Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Integrative approaches for mustard improvement: Bridging conventional breeding, genetics and biotechnological advances

DOI
https://doi.org/10.14719/pst.5231
Submitted
23 September 2024
Published
12-01-2025

Abstract

Mustard is globally an oilseed crop that provides essential edible oil and industrial raw materials, particularly in regions like South Asia, Europe, and Canada, where it plays a critical role in agricultural economies and food industries. However, worldwide biotic and abiotic stresses pose major challenges to mustard production. Advances in conventional breeding techniques, genetics, and biotechnological tools hold immense potential for developing improved mustard varieties. This review elucidates the evolution of mustard breeding, moving from conventional approaches to advanced molecular tools that allow for precise genetic modifications, enhancing mustard resilience and yield. It highlights the roles of phenotypic and genotypic selection, molecular markers, transgenics, and genomicsassisted breeding in augmenting mustard improvement endeavours. The promise of emerging technologies like genome editing and systems biology is discussed for mustard genetic enhancement and climate-resilient varietal development. The review emphasizes the need of collaboration among research institutions, public-private partnerships, and international networks to accelerate, sustainable mustard improvement efforts.

References

  1. Wendlinger C, Hammann S, Vetter W. Various concentrations of erucic acid in mustard oil and mustard. Food Chemistry. 2014;153:393-97. https://doi.org/10.1016/j.foodchem.2013.12.073
  2. Banga SS, Banga S. Genetic diversity and germplasm patterns in Brassica juncea. Gene Pool Diversity and Crop Improvement [Internet]. 2016;163-86. Available from: http://dx.doi.org/10.1007/978-3-319-27096-8_5
  3. Yang J, Liu D, Wang X, Ji C, Cheng F, Liu B, et al. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nature Genetics. 2016;48(10):1225-32. http://dx.doi.org/10.1038/ng.3657
  4. Mollika SR, Sarker R, Hoque M. In vitro plant regeneration in Brassica spp. Plant Tissue Culture and Biotechnology. 2011;21(2):127-34. http://dx.doi.org/10.3329/ptcb.v21i2.10235
  5. Singh VK, Bhoyar PI, AnuSharma V. Application of genomics and breeding technologies to increase yield and nutritional qualities of rapeseed-mustard and sunflower. In: Kamaluddin, Kiran U, Abdin MZ, editors. Technologies in Plant Biotechnology and Breeding of Field Crops. Singapore: Springer; 2022. p. 103-31 https://doi.org/10.1007/978-981-16-5767-2_6
  6. Debnath P, Pal S. Population dynamics of mustard aphid (Lipaphis erysimi) with relation to some micro-meteorological parameters. J of Pharma Phyto. 2021;10(1):879-84. http://dx.doi.org/10.22271/phyto.2021.v10.i1m.13446
  7. Sharma D, Yadav S, Yadav S. Population dynamics of mustard aphid (Lipaphis erysimi Kalt) in various Brassica spp. Int J Curr Microbiol Appl Sci. 2019;8(2): 2952-59. http://dx.doi.org/10.20546/ijcmas.2019.802.344
  8. Agnihotri A, Kaushik N, Sarkar G, Prem D, Gupta K. Genetic enhancement in rapeseed–mustard for quality traits. Biotechnology for Food and Nutritional Security .New Delhi. 2004;119-43.
