Influence of biogenic silica seed coating on the biochemical parameters of sorghum (var. k12) seeds stored in different containers under ambient conditions

Authors

DOI:

https://doi.org/10.14719/pst.5208

Keywords:

Biogenic silica, seed coating, cloth bag, super grain bag, seed biochemical parameters

Abstract

This research aimed to investigate the biochemical properties of Biogenic silica-coated sorghum seeds stored in various containers at ambient temperatures. Seeds often lose viability and vigour due to suboptimal storage conditions. The packaging material and storage conditions influence a seed's durability and long-term viability. Applying a protective substance to the seeds before storage can help preserve their quality over time. In this study, pre-storage seed coating with Biogenic silica effectively prevented seed degradation, thereby maintaining seed quality throughout storage. The results revealed that, after six months of storage period, seed coated with Biogenic silica with carbon @ 5 ml kg-1 exhibited the lowest electrolytic leakage compared to the control. The natural antioxidants in silica, which accumulate in the epidermal layers of seed cell walls, serve as a physical and mechanical barrier, effectively safeguarding the seeds from deterioration. Among the storage containers used, seeds packed in super grain bags performed better than those stored in cloth bags. The findings demonstrated that coating seeds with biogenic silica containing carbon at 5 ml kg-1 and storing them in super grain bags preserved seed viability, as indicated by decreased electrical conductivity, lower sugar levels, reduced lipid peroxidation, and stable biochemical parameters during the storage time frame.

Downloads

Download data is not yet available.

References

Abreha KB, Enyew M, Carlsson AS, Vetukuri RR, Feyissa T, Motlhaodi T, et al. Sorghum in dryland: morphological, physiological and molecular responses of sorghum under drought stress. Planta. 2022;255:1-23. https://doi.org/10.1007/s00425-021-03799-7

Li Q, Wang J, Liu Q, Zhang J, Zhu X, Hua Y, et al. Revealing critical mechanisms in determining sorghum resistance to drought and salt using mRNA, small RNA and degradome sequencing. BMC Plant Biol. 2024;24:547. https://doi.org/10.1186/s12870-024-05230-1

Hariprasanna K, Patil JV. Sorghum: origin, classification, biology and improvement In: Madhusudhana R, Rajendrakumar P, Patil J. (eds). Sorghum Molecular Breeding.Springer, New Delhi. 2015;3-20. https://doi.org/10.1007/978-81-322-2422-8_1

Stefoska-Needham A, Beck EJ, Johnson SK, Tapsell LC. Sorghum: an underutilized cereal whole grain with the potential to assist in the prevention of chronic disease. Food Rev. Int. 201531(4):401-37. https://doi.org/10.1080/87559129.2015.1022832

TeKrony DM, Egli DB, Wickham DA. Corn seed vigor effect on no?tillage field performance. I. Field emergence. Crop Sci. 1989;29(6):1523-28. https://doi.org/10.2135/cropsci1989.0011183x002900060042x

Scott JM. Seed coatings and treatments and their effects on plant establishment. Adv Agron. 1989;42:43-83. https://doi.org/10.1016/S0065-2113(08)60523-4

Sujatha P, Madhavi M, Pallavi M, Bharathi Y, Rao PJ, Rajeswari B, et al. Biological seed coating innovations for sustainable healthy crop growth in tomato. In: Lops F. (Ed). Tomato Cultivation and Consumption-Innovation and Sustainability; 2023. IntechOpen. https://doi.org/10.5772/intechopen.112438

Reddy BP, Bara BM, Krishina RY. Effect of polymer seed coating and seed treatment on seed quality parameters and yield attributing characters of hybrid maize (Zea mays L.). Int J Curr Microbiol App Sci. 2019;8(8):1175-82. https://doi.org/10.20546/ijcmas.2019.808.138

Javed T, Afzal I, Shabbir R, Ikram K, Zaheer MS, Faheem M, et al. Seed coating technology: An innovative and sustainable approach for improving seed quality and crop performance. J Saudi Soc Agric Sci. 2022;21(8):536-45. https://doi.org/10.1016/j.jssas.2022.03.003

