-7
Patel KD, Keskin-Erdogan Z, Sawadkar P, Sharifulden NS, Shannon MR, Patel M, et al. Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine. Nanoscale Horiz. 2024;9:1630-1682. https://doi.org/10.1039/D4NH00171K
Thabet SG, Alqudah AM. Unraveling the role of nanoparticles in improving plant resilience under environmental stress condition. Plant Soil. 2024;1-8. https://doi.org/10.1007/s11104-024-06581-2
Agarie S, Hanaoka N, Ueno O, Miyazaki A, Kubota F, Agata W, Kaufman PB. Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Prod Sci. 1998;1(2):96-103. https://doi.org/10.1626/pps.1.96
Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N. Silica nanoparticles for increased silica availability in maize (Zea mays L.) seeds under hydroponic conditions. Curr Nanosci. 2012;8(6):902-08. https://doi.org/10.2174/157341312803989033
Hossain SI, Saha SC, Deplazes E. Phenolic compounds alter the ion permeability of phospholipid bilayers via specific lipid interactions. Phys Chem Chem Phys. 2021;23(39):22352-66. https://doi.org/10.1039/D1CP03250J
Agrawal KK, Yadav A, Kumar S, Saha S, Singh K, Jain D, Almarhoon ZM, Setzer WN, Sharifi-Rad J. In silico assessment of antioxidant activity and toxicity profiling of bioactive molecules from Murraya koenigii. Discov Appl Sci. 2024;6:523. https://doi.org/10.1007/s42452-024-06232-2
Gong H, Zhu X, Chen K, Wang S, Zhang C. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci. 2005;169(2):313-21. http://doi.org/10.1016/j.plantsci.2005.02.023
Bhat JA, Rajora N, Raturi G, Sharma S, Dhiman P, Sanand S, et al. Silicon nanoparticles (SiNPs) in sustainable agriculture: major emphasis on the practicality, efficacy and concerns. Nanoscale Adv. 2021;3:4019-28. https://doi.org/10.1039/D1NA00233C
Stegner M, Wagner J, Roach T. Antioxidant depletion during seed storage under ambient conditions. Seed Sci Res. 2022;32(S3):150-56. https://doi.org/10.1017/S0960258522000101
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 A Krishnaarivanandhan, V Alex Albert, K Sujatha, P Kannan, P Arunachalam
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).