  9. Cartea ME, Francisco M, Soengas P, Velasco P. Phenolic compounds in Brassica vegetables. Molecules. 2010;16(1):251-80. http://dx.doi.org/10.3390/molecules16010251
  10. Navarro SL, Li F, Lampe JW. Mechanisms of action of isothiocyanates in cancer chemoprevention: an update. Food and Function [Internet]. 2011;2(10):579. Available from: http://dx.doi.org/10.1039/c1fo10114e
  11. Hanschen FS, Schreiner M. Isothiocyanates, nitriles and epithionitriles from glucosinolates are affected by genotype and developmental stage in Brassica oleracea varieties. Frontiers in Plant Science. 2017;8:1095. http://dx.doi.org/10.3389/fpls.2017.01095
  12. Basili M, Rossi MA. Brassica carinata-derived biodiesel production: Economics, sustainability and policies. The italian case. Journal of Cleaner Production. 2018;191:40-47. http://dx.doi.org/10.1016/j.jclepro.2018.03.306
  13. D’Avino L, Dainelli R, Lazzeri L, Spugnoli P. The role of co-products in biorefinery sustainability: energy allocation versus substitution method in rapeseed and carinata biodiesel chains. J Cleaner Prod. 2015;94:108-15. http://dx.doi.org/10.1016/j.jclepro.2015.01.088
  14. Wang P, Xiong X, Zhang X, Wu G, Liu F. A review of erucic acid production in Brassicaceae oilseeds: progress and prospects for the genetic engineering of high and low-erucic acid rapeseeds (Brassica napus). Frontiers in Plant Science. 2022;13899076. http://dx.doi.org/10.3389/fpls.2022.899076
  15. Kinay A, Kayacetin F. Phenology, morphology, yield and quality characteristics of mustard species (Brassica spp.) suitable for energy sector. Gesunde Pflanzen. 2023;75(5):1953-62. Available from: http://dx.doi.org/10.1007/s10343-022-00817-w
  16. Ahmed S, Hassan MH, Kalam MA, Rahman SA, Abedin MJ, Shahir A. An experimental investigation of biodiesel production, characterization, engine performance, emission and noise of Brassica juncea methyl ester and its blends. Journal of Cleaner Production. 2014;79:74-81. http://dx.doi.org/10.1016/j.jclepro.2014.05.019
  17. Devarajan Y, Munuswamy DB, Nagappan B, Pandian AK. Performance, combustion and emission analysis of mustard oil biodiesel and octanol blends in diesel engine. Heat and Mass Transfer. 2018;54(6):1803-11. http://dx.doi.org/10.1007/s00231-018-2274-x
  18. Zhang Y, Zhong Y, Lu S, Zhang Z, Tan D. A comprehensive review of the properties, performance, combustion and emissions of the diesel engine fueled with different generations of biodiesel. Processes. 2022;10(6):1178. http://dx.doi.org/10.3390/pr10061178
  19. Blackshaw R, Johnson E, Gan Y, May W, McAndrew D, Barthet V, et al. Alternative oilseed crops for biodiesel feedstock on the canadian prairies. Canadian Journal of Plant Science. 2011;91(5):889-96. http://dx.doi.org/10.4141/cjps2011-002
  20. Sivaraman I, Arumugam N, Sodhi YS, Gupta V, Mukhopadhyay A, Pradhan AK, et al. Development of high oleic and low linoleic acid transgenics in a zero erucic acid Brassica juncea L. (indian mustard) line by antisense suppression of the fad2 gene. Molecular Breeding. 2004;13:365-75. http://dx.doi.org/10.1023/b:molb.0000034092.47934.d6
  21. Thakur AK, Parmar N, Singh K, Nanjundan J. Current achievements and future prospects of genetic engineering in indian mustard (Brassica juncea L. Czern and Coss.). Planta. 2020;252:1-20. http://dx.doi.org/10.1007/s00425-020-03461-8
  22. Naeem I, Munir I, Durrett TP, Iqbal A, Aulakh KS, Ahmad MA, et al. Feasible regeneration and agro bacterium-mediated transformation of Brassica juncea with Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) gene. Saudi J Biol Sci. 2020;27(5):1324-32. https://doi.org/10.1016/j.sjbs.2019.12.036
  23. Augustine R, Mukhopadhyay A, Bisht NC. Targeted silencing of BjMYB28 transcription factor gene directs development of low glucosinolate lines in oilseed Brassica juncea. Plant Biotechnology Journal. 2013;11(7): 855-66. http://dx.doi.org/10.1111/pbi.12078
  24. Chauhan JS, Singh KH, Singh VV, Kumar S. Hundred years of rapeseed-mustard breeding in India: accomplishments and future strategies. Indian J Agric Sci. 2011;81(12):1093-109.