Hiloidhari M, Baruah DC. Crop residue biomass for decentralized electrical power generation in rural areas (part 1): Investigation of spatial availability. Renew Sustain Energy Rev. 2011;15(4):1885-92. https://doi.org/10.1016/j.rser.2010.12.010

Shi Y, Zhang Y, Yao H, Wu J, Sun H, Gong H. Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant Physiol Biochem. 2014;78:27-36. https://doi.org/10.1016/j.plaphy.2014.02.009

Hasanaklou NT, Mohagheghi V, Hasanaklou HT, Ma’mani L, Malekmohammadi M, Moradi F, Dalvand Y. Seed nano-priming using silica nanoparticles: effects in seed germination and physiological properties of Stevia Rebaudiana Bertoni. Chem Biol Technol Agric. 2023;10(1):96. https://doi.org/10.1186/s40538-023-00445-0

Naaz H, Rawat K, Saffeullah P, Umar S. Silica nanoparticles synthesis and applications in agriculture for plant fertilization and protection: A review. Environ Chem Lett. 2023;21(1):539-59. https://doi.org/10.1007/s10311-022-01515-9

Azat S, Korobeinyk AV, Moustakas K, Inglezakis VJ. Sustainable production of pure silica from rice husk waste in Kazakhstan. J Clean Prod. 2019;217:352-59. https://doi.org/10.1016/j.jclepro.2019.01.142

Blissett R, Sommerville R, Rowson N, Jones J, Laughlin B. Valorisation of rice husks using a TORBED® combustion process. Fuel Process Technol. 2017;159:247-55. https://doi.org/10.1016/j.fuproc.2017.01.046

Jung DS, Ryou MH, Sung YJ, Park SB, Choi JW. Recycling rice husks for high-capacity lithium battery anodes. Proc Natl Acad Sci. 2013;110(30):12229-34. https://doi.org/10.1073/pnas.1305025110

Della VP, Kühn I, Hotza D. Rice husk ash as an alternate source for active silica production. Mater Lett. 2002;57(4):818-21. https://doi.org/10.1016/S0167-577X(02)00879-0

Bautista EU, Aldas RE, Gagelonia EC. Rice hull furnaces for paddy drying: The Philippine rice research institute's experience. In ACIAR Proceedings. 1996; pp. 253-260.

Singh R, Maheshwari RC, Ojha TP. Development of a husk fired furnace. J Agric Eng Res. 1980;25(2):109-20. https://doi.org/10.1016/0021-8634(80)90053-0

Patel KG, Shettigar RR, Misra NM. Recent advance in silica production technologies from agricultural waste stream. J Adv Agric Technol. 2017;4(3):274-279. http://doi.org/10.18178/joaat.4.3.274-279

Kalapathy U, Proctor A, Shultz J. An improved method for production of silica from rice hull ash. Bioresour Technol. 2002;85(3):285-89. https://doi.org/10.1016/S0960-8524(02)00116-5

Nakamae K, Hano N, Ihara H, Takafuji M. Thermally stable high-contrast iridescent structural colours from silica colloidal crystals doped with monodisperse spherical black carbon particles. Mater Adv. 2021;2(18):5935-41. https://doi.org/10.1039/d1ma00523e

Afzal I, Javed T, Amirkhani M, Taylor AG. Modern seed technology: Seed coating delivery systems for enhancing seed and crop performance. Agriculture. 2020;10(11):526. https://doi.org/10.3390/agriculture10110526

Rocha I, Ma Y, Souza-Alonso P, Vosátka M, Freitas H, Oliveira RS. Seed coating: a tool for delivering beneficial microbes to agricultural crops. Front Plant Sci. 2019; 10:01357. https://doi.org/10.3389/fpls.2019.01357

Pandey DK. Conductivity testing of seeds. In: Linskens HF, Jackson JF. (eds). Seed Analysis, Berlin, Heidelberg: Springer Berlin Heidelberg; 1992. pp. 273-304. https://doi.org/10.1007/978-3-662-01639-8_14

