Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 11 No. sp4 (2024): Recent Advances in Agriculture by Young Minds - I

Influence of biogenic silica seed coating on the biochemical parameters of sorghum (var. k12) seeds stored in different containers under ambient conditions

DOI
https://doi.org/10.14719/pst.5208
Submitted
22 September 2024
Published
05-12-2024 — Updated on 12-03-2025
Versions

Abstract

This research aimed to investigate the biochemical properties of biogenic silica-coated sorghum seeds stored in various containers at ambient temperatures. Seeds often lose viability and vigour due to suboptimal storage conditions. The packaging material and storage conditions influence a seed's durability and long-term viability. Applying a protective substance to the seeds before storage can help preserve their quality over time. In this study, pre-storage seed coating with biogenic silica effectively prevented seed degradation, thereby maintaining seed quality throughout storage. The results revealed that, after six months of storage period, seed coated with biogenic silica with carbon at 5 mL kg-1 exhibited the lowest electrolytic leakage compared to the control. The natural antioxidants in silica, which accumulate in the epidermal layers of seed cell walls, serve as a physical and mechanical barrier, effectively safeguarding the seeds from deterioration. Among the storage containers used, seeds packed in super grain bags performed better than those stored in cloth bags. The findings demonstrated that coating seeds with biogenic silica containing carbon at 5 mL kg-1 and storing them in super grain bags preserved seed viability, as indicated by decreased electrical conductivity (EC), lower sugar levels, reduced lipid peroxidation (LPO) and stable biochemical parameters during the storage time frame.

References

  1. Abreha KB, Enyew M, Carlsson AS, Vetukuri RR, Feyissa T, Motlhaodi T, et al. Sorghum in dryland: Morphological, physiological and molecular responses of sorghum under drought stress. Planta. 2022;255:1-23. https://doi.org/10.1007/s00425-021-03799-7
  2. Li Q, Wang J, Liu Q, Zhang J, Zhu X, Hua Y, et al. Revealing critical mechanisms in determining sorghum resistance to drought and salt using mRNA, small RNA and degradome sequencing. BMC Plant Biol. 2024;24:547. https://doi.org/10.1186/s12870-024-05230-1
  3. Hariprasanna K, Patil JV. Sorghum: Origin, classification, biology and improvement. In: Madhusudhana R, Rajendrakumar P, Patil J, editors. Sorghum Molecular Breeding. Springer, New Delhi. 2015;3-20. https://doi.org/10.1007/978-81-322-2422-8_1
  4. Stefoska-Needham A, Beck EJ, Johnson SK, Tapsell LC. Sorghum: An underutilized cereal whole grain with the potential to assist in the prevention of chronic disease. Food Rev. Int. 2015;31(4):401-37. https://doi.org/10.1080/87559129.2015.1022832
  5. TeKrony DM, Egli DB, Wickham DA. Corn seed vigor effect on no-tillage field performance. I. Field emergence. Crop Sci. 1989;29(6):1523-28. https://doi.org/10.2135/cropsci1989.0011183x002900060042x
  6. Scott JM. Seed coatings and treatments and their effects on plant establishment. Adv Agron. 1989;42:43-83. https://doi.org/10.1016/S0065-2113(08)60523-4
  7. Sujatha P, Madhavi M, Pallavi M, Bharathi Y, Rao PJM, r SP, dy AA. Biological seed coating innovations for sustainable healthy crop growth in tomato. In: Lops F, editor. Tomato cultivation and consumption - Innovation and sustainability. London: IntechOpen; 2024. https://doi.org/10.5772/intechopen.112438