  25. Pramanick B, Mahapatra B, Datta D, Dey P, Singh S, Kumar A, et al. An innovative approach to improve oil production and quality of mustard (Brassica juncea L.) with multi-nutrient-rich polyhalite. Heliyon [Internet]. 2023;9(3):e13997. http://dx.doi.org/10.1016/j.heliyon.2023.e13997
  26. Chauhan J, Choudhury P, Singh K, Thakur AK. Recent trends in crop breeding, the varietal induction in seed chain and its impact on food grain production in India. Indian J Genet Pl Br. 2022;82(3): 259-79. http://dx.doi.org/10.31742/isgpb.82.3.1
  27. Acquaah G. Conventional plant breeding principles and techniques. In: Al-Khayri J, Jain S, Johnson D, editors. Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools. Cham: Springer; 2015. p . 115-58 https://doi.org/10.1007/978-3-319-22521-0_5
  28. Pang Y, Chen K, Wang X, Xu J, Ali J, Li Z. Recurrent selection breeding by dominant male sterility for multiple abiotic stresses tolerant rice cultivars. Euphytica. 2017;213:1-13. http://dx.doi.org/10.1007/s10681-017-2055-5
  29. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Latif MA. Recurrent parent genome recovery analysis in a marker-assisted backcrossing program of rice (Oryza sativa L.). Comptes Rendus Biologies. 2015;338(2):83-94. https://doi.org/10.1016/j.crvi.2014.11.003
  30. Ahmad M, Waraich EA, Skalicky M, Hussain S, Zulfiqar U, Anjum MZ, et al. Adaptation strategies to improve the resistance of oilseed crops to heat stress under a changing climate: an overview. Frontiers in Plant Science. 2021;12:767150. https://doi.org/10.3389/fpls.2021.767150
  31. Akhatar J, Kaur H, Kumar H. Conventional plant breeding to modern biotechnological approaches in crop improvement. In: Kamaluddin, Kiran U, Abdin MZ, editors. Technologies in Plant Biotechnology and Breeding of Field Crops. Singapore: Springer; 2022. p. 1-21 https://doi.org/10.1007/978-981-16-5767-2_1
  32. Verma S, Singh V, Meena M, Rathore S, Ram B, Singh S, et al. Genetic analysis of morphological and physiological traits in indian mustard (Brassica juncea L.). SABRAO Journal of Breeding and Genetics. 2016;48(4). https://doi.org/10.5958/0975-6906.2014.00880.3
  33. Singh M, Singh VV, Singh N, Monika. Drought tolerance in rapeseed-mustard: conventional and molecular approaches. In: Kole C. Genomic Designing for Abiotic Stress Resistant Oilseed Crops. Cham: Springer; 2022. p. 199-218 https://doi.org/10.1007/978-3-030-90044-1_5
  34. Srivastava K, Srivastava A, Sinha B. Analysis of drought susceptibility index in indian mustard (Brassica juncea (L.) czern and coss). Indian J Agri Res. 2021;55(4):446-51. http://dx.doi.org/10.18805/ijare.a-5526
  35. Moose SP, Mumm RH. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiology. 2008;147(3): 969-77. https://doi.org/10.1104/pp.108.118232
  36. Kulwal PL, Mir RR, Varshney RK. Efficient breeding of crop plants. In: Yadava DK, Dikshit HK, Mishra GP, Tripathi S, editors. Fundamentals of Field Crop Breeding. Singapore: Springer; 2022. p. 745-77 https://doi.org/10.1007/978-981-16-9257-4_14
  37. Anand A, Subramanian M, Kar D. Breeding techniques to dispense higher genetic gains. Frontiers in Plant Science. 2023;13:1076094. https://doi.org/10.3389/fpls.2022.1076094
  38. Zafar SA, Zaidi SS, Gaba Y, Singla-Pareek SL, Dhankher OP, Li X, et al. Engineering abiotic stress tolerance via CRISPR/Cas-mediated genome editing. J Exp Bot. 2020; 71(2):470-79. http://dx.doi.org/10.1093/jxb/erz476
  39. Erdo?an ?, Cevher-Keskin B, Bilir Ö, Hong Y, Tör M. Recent developments in CRISPR/Cas9 genome-editing technology related to plant disease resistance and abiotic stress tolerance. Biology. 2023;12(7):1037. http://dx.doi.org/10.3390/biology12071037
  40. Rehman HM, Nawaz MA, Shah ZH, Ludwig-Müller J, Chung G, Ahmad MQ, et al. Comparative genomic and transcriptomic analyses of Family-1 UDP glycosyltransferase in three Brassica species and Arabidopsis indicates stress-responsive regulation. Scientific Reports. 2018;8(1):1875. https://doi.org/10.1038/s41598-018-19535-3