Kittock DL, Law AG. Relationship of seedling vigor to respiration and tetrazolium chloride reduction by germinating wheat seeds. Agron J. 1968;60(3):286-88. https://doi.org/10.2134/agronj1968.00021962006000030012x

Hodges DM, DeLong JM, Forney CF, Prange RK. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 1999; 207:604-11. https://doi.org/10.1007/s004250050524

Lück H. Catalase. InMethods of enzymatic analysis. 1965; pp. 885-894. https://doi.org/10.1016/B978-0-12-395630-9.50158-4

Corona-Carrillo JI, Flores-Ponce M, Chávez-Nájera G, Díaz-Pontones DM. Peroxidase activity in scutella of maize in association with anatomical changes during germination and grain storage. Springer plus. 2014;3:1-6. https://doi.org/10.1186/2193-1801-3-399

Bakhtavar MA, Afzal I. Climate smart dry chain technology for safe storage of quinoa seeds. Sci Rep. 2020;10(1):12554. https://doi.org/10.1038/s41598-020-69190-w

Panse VG, Sukhatme PV. Statistical methods for agricultural workers. 1954.

Minea AA. A review on electrical conductivity of nanoparticle-enhanced fluids. Nanomaterials. 2019;9(11):1592. https://doi.org/10.3390/nano9111592

Zaim NS, Tan HL, Rahman SM, Abu Bakar NF, Osman MS, Thakur VK, Radacsi N. Recent advances in seed coating treatment using nanoparticles and nanofibers for enhanced seed germination and protection. J Plant Growth Regul. 2023;42(12):7374-402. https://doi.org/10.1007/s00344-023-11038-4

Zhu L, Meng T, Khuje S, Ren S. Surfactant templated biogenic nanoporous silica thermal insulation composite. J Mater Chem A. 2024;12:28512-28520. https://doi.org/10.1039/D4TA05605A

Paravar A, Maleki Farahani S, Adetunji AE, Oveisi M, Piri R. Effects of seed moisture content, temperature and storage period on various physiological and biochemical parameters of Lallemantia iberica Fisch. & CA Mey. Acta Physiol Plant. 2023;45(9):105. https://doi.org/10.1007/s11738-023-03581-0

Corbineau F. The effects of storage conditions on seed deterioration and ageing: How to improve seed longevity. Seeds. 2024;3(1):56-75. https://doi.org/10.3390/seeds3010005

Ahamed AS, Sujatha K, Ragupathi KP. Biochemical changes during Seed development and maturation in little millet cv. CO (Samai) 4. J Pharmacogn Phytochem. 2021;10(1):703-06. https://doi.org/10.22271/phyto.2021.v10.i1j.13406

Dadlani M, Gupta A, Sinha SN, Kavali R. Seed storage and packaging. In: Dadlani M, Yadava DK (eds) Seed Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-5888-5_11

Lin YX, Xu HJ, Yin GK, Zhou YC, Lu XX, Xin X. Dynamic changes in membrane lipid metabolism and antioxidant defense during soybean (Glycine max L. Merr.) seed aging. Front Plant Sci. 2022;13:908949. https://doi.org/10.3389/fpls.2022.908949

Tritean N, Tric? B, Dima ?O, Capr? L, Gabor RA, Cimpean A, et al. Mechanistic insights into the plant bio stimulant activity of a novel formulation based on rice husk nanobiosilica embedded in a seed coating alginate film. Front Plant Sci. 2024;15:1349573. https://doi.org/10.3389/fpls.2024.1349573

Gonc G, Gunes A, Akca H, Taskin MB. Green synthesis of biogenic nano-silicon from rice husk and its effect on combined boron and salinity stress tolerance of barley and wheat. J Soil Sci Plant Nutr. 2024;24(1):252-62. https://doi.org/10.1007/s42729-023-01577-w