  8. Reddy BP, Bara BM, Krishina RY. Effect of polymer seed coating and seed treatment on seed quality parameters and yield attributing characters of hybrid maize (Zea mays L.). Int J Curr Microbiol App Sci. 2019;8(8):1175-82. https://doi.org/10.20546/ijcmas.2019.808.138
  9. Javed T, Afzal I, Shabbir R, Ikram K, Zaheer MS, Faheem M, et al. Seed coating technology: An innovative and sustainable approach for improving seed quality and crop performance. J Saudi Soc Agric Sci. 2022;21(8):536-45. https://doi.org/10.1016/j.jssas.2022.03.003
  10. Hiloidhari M, Baruah DC. Crop residue biomass for decentralized electrical power generation in rural areas (part 1): Investigation of spatial availability. Renew Sustain Energy Rev. 2011;15(4):1885-92. https://doi.org/10.1016/j.rser.2010.12.010
  11. Shi Y, Zhang Y, Yao H, Wu J, Sun H, Gong H. Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant Physiol Biochem. 2014;78:27-36. https://doi.org/10.1016/j.plaphy.2014.02.009
  12. Hasanaklou NT, Mohagheghi V, Hasanaklou HT, Ma’mani L, Malekmohammadi M, Moradi F, et al. Seed nano-priming using silica nanoparticles: Effects in seed germination and physiological properties of Stevia rebaudiana Bertoni. Chem Biol Technol Agric. 2023;10(1):96. https://doi.org/10.1186/s40538-023-00445-0
  13. Naaz H, Rawat K, Saffeullah P, Umar S. Silica nanoparticles synthesis and applications in agriculture for plant fertilization and protection: A review. Environ Chem Lett. 2023;21(1):539-59. https://doi.org/10.1007/s10311-022-01515-9
  14. Azat S, Korobeinyk AV, Moustakas K, Inglezakis VJ. Sustainable production of pure silica from rice husk waste in Kazakhstan. J Clean Prod. 2019;217:352-59. https://doi.org/10.1016/j.jclepro.2019.01.142
  15. Blissett R, Sommerville R, Rowson N, Jones J, Laughlin B. Valorisation of rice husks using a TORBED® combustion process. Fuel Process Technol. 2017;159:247-55. https://doi.org/10.1016/j.fuproc.2017.01.046
  16. Jung DS, Ryou MH, Sung YJ, Park SB, Choi JW. Recycling rice husks for high-capacity lithium battery anodes. Proc Natl Acad Sci. 2013;110(30):12229-34. https://doi.org/10.1073/pnas.1305025110
  17. Della VP, Kühn I, Hotza D. Rice husk ash as an alternate source for active silica production. Mater Lett. 2002;57(4):818-21. https://doi.org/10.1016/S0167-577X(02)00879-0
  18. Bautista EU, Aldas RE, Gagelonia EC. Rice hull furnaces for paddy drying: The Philippine rice research institute's experience. In ACIAR Proceedings. 1996;253-260.
  19. Singh R, Maheshwari RC, Ojha TP. Development of a husk fired furnace. J Agric Eng Res. 1980;25(2):109-20. https://doi.org/10.1016/0021-8634(80)90053-0
  20. Patel KG, Shettigar RR, Misra NM. Recent advance in silica production technologies from agricultural waste stream. J Adv Agric Technol. 2017;4(3):274-279. http://doi.org/10.18178/joaat.4.3.274-279
  21. Kalapathy U, Proctor A, Shultz J. An improved method for production of silica from rice hull ash. Bioresour Technol. 2002;85(3):285-89. https://doi.org/10.1016/S0960-8524(02)00116-5
  22. Nakamae K, Hano N, Ihara H, Takafuji M. Thermally stable high-contrast iridescent structural colours from silica colloidal crystals doped with monodisperse spherical black carbon particles. Mater Adv. 2021;2(18):5935-41. https://doi.org/10.1039/d1ma00523e
  23. Afzal I, Javed T, Amirkhani M, Taylor AG. Modern seed technology: Seed coating delivery systems for enhancing seed and crop performance. Agriculture. 2020;10(11):526. https://doi.org/10.3390/agriculture10110526