  41. Sharma A, Li X, Lim YP. Comparative genomics of Brassicaceae crops. Breeding Science [Internet]. 2014;64(1):3-13. Available from https://doi.org/10.1270/jsbbs.64.3
  42. Paritosh K, Yadava SK, Singh P, Bhayana L, Mukhopadhyay A, Gupta V, et al. A chromosome?scale assembly of allotetraploid Brassica juncea (AABB) elucidates comparative architecture of the A and B genomes. Plant Biotechnology Journal. 2021;19(3):602-14. http://dx.doi.org/10.1111/pbi.13492
  43. Anupriya C, Shradha N, Prasun B, Abha A, Pankaj S, Abdin MZ, Neeraj S. Genomic and molecular perspectives of host-pathogen interaction and resistance strategies against white rust in oilseed mustard. Current Genomics. 2020;21(3):179-93. https://doi.org/10.2174/1389202921999200508075410
  44. Sharma R, Aggarwal RA, Kumar R, Mohapatra T, Sharma RP. Construction of an RAPD linkage map and localization of QTLs for oleic acid level using recombinant inbreds in mustard (Brassica juncea). Genome. 2002;45(3):467-72. http://dx.doi.org/10.1139/g02-001
  45. Sun F, Liu J, Hua W, Sun X, Wang X, Wang H. Identification of stable QTLs for seed oil content by combined linkage and association mapping in Brassica napus. Plant Science. 2016;252:388-99. http://dx.doi.org/10.1016/j.plantsci.2016.09.001
  46. Rout K, Yadav BG, Yadava SK, Mukhopadhyay A, Gupta V, Pental D, Pradhan AK. QTL landscape for oil content in Brassica juncea: analysis in multiple bi-parental populations in high and “0” erucic background. Frontiers in Plant Science. 2018;9:1448. http://dx.doi.org/10.3389/fpls.2018.01448
  47. Ramchiary N, Padmaja KL, Sharma S, Gupta V, Sodhi YS, Mukhopadhyay A, et al. Mapping of yield influencing QTL in Brassica juncea: implications for breeding of a major oilseed crop of dryland areas. Theoretical and Applied Genetics. 2007;115:807-17. http://dx.doi.org/10.1007/s00122-007-0610-5
  48. Habier D, Fernando RL, Dekkers JC. Genomic selection using low-density marker panels. Genetics. 2009;182(1):343-53. http://dx.doi.org/10.1534/genetics.108.100289
  49. Baisvar VS, Kushwaha B, Kumar R, Kumar MS, Singh M, et al. BAC-FISH based physical map of endangered catfish Clarias magur for chromosome cataloguing and gene isolation through positional cloning. Inter J Mol Sci. 2022;23(24):15958. http://dx.doi.org/10.3390/ijms232415958
  50. Kadirvel P, Kumar CA, Basavaraj PS, Geethanjali S, Reddy YR, Rahul VD, Senthilvel S. Current scenario of marker-assisted selection in breeding of minor oilseed crops of India. Indian Society of Oilseeds Research. 2021;38(4):303-19. http://dx.doi.org/10.56739/jor.v38i4.137201
  51. Wang K, Wang Z, Li F, Ye W, Wang J, Song G, et al. The draft genome of a diploid cotton Gossypium raimondii. Nature Genetics. 2012;44(10):1098-103. http://dx.doi.org/10.1038/ng.2371
  52. Axelsson T, Bowman C, Sharpe A, Lydiate D, Lagercrantz U. Amphidiploid Brassica juncea contains conserved progenitor genomes. Genome. 2000;43(4):679-88. https://doi.org/10.1139/g00-026
  53. Li FE, Chen BI, Xu KU, Wu JI, Song WE, Bancroft IA, et al. Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Research. 2014;21(4):355-67. http://dx.doi.org/10.1093/dnares/dsu002
  54. Murphy DJ. Using modern plant breeding to improve the nutritional and technological qualities of oil crops. OCL [Internet]. 2014;21(6):D607. Available from https://doi.org/10.1051/ocl/2014038
  55. Hanafy RS, Akladious SA. Physiological and molecular studies on the effect of gamma radiation in fenugreek (Trigonella foenum-graecum L.) plants. J Genet Eng Biotechnol. 2018;16(2):683-92. https://doi.org/10.1016/j.jgeb.2018.02.012
  56. Hamideldin N, Eliwa NE. Gamma irradiation effect on growth, physiological and molecular aspects of mustard plant. Amer J Agri Sci. 2015;2(4):64-170.