Mandlik R, Thakral V, Raturi G, Shinde S, Nikoli? M, Tripathi DK, et al. Significance of silicon uptake, transport and deposition in plants. J Exp Bot. 2020;71(21):6703-18. https://doi.org/10.1093/jxb/eraa301

Bansal K, Hooda V, Verma N, Kharewal T, Tehri N, Dhull V, Gahlaut A. Stress alleviation and crop improvement using silicon nanoparticles in agriculture: a review. Silicon. 2022;14(16):10173-86. https://doi.org/10.1007/s12633-022-01755-y

Glibert PM. Silica uptake, assimilation and metabolism: Making cell walls. In: Phytoplankton Whispering: An Introduction to the Physiology and Ecology of Microalgae. Cham: Springer International Publishing; 2024:313-27. https://doi.org/10.1007/978-3-031-53897-1_14

Yahaya AM, Sinniah UR, Misran A. Seed quality of lablab beans (Lablab purpureus L.) as influenced by drying methods and storage temperature. Agronomy. 2022;12(3):699. https://doi.org/10.3390/agronomy12030699

Ma JF, Yamaji N. Functions and transport of silicon in plants. Cell Mol Life Sci. 2008; 65:3049-57. https://doi.org/10.1007/s00018-008-7580-x

Sahebi M, Hanafi MM, Akmar ASN, Rafii MY, Azizi P, Tengoua FF, et al. Importance of silicon and mechanisms of biosilica formation in plants. Biomed Res Int. 2015;2015(1):396010. http://dx.doi.org/10.1155/2015/396010

Bakhtavar MA, Afzal I, Basra SM. Moisture adsorption isotherms and quality of seeds stored in conventional packaging materials and hermetic Super Bag. PLoS One. 2019;14(2):e0207569. https://doi.org/10.1371/journal.pone.0207569

Umesha U, Channakeshava BC, Bhanuprakash K, Nuthan D, Siddaraju R, Lakshmi J. Influence of seed treatment and packaging materials on seed longevity of cluster bean [Cyamopsistetra gonoloba (L.) Taub.]. J Appl Nat Sci. 2017;9(1):482-91. https://doi.org/10.31018/jans.v9i1.1218

Shineeanwarialmas B, Menaka C, Yuvaraja A. Assessment of longevity of single cross maize hybrids and parental lines. Electron J Plant Breed. 2019;10(2):462-75. https://doi.org/10.5958/0975-928X.2019.00059.0

Saxena OP, Singh G, Pakeeraiah T, Pandey N. Seed deterioration studies in some vegetable seeds. Seed Research in Horticulture 215. 1985 May 6:39-44.

https://doi.org/10.17660/ActaHortic.1987.215.5

P?a?ek A, Dubert F, Kope? P, Dziurka M, Kalandyk A, Pastuszak J, Wolko B. Seed hydropriming and smoke water significantly improve low-temperature germination of Lupinus angustifolius L. Int J Mol Sci. 2018 Mar 26;19(4):992. https://doi.org/10.3390/ijms19040992

Xing M, Long Y, Wang Q, Tian X, Fan S, Zhang C, Huang W. Physiological alterations and nondestructive test methods of crop seed vigor: A comprehensive review. Agriculture. 2023;13(3):527. https://doi.org/10.3390/agriculture13030527

Yewle NR, Gupta SV, Patil BN, Mann S, Kandasamy P. Hermetic super grain bags for controlling storage losses caused by Callosobruchus maculatus Fabricius (Coleoptera: Bruchinae) in stored mung bean (Vigna radiata). Bull Entomol. Res. 2023;113(1):98-106. https://doi.org/10.1017/S0007485322000360

Zhang J, Kirkham MB. Drought-stress-induced changes in activities of superoxide dismutase, catalase and peroxidase in wheat species. Plant Cell Physiol. 1994;35(5):785-91. https://doi.org/10.1093/oxfordjournals.pcp.a078658

Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Archives of toxicology. 2023;97(10):2499-574. https://doi.org/10.1007/s00204-023-03562-9