  24. Rocha I, Ma Y, Souza-Alonso P, Vosátka M, Freitas H, Oliveira RS. Seed coating: A tool for delivering beneficial microbes to agricultural crops. Front Plant Sci. 2019;10:01357. https://doi.org/10.3389/fpls.2019.01357
  25. Pandey DK. Conductivity testing of seeds. In: Linskens HF, Jackson JF, editors. Seed analysis. Modern methods of plant analysis, vol 14. Berlin, Heidelberg: Springer; 1992. p. 273–304. https://doi.org/10.1007/978-3-662-01639-8_14
  26. Kittock DL, Law AG. Relationship of seedling vigor to respiration and tetrazolium chloride reduction by germinating wheat seeds. Agron J. 1968;60(3):286-88. https://doi.org/10.2134/agronj1968.00021962006000030012x
  27. Hodges DM, DeLong JM, Forney CF, Prange RK. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 1999; 207:604-11. https://doi.org/10.1007/s004250050524
  28. Lück H. Catalase. In: Bergmeyer HU, editor. Methods of enzymatic analysis. New York: Academic Press; 1965. p. 885–94. https://doi.org/10.1016/B978-0-12-395630-9.50158-4
  29. Corona-Carrillo JI, Flores-Ponce M, Chávez-Nájera G, Díaz-Pontones DM. Peroxidase activity in scutella of maize in association with anatomical changes during germination and grain storage. Springer Plus. 2014;3:399. https://doi.org/10.1186/2193-1801-3-399
  30. Bakhtavar MA, Afzal I. Climate smart dry chain technology for safe storage of quinoa seeds. Sci Rep. 2020;10(1):12554. https://doi.org/10.1038/s41598-020-69190-w
  31. Panse VG, Sukhatme PV. Statistical methods for agricultural workers. 2nd ed. New Delhi: Indian Council of Agricultural Research; 1967.
  32. Minea AA. A review on electrical conductivity of nanoparticle-enhanced fluids. Nanomaterials. 2019;9(11):1592. https://doi.org/10.3390/nano9111592
  33. Zaim NS, Tan HL, Rahman SM, Abu Bakar NF, Osman MS, Thakur VK, Radacsi N. Recent advances in seed coating treatment using nanoparticles and nanofibers for enhanced seed germination and protection. J Plant Growth Regul. 2023;42(12):7374-402. https://doi.org/10.1007/s00344-023-11038-4
  34. Zhu L, Meng T, Khuje S, Ren S. Surfactant templated biogenic nanoporous silica thermal insulation composite. J Mater Chem A. 2024;12:28512-28520. https://doi.org/10.1039/D4TA05605A
  35. Paravar A, Maleki Farahani S, Adetunji AE, Oveisi M, Piri R. Effects of seed moisture content, temperature and storage period on various physiological and biochemical parameters of Lallemantia iberica Fisch. & CA Mey. Acta Physiol Plant. 2023;45(9):105. https://doi.org/10.1007/s11738-023-03581-0
  36. Corbineau F. The effects of storage conditions on seed deterioration and ageing: How to improve seed longevity. Seeds. 2024;3(1):56-75. https://doi.org/10.3390/seeds3010005
  37. Ahamed AS, Sujatha K, Ragupathi KP. Biochemical changes during Seed development and maturation in little millet cv. CO (Samai) 4. J Pharmacogn Phytochem. 2021;10(1):703-06. https://doi.org/10.22271/phyto.2021.v10.i1j.13406
  38. Dadlani M, Gupta A, Sinha SN, Kavali R. Seed storage and packaging. In: Dadlani M, Yadava DK, editors. Seed science and technology. Singapore: Springer; 2023. p. 239–66. https://doi.org/10.1007/978-981-19-5888-5_11
  39. Lin YX, Xu HJ, Yin GK, Zhou YC, Lu XX, Xin X. Dynamic changes in membrane lipid metabolism and antioxidant defense during soybean (Glycine max L. Merr.) seed aging. Front Plant Sci. 2022;13:908949. https://doi.org/10.3389/fpls.2022.908949