  57. Aly AA. Biosynthesis of phenolic compounds and water soluble vitamins in culantro (Eryngium foetidum L.) plantlets as affected by low doses of gamma irradiation. Fascicula Biologie. 2010;2:356-61.
  58. Acharjee A, Kloosterman B, Visser RG, Maliepaard C. Integration of multi-omics data for prediction of phenotypic traits using random forest. BMC Bioinformatics. 2016;17(5):363-73. https://doi.org/10.1186/s12859-016-1043-4
  59. Chand S, Indu, Singhal RK, Govindasamy P. Agronomical and breeding approaches to improve the nutritional status of forage crops for better livestock productivity. Grass and Forage Science. 2022;77(1):11-32. https://doi.org/10.1111/gfs.12557
  60. Saini N, Singh N, Kumar A, Vihan N, Yadav S, Vasudev S. Development and validation of functional CAPS markers for the FAE genes in Brassica juncea and their use in marker-assisted selection. Breeding Science. 2016;66(5):831-37. http://dx.doi.org/10.1270/jsbbs.16132
  61. Bawa V, Kumar RS. Nature of importance of various parameters for ideal biofuel crops: special reference to rapeseed mustard [Internet]. Oilseed Crops - Uses, Biology and Production. 2022. Available from: http://dx.doi.org/10.5772/intechopen.107102
  62. Liu JW, DeMichele S, Bergana M, Bobik E, Hastilow C, Chuang LT, et al. Characterization of oil exhibiting high ?-linolenic acid from a genetically transformed canola strain. J Amer Oil Chem Soc. 2001;78:489-93. https://doi.org/10.1007/s11746-001-0291-2
  63. Akmal M, Kiran U, Ali A, Abdin M. Enhanced nitrogen assimilation in transgenic mustard (Brassica juncea L.) overexpressing high affinity sulfate transporter gene. 2014;13:81-87.
  64. Gautam R, Shukla P, Kirti P. Targeted expression of a cysteine protease (AdCP) in tapetum induces male sterility in indian mustard, Brassica juncea. Functional and Integrative Genomics. 2019;19:703-14. https://doi.org/10.1007/s10142-019-00674-3
  65. Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, et al. Genetic control of oil content in oilseed rape (Brassica napus L.). Theoretical and Applied Genetics. 2006;113(7):1331-45. https://doi.org/10.1007/s00122-006-0386-z
  66. Karim MM, Tonu NN, Hossain MS, Funaki T, Meah MB, Hossain DM, et al. Marker-assisted selection of low erucic acid quantity in short duration Brassica rapa. Euphytica. 2016;208(3):535-44. https://doi.org/10.1007/s10681-015-1596-8
  67. Chen K, Wang Y, Zhang R, Zhang H, Gao C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology. 2019;70(1):667-97. https://doi.org/10.1146/annurev-arplant-050718-100049
  68. Park J, Choi S, Park S, Yoon J, Park AY, Choe S. DNA-free genome editing via ribonucleoprotein (RNP) delivery of CRISPR/Cas in lettuce. In: Qi Y, editors. Plant Genome Editing with CRISPR Systems. Methods in Molecular Biology Humana, New York: Springer; 2019(1917):337-54 https://doi.org/10.1007/978-1-4939-8991-1_25.