Pinheiro DT, Dias DC, Silva LJ, Martins MS, Finger FL. Oxidative stress, protein metabolism and physiological potential of soybean seeds under weathering deterioration in the pre-harvest phase. Acta Sci Agron. 2023;45:e56910 https://doi.org/10.4025/actasciagron.v45i1.56910

Bewley JD. Physiological aspects of desiccation tolerance.Ann Rev Plant Physiol. 1979;30:195-238. https://doi.org/10.1146/annurev.pp.30.060179.001211

Ebone LA, Caverzan A, Chavarria G. Physiologic alterations in orthodox seeds due to deterioration processes. Plant Physiol Biochem. 2019;145:34-42. https://doi.org/10.1016/j.plaphy.2019.10.028

Narayana Murthy UM, Sun WQ. Protein modification by Amadori and Maillard reactions during seed storage: roles of sugar hydrolysis and lipid peroxidation. J Exp Bot. 2000;51(348):1221-28. https://doi.org/10.1093/jexbot/51.348.1221

Shen Z, Cheng X, Li X, Deng X, Dong X, Wang S, Pu X. Effects of silicon application on leaf structure and physiological characteristics of Glycyrrhiza uralensis Fisch. and Glycyrrhiza inflata Bat. under salt treatment. BMC Plant Biol. 2022;22(1):390. https://doi.org/10.1186/s12870-022-03783-7

Patel KD, Keskin-Erdogan Z, Sawadkar P, Sharifulden NS, Shannon MR, Patel M, et al. Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine. Nanoscale Horiz. 2024;9:1630-1682. https://doi.org/10.1039/D4NH00171K

Thabet SG, Alqudah AM. Unraveling the role of nanoparticles in improving plant resilience under environmental stress condition. Plant Soil. 2024;1-8. https://doi.org/10.1007/s11104-024-06581-2

Agarie S, Hanaoka N, Ueno O, Miyazaki A, Kubota F, Agata W, Kaufman PB. Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Prod Sci. 1998;1(2):96-103. https://doi.org/10.1626/pps.1.96

Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N. Silica nanoparticles for increased silica availability in maize (Zea mays L.) seeds under hydroponic conditions. Curr Nanosci. 2012;8(6):902-08. https://doi.org/10.2174/157341312803989033

Hossain SI, Saha SC, Deplazes E. Phenolic compounds alter the ion permeability of phospholipid bilayers via specific lipid interactions. Phys Chem Chem Phys. 2021;23(39):22352-66. https://doi.org/10.1039/D1CP03250J

Agrawal KK, Yadav A, Kumar S, Saha S, Singh K, Jain D, Almarhoon ZM, Setzer WN, Sharifi-Rad J. In silico assessment of antioxidant activity and toxicity profiling of bioactive molecules from Murraya koenigii. Discov Appl Sci. 2024;6:523. https://doi.org/10.1007/s42452-024-06232-2

Gong H, Zhu X, Chen K, Wang S, Zhang C. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci. 2005;169(2):313-21. http://doi.org/10.1016/j.plantsci.2005.02.023

Bhat JA, Rajora N, Raturi G, Sharma S, Dhiman P, Sanand S, et al. Silicon nanoparticles (SiNPs) in sustainable agriculture: major emphasis on the practicality, efficacy and concerns. Nanoscale Adv. 2021;3:4019-28. https://doi.org/10.1039/D1NA00233C

Stegner M, Wagner J, Roach T. Antioxidant depletion during seed storage under ambient conditions. Seed Sci Res. 2022;32(S3):150-56. https://doi.org/10.1017/S0960258522000101

Published

05-12-2024

How to Cite

1.
Krishnaarivanandhan A, Alex Albert V, Sujatha K, Kannan P, Arunachalam P. Influence of biogenic silica seed coating on the biochemical parameters of sorghum (var. k12) seeds stored in different containers under ambient conditions. Plant Sci. Today [Internet]. 2024 Dec. 5 [cited 2024 Dec. 22];11(sp4). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/5208