  40. Tritean N, Trica B, Dima SO, Capra L, Gabor RA, Cimpean A, et al. Mechanistic insights into the plant bio stimulant activity of a novel formulation based on rice husk nanobiosilica embedded in a seed coating alginate film. Front Plant Sci. 2024;15:1349573. https://doi.org/10.3389/fpls.2024.1349573
  41. Gonc G, Gunes A, Akca H, Taskin MB. Green synthesis of biogenic nano-silicon from rice husk and its effect on combined boron and salinity stress tolerance of barley and wheat. J Soil Sci Plant Nutr. 2024;24(1):252-62. https://doi.org/10.1007/s42729-023-01577-w
  42. Mandlik R, Thakral V, Raturi G, Shinde S, Nikolic M, Tripathi DK, et al. Significance of silicon uptake, transport and deposition in plants. J Exp Bot. 2020;71(21):6703-18. https://doi.org/10.1093/jxb/eraa301
  43. Bansal K, Hooda V, Verma N, Kharewal T, Tehri N, Dhull V, Gahlaut A. Stress alleviation and crop improvement using silicon nanoparticles in agriculture: A review. Silicon. 2022;14(16):10173-86. https://doi.org/10.1007/s12633-022-01755-y
  44. Glibert PM. Silica uptake, assimilation and metabolism: Making cell walls. In: Phytoplankton whispering: An introduction to the physiology and ecology of microalgae. Cham: Springer; 2024. p. 313–27. https://doi.org/10.1007/978-3-031-53897-1_14
  45. Yahaya AM, Sinniah UR, Misran A. Seed quality of lablab beans (Lablab purpureus L.) as influenced by drying methods and storage temperature. Agronomy. 2022;12(3):699. https://doi.org/10.3390/agronomy12030699
  46. Ma JF, Yamaji N. Functions and transport of silicon in plants. Cell Mol Life Sci. 2008; 65:3049-57. https://doi.org/10.1007/s00018-008-7580-x
  47. Sahebi M, Hanafi MM, Akmar ASN, Rafii MY, Azizi P, Tengoua FF, et al. Importance of silicon and mechanisms of biosilica formation in plants. Biomed Res Int. 2015;2015(1):396010. http://dx.doi.org/10.1155/2015/396010
  48. Bakhtavar MA, Afzal I, Basra SM. Moisture adsorption isotherms and quality of seeds stored in conventional packaging materials and hermetic Super Bag. PLoS One. 2019;14(2):e0207569. https://doi.org/10.1371/journal.pone.0207569
  49. Umesha U, Channakeshava BC, Bhanuprakash K, Nuthan D, Siddaraju R, Lakshmi J. Influence of seed treatment and packaging materials on seed longevity of cluster bean [Cyamopsistetra gonoloba (L.) Taub.]. J Appl Nat Sci. 2017;9(1):482-91. https://doi.org/10.31018/jans.v9i1.1218
  50. Shineeanwarialmas B, Menaka C, Yuvaraja A. Assessment of longevity of single cross maize hybrids and parental lines. Electron J Plant Breed. 2019;10(2):462-75. https://doi.org/10.5958/0975-928X.2019.00059.0
  51. Saxena OP, Singh G, Pakeeraiah T, Pandey N. Seed deterioration studies in some vegetable seeds. Acta Hortic. 1987;215:39–44. https://doi.org/10.17660/ActaHortic.1987.215.5
  52. Ptazek A, Dubert F, Kopec P, Dziurka M, Kalandyk A, Pastuszak J, et al. Seed hydropriming and smoke water significantly improve low-temperature germination of Lupinus angustifolius L. Int J Mol Sci. 2018;19(4):992. https://doi.org/10.3390/ijms19040992
  53. Xing M, Long Y, Wang Q, Tian X, Fan S, Zhang C, et al. Physiological alterations and nondestructive test methods of crop seed vigor: A comprehensive review. Agriculture. 2023;13(3):527. https://doi.org/10.3390/agriculture13030527
  54. Yewle NR, Gupta SV, Patil BN, Mann S, Kandasamy P. Hermetic super grain bags for controlling storage losses caused by Callosobruchus maculatus Fabricius (Coleoptera: Bruchinae) in stored mung bean (Vigna radiata). Bull Entomol Res. 2023;113(1):98-106. https://doi.org/10.1017/S0007485322000360