  69. Wang G, Zhang X, Huang W, Xu P, Lv Z, Zhao L, et al. Increased seed number per silique in Brassica juncea by deleting cis?reulatory region affecting BjCLV1 expression in carpel margin meristem. Plant Biotechnology Journal. 2021;19(11):2333-48. https://doi.org/10.1111/pbi.13664
  70. Cheng H, Hao M, Ding B, Mei D, Wang W, Wang H, et al. Base editing with high efficiency in allotetraploid oilseed rape by A3A?PBE system. Plant Biotechnology Journal. 2021;19(1):87-97. https://doi.org/10.1111/pbi.13444
  71. Qamarunnisa S, Jamil I, Raza S, Azhar A, Naqvi SM. Genetic improvement of canola against abiotic stress through incorporation of DREB gene. Asian J Agric Biol. 2015;3(3):77-104.
  72. Hadi F, Gilpin M, Fuller MP. Identification and expression analysis of CBF/DREB1 and COR15 genes in mutants of Brassica oleracea var. botrytis with enhanced proline production and frost resistance. Plant Physiology and Biochemistry. 2011;49(11):1323-32. https://doi.org/10.1016/j.plaphy.2011.08.013
  73. Agricultural statistics at a glance 2022. Ministry of Agriculture and Farmers Welfare. [Internet]. New Delhi: Government of India; 2022 [cited 2024 July 12]. Available from: https://agriwelfare.gov.in/Documents/CWWGDATA/Agricultural_Statistics_at_a_Glance_2022_0.pdf.
  74. Sahni S, Ganie SH, Narula A, Srivastava PS, Singh HB. Ectopic expression of atleafy in Brassica juncea cv. geeta for early flowering. Physiol Mol Biol Plants. 2013;19:455-59. https://doi.org/10.1007/s12298-013-0180-8
  75. Obidiegwu JE, Bryan GJ, Jones HG, Prashar A. Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Frontiers in Plant Science. 2015;6:542. https://doi.org/10.3389/fpls.2015.00542
  76. Nasri M, Khalatbari M, Zahedi H, Paknejad F, Moghadam HT. Evaluation of micro and macro elements in drought stress condition in cultivars of rapeseed (Brassica napus L.). 2008;3(3):579-83. https://doi.org/10.3844/ajabssp.2008.579.583
  77. Zhang X, Lu G, Long W, Zou X, Li F, Nishio T. Recent progress in drought and salt tolerance studies in Brassica crops. Breeding Science. 2014;64(1):60-73. https://doi.org/10.1270/jsbbs.64.60
  78. Kaur N, Murphy J. Enhanced isoflavone biosynthesis in transgenic cowpea (Vigna unguiculata L.) callus. Plant Mol Biol Biotechnol. 2012;3(1):1-8.
  79. Purty RS, Kumar G, Singla-Pareek SL, Pareek A. Towards salinity tolerance in Brassica: an overview. Physiol Mol Biol Plants. 2008;14:39-49. https://doi.org/10.1007/s12298-008-0004-4
  80. Brozynska M, Furtado A, Henry RJ. Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnology Journal. 2016;14(4):1070-85. https://doi.org/10.1111/pbi.12454
  81. Augustine R, Bisht NC. Biotic elicitors and mechanical damage modulate glucosinolate accumulation by co-ordinated interplay of glucosinolate biosynthesis regulators in polyploid Brassica juncea. Phytochemistry. 2015;117:43-50. http://dx.doi.org/10.1016/j.phytochem.2015.05.015
  82. Nordborg MTavaré S. Linkage disequilibrium: what history has to tell us. Trends in Genetics. 2002;18(2):83-90. https://doi.org/10.1016/s0168-9525(02)02557-x
  83. Varshney RK, Bansal KC, Aggarwal PK, Datta SK, Craufurd PQ. Agricultural biotechnology for crop improvement in a variable climate: hope or hype?. Trends in Plant Science. 2011;16(7):363-71. https://doi.org/10.1016/j.tplants.2011.03.004
  84. Yadava SK, Paritosh K, Panjabi-Massand P, Gupta V, Chandra A, Sodhi Y, et al. Tetralocular ovary and high silique width in yellow sarson lines of Brassica rapa (subspecies trilocularis) are due to a mutation in Bra034340 gene, a homologue of CLAVATA3 in Arabidopsis. Theoretical and Applied Genetics. 2014;127:2359-69. https://doi.org/10.1007/s00122-014-2382-z
  85. Tripathi SK, Lallu SKS, Yadav V, Singh M. Effect of terminal heat stress on variability in physiological traits of indian mustard (Brassica juncea L.) due to late sown situation. Int J Curr Microbiol Appl Sci. 2020;9:1620-28. https://doi.org/10.20546/ijcmas.2020.901.178
  86. Prasad KV, Sharmila P, Kumar PA, Saradhi PP. Transformation of Brassica juncea (L.) Czern with bacterial codA gene enhances its tolerance to salt stress. Molecular Breeding. 2000;6:489-99.
  87. Park BJ, Liu Z, Kanno A, Kameya T. Genetic improvement of chinese cabbage for salt and drought tolerance by constitutive expression of a B. napus LEA gene. Plant Science. 2005;169(3):553-58. http://dx.doi.org/10.1016/j.plantsci.2005.05.008
  88. Rajagopal D, Agarwal P, Tyagi W, Singla-Pareek SL, Reddy MK, Sopory SK. Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Molecular Breeding. 2007;19:137-51.http://dx.doi.org/10.1007/s11032-006-9052-z
  89. Mondal KK, Bhattacharya RC, Koundal KR, Chatterjee SC. Transgenic indian mustard (Brassica juncea) expressing tomato glucanase leads to arrested growth of Alternaria brassicae. Plant Cell Reports. 2007;26:247-52.
  90. Kumar K, Kumar M, Kim SR, Ryu HCho YG. Insights into genomics of salt stress response in rice. Rice. 2013;6(1):1-15. http://dx.doi.org/10.1007/s00299-006-0241-3
  91. Kumar S, Dubey RS, Tripathi RD, Chakrabarty D, Trivedi PK. Omics and biotechnology of arsenic stress and detoxification in plants: current updates and prospective. Environment International. 2015;74:221-30. http://dx.doi.org/10.1016/j.envint.2014.10.019
  92. Rustagi A, Kumar D, Shekhar S, Yusuf MA, Misra S, Sarin NB. Transgenic Brassica juncea plants expressing MsrA1, a synthetic cationic antimicrobial peptide, exhibit resistance to fungal phytopathogens. Molecular Biotechnology. 2014;56:535-45. http://dx.doi.org/10.1007/s12033-013-9727-8
  93. Ali S, Mir ZA, Tyagi A, Mehari H, Meena RP, Bhat JA, et al. Overexpression of NPR1 in Brassica juncea confers broad spectrum resistance to fungal pathogens. Frontiers in Plant Science. 2017 Oct 4;8:1693. http://dx.doi.org/10.3389/fpls.2017.01693
  94. Hong H, Datla N, Reed DW, Covello PS, MacKenzie SL, Qiu X. High-level production of ?-linolenic acid in Brassica juncea using a ?6 desaturase from pythium irregulare. Plant Physiology. 2002;129(1):354-62. http://dx.doi.org/10.1104/pp.001495.
  95. Li X, Chen L, Hong M, Zhang Y, Zu F, Wen J, et al. A Large insertion in bHLH transcription factor BrTT8 resulting in yellow seed coat in Brassica rapa. Schiefelbein J, editor. PLoS One [Internet]. 2012;7(9):e44145. Available from: http://dx.doi.org/10.1371/journal.pone.0044145
  96. Jing B, Heng S, Tong D, Wan Z, Fu T, Tu J, et al. A male sterility-associated cytotoxic protein ORF288 in Brassica juncea causes aborted pollen development. Journal of Experimental Botany. 2012;63(3):1285-95. http://dx.doi.org/10.1093/jxb/err355
  97. Bala A, Roy A, Das A, Chakraborti D, Das S. Development of selectable marker free, insect resistant, transgenic mustard (Brassica juncea) plants using Cre/lox mediated recombination. BMC Biotechnology. 2013;13:1-11. http://dx.doi.org/10.1186/1472-6750-13-88
  98. Kajla S, Mukhopadhyay A, Pradhan AK. Development of transgenic Brassica juncea lines for reduced seed sinapine content by perturbing phenylpropanoid pathway genes. Raman H, editor. PLoS One [Internet]. 2017;12(8):e0182747. Available from: http://dx.doi.org/10.1371/journal.pone.0182747.

Downloads

Download data is not yet available.