  55. Zhang J, Kirkham MB. Drought-stress-induced changes in activities of superoxide dismutase, catalase and peroxidase in wheat species. Plant Cell Physiol. 1994;35(5):785-91. https://doi.org/10.1093/oxfordjournals.pcp.a078658
  56. Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch Toxicol. 2023;97:2499–2574. https://doi.org/10.1007/s00204-023-03562-9
  57. Pinheiro DT, Dias DC, Silva LJ, Martins MS, Finger FL. Oxidative stress, protein metabolism and physiological potential of soybean seeds under weathering deterioration in the pre-harvest phase. Acta Sci Agron. 2023;45:e56910 https://doi.org/10.4025/actasciagron.v45i1.56910
  58. Bewley JD. Physiological aspects of desiccation tolerance. Ann Rev Plant Physiol. 1979;30:195-238. https://doi.org/10.1146/annurev.pp.30.060179.001211
  59. Ebone LA, Caverzan A, Chavarria G. Physiologic alterations in orthodox seeds due to deterioration processes. Plant Physiol Biochem. 2019;145:34-42. https://doi.org/10.1016/j.plaphy.2019.10.028
  60. Narayana Murthy UM, Sun WQ. Protein modification by Amadori and Maillard reactions during seed storage: Roles of sugar hydrolysis and lipid peroxidation. J Exp Bot. 2000;51(348):1221-28. https://doi.org/10.1093/jexbot/51.348.1221
  61. Shen Z, Cheng X, Li X, Deng X, Dong X, Wang S, et al. Effects of silicon application on leaf structure and physiological characteristics of Glycyrrhiza uralensis Fisch. and Glycyrrhiza inflata Bat. under salt treatment. BMC Plant Biol. 2022;22(1):390. https://doi.org/10.1186/s12870-022-03783-7
  62. Patel KD, Keskin-Erdogan Z, Sawadkar P, Sharifulden NS, Shannon MR, Patel M, et al. Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine. Nanoscale Horiz. 2024;9:1630-1682. https://doi.org/10.1039/D4NH00171K
  63. Thabet SG, Alqudah AM. Unraveling the role of nanoparticles in improving plant resilience under environmental stress condition. Plant Soil. 2024;1-8. https://doi.org/10.1007/s11104-024-06581-2
  64. Agarie S, Hanaoka N, Ueno O, Miyazaki A, Kubota F, Agata W, Kaufman PB. Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Prod Sci. 1998;1(2):96-103. https://doi.org/10.1626/pps.1.96
  65. Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N. Silica nanoparticles for increased silica availability in maize (Zea mays L.) seeds under hydroponic conditions. Curr Nanosci. 2012;8(6):902-08. https://doi.org/10.2174/157341312803989033
  66. Hossain SI, Saha SC, Deplazes E. Phenolic compounds alter the ion permeability of phospholipid bilayers via specific lipid interactions. Phys Chem Chem Phys. 2021;23(39):22352-66. https://doi.org/10.1039/D1CP03250J
  67. Agrawal KK, Yadav A, Kumar S, Saha S, Singh K, Jain D, et al. In silico assessment of antioxidant activity and toxicity profiling of bioactive molecules from Murraya koenigii. Discov Appl Sci. 2024;6:523. https://doi.org/10.1007/s42452-024-06232-2
  68. Gong H, Zhu X, Chen K, Wang S, Zhang C. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci. 2005;169(2):313-21. http://doi.org/10.1016/j.plantsci.2005.02.023
  69. Bhat JA, Rajora N, Raturi G, Sharma S, Dhiman P, Sanand S, et al. Silicon nanoparticles (SiNPs) in sustainable agriculture: Major emphasis on the practicality, efficacy and concerns. Nanoscale Adv. 2021;3:4019-28. https://doi.org/10.1039/D1NA00233C
  70. Stegner M, Wagner J, Roach T. Antioxidant depletion during seed storage under ambient conditions. Seed Sci Res. 2022;32(S3):150-56. https://doi.org/10.1017/S0960258522000101

Downloads

Download data is not yet available.